/usr/share/pyshared/mpmath/libmp/libmpi.py is in python-mpmath 0.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 | """
Computational functions for interval arithmetic.
"""
from .backend import xrange
from .libmpf import (
ComplexResult,
round_down, round_up, round_floor, round_ceiling, round_nearest,
prec_to_dps, repr_dps, dps_to_prec,
bitcount,
from_float,
fnan, finf, fninf, fzero, fhalf, fone, fnone,
mpf_sign, mpf_lt, mpf_le, mpf_gt, mpf_ge, mpf_eq, mpf_cmp,
mpf_min_max,
mpf_floor, from_int, to_int, to_str, from_str,
mpf_abs, mpf_neg, mpf_pos, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
mpf_div, mpf_shift, mpf_pow_int,
from_man_exp, MPZ_ONE)
from .libelefun import (
mpf_log, mpf_exp, mpf_sqrt, mpf_atan, mpf_atan2,
mpf_pi, mod_pi2, mpf_cos_sin
)
from .gammazeta import mpf_gamma, mpf_rgamma, mpf_loggamma, mpc_loggamma
def mpi_str(s, prec):
sa, sb = s
dps = prec_to_dps(prec) + 5
return "[%s, %s]" % (to_str(sa, dps), to_str(sb, dps))
#dps = prec_to_dps(prec)
#m = mpi_mid(s, prec)
#d = mpf_shift(mpi_delta(s, 20), -1)
#return "%s +/- %s" % (to_str(m, dps), to_str(d, 3))
mpi_zero = (fzero, fzero)
mpi_one = (fone, fone)
def mpi_eq(s, t):
return s == t
def mpi_ne(s, t):
return s != t
def mpi_lt(s, t):
sa, sb = s
ta, tb = t
if mpf_lt(sb, ta): return True
if mpf_ge(sa, tb): return False
return None
def mpi_le(s, t):
sa, sb = s
ta, tb = t
if mpf_le(sb, ta): return True
if mpf_gt(sa, tb): return False
return None
def mpi_gt(s, t): return mpi_lt(t, s)
def mpi_ge(s, t): return mpi_le(t, s)
def mpi_add(s, t, prec=0):
sa, sb = s
ta, tb = t
a = mpf_add(sa, ta, prec, round_floor)
b = mpf_add(sb, tb, prec, round_ceiling)
if a == fnan: a = fninf
if b == fnan: b = finf
return a, b
def mpi_sub(s, t, prec=0):
sa, sb = s
ta, tb = t
a = mpf_sub(sa, tb, prec, round_floor)
b = mpf_sub(sb, ta, prec, round_ceiling)
if a == fnan: a = fninf
if b == fnan: b = finf
return a, b
def mpi_delta(s, prec):
sa, sb = s
return mpf_sub(sb, sa, prec, round_up)
def mpi_mid(s, prec):
sa, sb = s
return mpf_shift(mpf_add(sa, sb, prec, round_nearest), -1)
def mpi_pos(s, prec):
sa, sb = s
a = mpf_pos(sa, prec, round_floor)
b = mpf_pos(sb, prec, round_ceiling)
return a, b
def mpi_neg(s, prec=0):
sa, sb = s
a = mpf_neg(sb, prec, round_floor)
b = mpf_neg(sa, prec, round_ceiling)
return a, b
def mpi_abs(s, prec=0):
sa, sb = s
sas = mpf_sign(sa)
sbs = mpf_sign(sb)
# Both points nonnegative?
if sas >= 0:
a = mpf_pos(sa, prec, round_floor)
b = mpf_pos(sb, prec, round_ceiling)
# Upper point nonnegative?
elif sbs >= 0:
a = fzero
negsa = mpf_neg(sa)
if mpf_lt(negsa, sb):
b = mpf_pos(sb, prec, round_ceiling)
else:
b = mpf_pos(negsa, prec, round_ceiling)
# Both negative?
else:
a = mpf_neg(sb, prec, round_floor)
b = mpf_neg(sa, prec, round_ceiling)
return a, b
# TODO: optimize
def mpi_mul_mpf(s, t, prec):
return mpi_mul(s, (t, t), prec)
def mpi_div_mpf(s, t, prec):
return mpi_div(s, (t, t), prec)
def mpi_mul(s, t, prec=0):
sa, sb = s
ta, tb = t
sas = mpf_sign(sa)
sbs = mpf_sign(sb)
tas = mpf_sign(ta)
tbs = mpf_sign(tb)
if sas == sbs == 0:
# Should maybe be undefined
if ta == fninf or tb == finf:
return fninf, finf
return fzero, fzero
if tas == tbs == 0:
# Should maybe be undefined
if sa == fninf or sb == finf:
return fninf, finf
return fzero, fzero
if sas >= 0:
# positive * positive
if tas >= 0:
a = mpf_mul(sa, ta, prec, round_floor)
b = mpf_mul(sb, tb, prec, round_ceiling)
if a == fnan: a = fzero
if b == fnan: b = finf
# positive * negative
elif tbs <= 0:
a = mpf_mul(sb, ta, prec, round_floor)
b = mpf_mul(sa, tb, prec, round_ceiling)
if a == fnan: a = fninf
if b == fnan: b = fzero
# positive * both signs
else:
a = mpf_mul(sb, ta, prec, round_floor)
b = mpf_mul(sb, tb, prec, round_ceiling)
if a == fnan: a = fninf
if b == fnan: b = finf
elif sbs <= 0:
# negative * positive
if tas >= 0:
a = mpf_mul(sa, tb, prec, round_floor)
b = mpf_mul(sb, ta, prec, round_ceiling)
if a == fnan: a = fninf
if b == fnan: b = fzero
# negative * negative
elif tbs <= 0:
a = mpf_mul(sb, tb, prec, round_floor)
b = mpf_mul(sa, ta, prec, round_ceiling)
if a == fnan: a = fzero
if b == fnan: b = finf
# negative * both signs
else:
a = mpf_mul(sa, tb, prec, round_floor)
b = mpf_mul(sa, ta, prec, round_ceiling)
if a == fnan: a = fninf
if b == fnan: b = finf
else:
# General case: perform all cross-multiplications and compare
# Since the multiplications can be done exactly, we need only
# do 4 (instead of 8: two for each rounding mode)
cases = [mpf_mul(sa, ta), mpf_mul(sa, tb), mpf_mul(sb, ta), mpf_mul(sb, tb)]
if fnan in cases:
a, b = (fninf, finf)
else:
a, b = mpf_min_max(cases)
a = mpf_pos(a, prec, round_floor)
b = mpf_pos(b, prec, round_ceiling)
return a, b
def mpi_square(s, prec=0):
sa, sb = s
if mpf_ge(sa, fzero):
a = mpf_mul(sa, sa, prec, round_floor)
b = mpf_mul(sb, sb, prec, round_ceiling)
elif mpf_le(sb, fzero):
a = mpf_mul(sb, sb, prec, round_floor)
b = mpf_mul(sa, sa, prec, round_ceiling)
else:
sa = mpf_neg(sa)
sa, sb = mpf_min_max([sa, sb])
a = fzero
b = mpf_mul(sb, sb, prec, round_ceiling)
return a, b
def mpi_div(s, t, prec):
sa, sb = s
ta, tb = t
sas = mpf_sign(sa)
sbs = mpf_sign(sb)
tas = mpf_sign(ta)
tbs = mpf_sign(tb)
# 0 / X
if sas == sbs == 0:
# 0 / <interval containing 0>
if (tas < 0 and tbs > 0) or (tas == 0 or tbs == 0):
return fninf, finf
return fzero, fzero
# Denominator contains both negative and positive numbers;
# this should properly be a multi-interval, but the closest
# match is the entire (extended) real line
if tas < 0 and tbs > 0:
return fninf, finf
# Assume denominator to be nonnegative
if tas < 0:
return mpi_div(mpi_neg(s), mpi_neg(t), prec)
# Division by zero
# XXX: make sure all results make sense
if tas == 0:
# Numerator contains both signs?
if sas < 0 and sbs > 0:
return fninf, finf
if tas == tbs:
return fninf, finf
# Numerator positive?
if sas >= 0:
a = mpf_div(sa, tb, prec, round_floor)
b = finf
if sbs <= 0:
a = fninf
b = mpf_div(sb, tb, prec, round_ceiling)
# Division with positive denominator
# We still have to handle nans resulting from inf/0 or inf/inf
else:
# Nonnegative numerator
if sas >= 0:
a = mpf_div(sa, tb, prec, round_floor)
b = mpf_div(sb, ta, prec, round_ceiling)
if a == fnan: a = fzero
if b == fnan: b = finf
# Nonpositive numerator
elif sbs <= 0:
a = mpf_div(sa, ta, prec, round_floor)
b = mpf_div(sb, tb, prec, round_ceiling)
if a == fnan: a = fninf
if b == fnan: b = fzero
# Numerator contains both signs?
else:
a = mpf_div(sa, ta, prec, round_floor)
b = mpf_div(sb, ta, prec, round_ceiling)
if a == fnan: a = fninf
if b == fnan: b = finf
return a, b
def mpi_pi(prec):
a = mpf_pi(prec, round_floor)
b = mpf_pi(prec, round_ceiling)
return a, b
def mpi_exp(s, prec):
sa, sb = s
# exp is monotonic
a = mpf_exp(sa, prec, round_floor)
b = mpf_exp(sb, prec, round_ceiling)
return a, b
def mpi_log(s, prec):
sa, sb = s
# log is monotonic
a = mpf_log(sa, prec, round_floor)
b = mpf_log(sb, prec, round_ceiling)
return a, b
def mpi_sqrt(s, prec):
sa, sb = s
# sqrt is monotonic
a = mpf_sqrt(sa, prec, round_floor)
b = mpf_sqrt(sb, prec, round_ceiling)
return a, b
def mpi_atan(s, prec):
sa, sb = s
a = mpf_atan(sa, prec, round_floor)
b = mpf_atan(sb, prec, round_ceiling)
return a, b
def mpi_pow_int(s, n, prec):
sa, sb = s
if n < 0:
return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec)
if n == 0:
return (fone, fone)
if n == 1:
return s
if n == 2:
return mpi_square(s, prec)
# Odd -- signs are preserved
if n & 1:
a = mpf_pow_int(sa, n, prec, round_floor)
b = mpf_pow_int(sb, n, prec, round_ceiling)
# Even -- important to ensure positivity
else:
sas = mpf_sign(sa)
sbs = mpf_sign(sb)
# Nonnegative?
if sas >= 0:
a = mpf_pow_int(sa, n, prec, round_floor)
b = mpf_pow_int(sb, n, prec, round_ceiling)
# Nonpositive?
elif sbs <= 0:
a = mpf_pow_int(sb, n, prec, round_floor)
b = mpf_pow_int(sa, n, prec, round_ceiling)
# Mixed signs?
else:
a = fzero
# max(-a,b)**n
sa = mpf_neg(sa)
if mpf_ge(sa, sb):
b = mpf_pow_int(sa, n, prec, round_ceiling)
else:
b = mpf_pow_int(sb, n, prec, round_ceiling)
return a, b
def mpi_pow(s, t, prec):
ta, tb = t
if ta == tb and ta not in (finf, fninf):
if ta == from_int(to_int(ta)):
return mpi_pow_int(s, to_int(ta), prec)
if ta == fhalf:
return mpi_sqrt(s, prec)
u = mpi_log(s, prec + 20)
v = mpi_mul(u, t, prec + 20)
return mpi_exp(v, prec)
def MIN(x, y):
if mpf_le(x, y):
return x
return y
def MAX(x, y):
if mpf_ge(x, y):
return x
return y
def cos_sin_quadrant(x, wp):
sign, man, exp, bc = x
if x == fzero:
return fone, fzero, 0
# TODO: combine evaluation code to avoid duplicate modulo
c, s = mpf_cos_sin(x, wp)
t, n, wp_ = mod_pi2(man, exp, exp+bc, 15)
if sign:
n = -1-n
return c, s, n
def mpi_cos_sin(x, prec):
a, b = x
if a == b == fzero:
return (fone, fone), (fzero, fzero)
# Guaranteed to contain both -1 and 1
if (finf in x) or (fninf in x):
return (fnone, fone), (fnone, fone)
wp = prec + 20
ca, sa, na = cos_sin_quadrant(a, wp)
cb, sb, nb = cos_sin_quadrant(b, wp)
ca, cb = mpf_min_max([ca, cb])
sa, sb = mpf_min_max([sa, sb])
# Both functions are monotonic within one quadrant
if na == nb:
pass
# Guaranteed to contain both -1 and 1
elif nb - na >= 4:
return (fnone, fone), (fnone, fone)
else:
# cos has maximum between a and b
if na//4 != nb//4:
cb = fone
# cos has minimum
if (na-2)//4 != (nb-2)//4:
ca = fnone
# sin has maximum
if (na-1)//4 != (nb-1)//4:
sb = fone
# sin has minimum
if (na-3)//4 != (nb-3)//4:
sa = fnone
# Perturb to force interval rounding
more = from_man_exp((MPZ_ONE<<wp) + (MPZ_ONE<<10), -wp)
less = from_man_exp((MPZ_ONE<<wp) - (MPZ_ONE<<10), -wp)
def finalize(v, rounding):
if bool(v[0]) == (rounding == round_floor):
p = more
else:
p = less
v = mpf_mul(v, p, prec, rounding)
sign, man, exp, bc = v
if exp+bc >= 1:
if sign:
return fnone
return fone
return v
ca = finalize(ca, round_floor)
cb = finalize(cb, round_ceiling)
sa = finalize(sa, round_floor)
sb = finalize(sb, round_ceiling)
return (ca,cb), (sa,sb)
def mpi_cos(x, prec):
return mpi_cos_sin(x, prec)[0]
def mpi_sin(x, prec):
return mpi_cos_sin(x, prec)[1]
def mpi_tan(x, prec):
cos, sin = mpi_cos_sin(x, prec+20)
return mpi_div(sin, cos, prec)
def mpi_cot(x, prec):
cos, sin = mpi_cos_sin(x, prec+20)
return mpi_div(cos, sin, prec)
def mpi_from_str_a_b(x, y, percent, prec):
wp = prec + 20
xa = from_str(x, wp, round_floor)
xb = from_str(x, wp, round_ceiling)
#ya = from_str(y, wp, round_floor)
y = from_str(y, wp, round_ceiling)
assert mpf_ge(y, fzero)
if percent:
y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling)
y = mpf_div(y, from_int(100), wp, round_ceiling)
a = mpf_sub(xa, y, prec, round_floor)
b = mpf_add(xb, y, prec, round_ceiling)
return a, b
def mpi_from_str(s, prec):
"""
Parse an interval number given as a string.
Allowed forms are
"-1.23e-27"
Any single decimal floating-point literal.
"a +- b" or "a (b)"
a is the midpoint of the interval and b is the half-width
"a +- b%" or "a (b%)"
a is the midpoint of the interval and the half-width
is b percent of a (`a \times b / 100`).
"[a, b]"
The interval indicated directly.
"x[y,z]e"
x are shared digits, y and z are unequal digits, e is the exponent.
"""
e = ValueError("Improperly formed interval number '%s'" % s)
s = s.replace(" ", "")
wp = prec + 20
if "+-" in s:
x, y = s.split("+-")
return mpi_from_str_a_b(x, y, False, prec)
# case 2
elif "(" in s:
# Don't confuse with a complex number (x,y)
if s[0] == "(" or ")" not in s:
raise e
s = s.replace(")", "")
percent = False
if "%" in s:
if s[-1] != "%":
raise e
percent = True
s = s.replace("%", "")
x, y = s.split("(")
return mpi_from_str_a_b(x, y, percent, prec)
elif "," in s:
if ('[' not in s) or (']' not in s):
raise e
if s[0] == '[':
# case 3
s = s.replace("[", "")
s = s.replace("]", "")
a, b = s.split(",")
a = from_str(a, prec, round_floor)
b = from_str(b, prec, round_ceiling)
return a, b
else:
# case 4
x, y = s.split('[')
y, z = y.split(',')
if 'e' in s:
z, e = z.split(']')
else:
z, e = z.rstrip(']'), ''
a = from_str(x+y+e, prec, round_floor)
b = from_str(x+z+e, prec, round_ceiling)
return a, b
else:
a = from_str(s, prec, round_floor)
b = from_str(s, prec, round_ceiling)
return a, b
def mpi_to_str(x, dps, use_spaces=True, brackets='[]', mode='brackets', error_dps=4, **kwargs):
"""
Convert a mpi interval to a string.
**Arguments**
*dps*
decimal places to use for printing
*use_spaces*
use spaces for more readable output, defaults to true
*brackets*
pair of strings (or two-character string) giving left and right brackets
*mode*
mode of display: 'plusminus', 'percent', 'brackets' (default) or 'diff'
*error_dps*
limit the error to *error_dps* digits (mode 'plusminus and 'percent')
Additional keyword arguments are forwarded to the mpf-to-string conversion
for the components of the output.
**Examples**
>>> from mpmath import mpi, mp
>>> mp.dps = 30
>>> x = mpi(1, 2)
>>> mpi_to_str(x, mode='plusminus')
'1.5 +- 5.0e-1'
>>> mpi_to_str(x, mode='percent')
'1.5 (33.33%)'
>>> mpi_to_str(x, mode='brackets')
'[1.0, 2.0]'
>>> mpi_to_str(x, mode='brackets' , brackets=('<', '>'))
'<1.0, 2.0>'
>>> x = mpi('5.2582327113062393041', '5.2582327113062749951')
>>> mpi_to_str(x, mode='diff')
'5.2582327113062[4, 7]'
>>> mpi_to_str(mpi(0), mode='percent')
'0.0 (0%)'
"""
prec = dps_to_prec(dps)
wp = prec + 20
a, b = x
mid = mpi_mid(x, prec)
delta = mpi_delta(x, prec)
a_str = to_str(a, dps, **kwargs)
b_str = to_str(b, dps, **kwargs)
mid_str = to_str(mid, dps, **kwargs)
sp = ""
if use_spaces:
sp = " "
br1, br2 = brackets
if mode == 'plusminus':
delta_str = to_str(mpf_shift(delta,-1), dps, **kwargs)
s = mid_str + sp + "+-" + sp + delta_str
elif mode == 'percent':
if mid == fzero:
p = fzero
else:
# p = 100 * delta(x) / (2*mid(x))
p = mpf_mul(delta, from_int(100))
p = mpf_div(p, mpf_mul(mid, from_int(2)), wp)
s = mid_str + sp + "(" + to_str(p, error_dps) + "%)"
elif mode == 'brackets':
s = br1 + a_str + "," + sp + b_str + br2
elif mode == 'diff':
# use more digits if str(x.a) and str(x.b) are equal
if a_str == b_str:
a_str = to_str(a, dps+3, **kwargs)
b_str = to_str(b, dps+3, **kwargs)
# separate mantissa and exponent
a = a_str.split('e')
if len(a) == 1:
a.append('')
b = b_str.split('e')
if len(b) == 1:
b.append('')
if a[1] == b[1]:
if a[0] != b[0]:
for i in xrange(len(a[0]) + 1):
if a[0][i] != b[0][i]:
break
s = (a[0][:i] + br1 + a[0][i:] + ',' + sp + b[0][i:] + br2
+ 'e'*min(len(a[1]), 1) + a[1])
else: # no difference
s = a[0] + br1 + br2 + 'e'*min(len(a[1]), 1) + a[1]
else:
s = br1 + 'e'.join(a) + ',' + sp + 'e'.join(b) + br2
else:
raise ValueError("'%s' is unknown mode for printing mpi" % mode)
return s
def mpci_add(x, y, prec):
a, b = x
c, d = y
return mpi_add(a, c, prec), mpi_add(b, d, prec)
def mpci_sub(x, y, prec):
a, b = x
c, d = y
return mpi_sub(a, c, prec), mpi_sub(b, d, prec)
def mpci_neg(x, prec=0):
a, b = x
return mpi_neg(a, prec), mpi_neg(b, prec)
def mpci_pos(x, prec):
a, b = x
return mpi_pos(a, prec), mpi_pos(b, prec)
def mpci_mul(x, y, prec):
# TODO: optimize for real/imag cases
a, b = x
c, d = y
r1 = mpi_mul(a,c)
r2 = mpi_mul(b,d)
re = mpi_sub(r1,r2,prec)
i1 = mpi_mul(a,d)
i2 = mpi_mul(b,c)
im = mpi_add(i1,i2,prec)
return re, im
def mpci_div(x, y, prec):
# TODO: optimize for real/imag cases
a, b = x
c, d = y
wp = prec+20
m1 = mpi_square(c)
m2 = mpi_square(d)
m = mpi_add(m1,m2,wp)
re = mpi_add(mpi_mul(a,c), mpi_mul(b,d), wp)
im = mpi_sub(mpi_mul(b,c), mpi_mul(a,d), wp)
re = mpi_div(re, m, prec)
im = mpi_div(im, m, prec)
return re, im
def mpci_exp(x, prec):
a, b = x
wp = prec+20
r = mpi_exp(a, wp)
c, s = mpi_cos_sin(b, wp)
a = mpi_mul(r, c, prec)
b = mpi_mul(r, s, prec)
return a, b
def mpi_shift(x, n):
a, b = x
return mpf_shift(a,n), mpf_shift(b,n)
def mpi_cosh_sinh(x, prec):
# TODO: accuracy for small x
wp = prec+20
e1 = mpi_exp(x, wp)
e2 = mpi_div(mpi_one, e1, wp)
c = mpi_add(e1, e2, prec)
s = mpi_sub(e1, e2, prec)
c = mpi_shift(c, -1)
s = mpi_shift(s, -1)
return c, s
def mpci_cos(x, prec):
a, b = x
wp = prec+10
c, s = mpi_cos_sin(a, wp)
ch, sh = mpi_cosh_sinh(b, wp)
re = mpi_mul(c, ch, prec)
im = mpi_mul(s, sh, prec)
return re, mpi_neg(im)
def mpci_sin(x, prec):
a, b = x
wp = prec+10
c, s = mpi_cos_sin(a, wp)
ch, sh = mpi_cosh_sinh(b, wp)
re = mpi_mul(s, ch, prec)
im = mpi_mul(c, sh, prec)
return re, im
def mpci_abs(x, prec):
a, b = x
if a == mpi_zero:
return mpi_abs(b)
if b == mpi_zero:
return mpi_abs(a)
# Important: nonnegative
a = mpi_square(a)
b = mpi_square(b)
t = mpi_add(a, b, prec+20)
return mpi_sqrt(t, prec)
def mpi_atan2(y, x, prec):
ya, yb = y
xa, xb = x
# Constrained to the real line
if ya == yb == fzero:
if mpf_ge(xa, fzero):
return mpi_zero
return mpi_pi(prec)
# Right half-plane
if mpf_ge(xa, fzero):
if mpf_ge(ya, fzero):
a = mpf_atan2(ya, xb, prec, round_floor)
else:
a = mpf_atan2(ya, xa, prec, round_floor)
if mpf_ge(yb, fzero):
b = mpf_atan2(yb, xa, prec, round_ceiling)
else:
b = mpf_atan2(yb, xb, prec, round_ceiling)
# Upper half-plane
elif mpf_ge(ya, fzero):
b = mpf_atan2(ya, xa, prec, round_ceiling)
if mpf_le(xb, fzero):
a = mpf_atan2(yb, xb, prec, round_floor)
else:
a = mpf_atan2(ya, xb, prec, round_floor)
# Lower half-plane
elif mpf_le(yb, fzero):
a = mpf_atan2(yb, xa, prec, round_floor)
if mpf_le(xb, fzero):
b = mpf_atan2(ya, xb, prec, round_ceiling)
else:
b = mpf_atan2(yb, xb, prec, round_ceiling)
# Covering the origin
else:
b = mpf_pi(prec, round_ceiling)
a = mpf_neg(b)
return a, b
def mpci_arg(z, prec):
x, y = z
return mpi_atan2(y, x, prec)
def mpci_log(z, prec):
x, y = z
re = mpi_log(mpci_abs(z, prec+20), prec)
im = mpci_arg(z, prec)
return re, im
def mpci_pow(x, y, prec):
# TODO: recognize/speed up real cases, integer y
yre, yim = y
if yim == mpi_zero:
ya, yb = yre
if ya == yb:
sign, man, exp, bc = yb
if man and exp >= 0:
return mpci_pow_int(x, (-1)**sign * int(man<<exp), prec)
# x^0
if yb == fzero:
return mpci_pow_int(x, 0, prec)
wp = prec+20
return mpci_exp(mpci_mul(y, mpci_log(x, wp), wp), prec)
def mpci_square(x, prec):
a, b = x
# (a+bi)^2 = (a^2-b^2) + 2abi
re = mpi_sub(mpi_square(a), mpi_square(b), prec)
im = mpi_mul(a, b, prec)
im = mpi_shift(im, 1)
return re, im
def mpci_pow_int(x, n, prec):
if n < 0:
return mpci_div((mpi_one,mpi_zero), mpci_pow_int(x, -n, prec+20), prec)
if n == 0:
return mpi_one, mpi_zero
if n == 1:
return mpci_pos(x, prec)
if n == 2:
return mpci_square(x, prec)
wp = prec + 20
result = (mpi_one, mpi_zero)
while n:
if n & 1:
result = mpci_mul(result, x, wp)
n -= 1
x = mpci_square(x, wp)
n >>= 1
return mpci_pos(result, prec)
gamma_min_a = from_float(1.46163214496)
gamma_min_b = from_float(1.46163214497)
gamma_min = (gamma_min_a, gamma_min_b)
gamma_mono_imag_a = from_float(-1.1)
gamma_mono_imag_b = from_float(1.1)
def mpi_overlap(x, y):
a, b = x
c, d = y
if mpf_lt(d, a): return False
if mpf_gt(c, b): return False
return True
# type = 0 -- gamma
# type = 1 -- factorial
# type = 2 -- 1/gamma
# type = 3 -- log-gamma
def mpi_gamma(z, prec, type=0):
a, b = z
wp = prec+20
if type == 1:
return mpi_gamma(mpi_add(z, mpi_one, wp), prec, 0)
# increasing
if mpf_gt(a, gamma_min_b):
if type == 0:
c = mpf_gamma(a, prec, round_floor)
d = mpf_gamma(b, prec, round_ceiling)
elif type == 2:
c = mpf_rgamma(b, prec, round_floor)
d = mpf_rgamma(a, prec, round_ceiling)
elif type == 3:
c = mpf_loggamma(a, prec, round_floor)
d = mpf_loggamma(b, prec, round_ceiling)
# decreasing
elif mpf_gt(a, fzero) and mpf_lt(b, gamma_min_a):
if type == 0:
c = mpf_gamma(b, prec, round_floor)
d = mpf_gamma(a, prec, round_ceiling)
elif type == 2:
c = mpf_rgamma(a, prec, round_floor)
d = mpf_rgamma(b, prec, round_ceiling)
elif type == 3:
c = mpf_loggamma(b, prec, round_floor)
d = mpf_loggamma(a, prec, round_ceiling)
else:
# TODO: reflection formula
znew = mpi_add(z, mpi_one, wp)
if type == 0: return mpi_div(mpi_gamma(znew, prec+2, 0), z, prec)
if type == 2: return mpi_mul(mpi_gamma(znew, prec+2, 2), z, prec)
if type == 3: return mpi_sub(mpi_gamma(znew, prec+2, 3), mpi_log(z, prec+2), prec)
return c, d
def mpci_gamma(z, prec, type=0):
(a1,a2), (b1,b2) = z
# Real case
if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)):
return mpi_gamma(z, prec, type), mpi_zero
# Estimate precision
wp = prec+20
if type != 3:
amag = a2[2]+a2[3]
bmag = b2[2]+b2[3]
if a2 != fzero:
mag = max(amag, bmag)
else:
mag = bmag
an = abs(to_int(a2))
bn = abs(to_int(b2))
absn = max(an, bn)
gamma_size = max(0,absn*mag)
wp += bitcount(gamma_size)
# Assume type != 1
if type == 1:
(a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2)
type = 0
# Avoid non-monotonic region near the negative real axis
if mpf_lt(a1, gamma_min_b):
if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)):
# TODO: reflection formula
#if mpf_lt(a2, mpf_shift(fone,-1)):
# znew = mpci_sub((mpi_one,mpi_zero),z,wp)
# ...
# Recurrence:
# gamma(z) = gamma(z+1)/z
znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2)
if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec)
if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec)
if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec)
# Use monotonicity (except for a small region close to the
# origin and near poles)
# upper half-plane
if mpf_ge(b1, fzero):
minre = mpc_loggamma((a1,b2), wp, round_floor)
maxre = mpc_loggamma((a2,b1), wp, round_ceiling)
minim = mpc_loggamma((a1,b1), wp, round_floor)
maxim = mpc_loggamma((a2,b2), wp, round_ceiling)
# lower half-plane
elif mpf_le(b2, fzero):
minre = mpc_loggamma((a1,b1), wp, round_floor)
maxre = mpc_loggamma((a2,b2), wp, round_ceiling)
minim = mpc_loggamma((a2,b1), wp, round_floor)
maxim = mpc_loggamma((a1,b2), wp, round_ceiling)
# crosses real axis
else:
maxre = mpc_loggamma((a2,fzero), wp, round_ceiling)
# stretches more into the lower half-plane
if mpf_gt(mpf_neg(b1), b2):
minre = mpc_loggamma((a1,b1), wp, round_ceiling)
else:
minre = mpc_loggamma((a1,b2), wp, round_ceiling)
minim = mpc_loggamma((a2,b1), wp, round_floor)
maxim = mpc_loggamma((a2,b2), wp, round_floor)
w = (minre[0], maxre[0]), (minim[1], maxim[1])
if type == 3:
return mpi_pos(w[0], prec), mpi_pos(w[1], prec)
if type == 2:
w = mpci_neg(w)
return mpci_exp(w, prec)
def mpi_loggamma(z, prec): return mpi_gamma(z, prec, type=3)
def mpci_loggamma(z, prec): return mpci_gamma(z, prec, type=3)
def mpi_rgamma(z, prec): return mpi_gamma(z, prec, type=2)
def mpci_rgamma(z, prec): return mpci_gamma(z, prec, type=2)
def mpi_factorial(z, prec): return mpi_gamma(z, prec, type=1)
def mpci_factorial(z, prec): return mpci_gamma(z, prec, type=1)
|