This file is indexed.

/usr/share/pyshared/mpmath/libmp/libmpi.py is in python-mpmath 0.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
"""
Computational functions for interval arithmetic.

"""

from .backend import xrange

from .libmpf import (
    ComplexResult,
    round_down, round_up, round_floor, round_ceiling, round_nearest,
    prec_to_dps, repr_dps, dps_to_prec,
    bitcount,
    from_float,
    fnan, finf, fninf, fzero, fhalf, fone, fnone,
    mpf_sign, mpf_lt, mpf_le, mpf_gt, mpf_ge, mpf_eq, mpf_cmp,
    mpf_min_max,
    mpf_floor, from_int, to_int, to_str, from_str,
    mpf_abs, mpf_neg, mpf_pos, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
    mpf_div, mpf_shift, mpf_pow_int,
    from_man_exp, MPZ_ONE)

from .libelefun import (
    mpf_log, mpf_exp, mpf_sqrt, mpf_atan, mpf_atan2,
    mpf_pi, mod_pi2, mpf_cos_sin
)

from .gammazeta import mpf_gamma, mpf_rgamma, mpf_loggamma, mpc_loggamma

def mpi_str(s, prec):
    sa, sb = s
    dps = prec_to_dps(prec) + 5
    return "[%s, %s]" % (to_str(sa, dps), to_str(sb, dps))
    #dps = prec_to_dps(prec)
    #m = mpi_mid(s, prec)
    #d = mpf_shift(mpi_delta(s, 20), -1)
    #return "%s +/- %s" % (to_str(m, dps), to_str(d, 3))

mpi_zero = (fzero, fzero)
mpi_one = (fone, fone)

def mpi_eq(s, t):
    return s == t

def mpi_ne(s, t):
    return s != t

def mpi_lt(s, t):
    sa, sb = s
    ta, tb = t
    if mpf_lt(sb, ta): return True
    if mpf_ge(sa, tb): return False
    return None

def mpi_le(s, t):
    sa, sb = s
    ta, tb = t
    if mpf_le(sb, ta): return True
    if mpf_gt(sa, tb): return False
    return None

def mpi_gt(s, t): return mpi_lt(t, s)
def mpi_ge(s, t): return mpi_le(t, s)

def mpi_add(s, t, prec=0):
    sa, sb = s
    ta, tb = t
    a = mpf_add(sa, ta, prec, round_floor)
    b = mpf_add(sb, tb, prec, round_ceiling)
    if a == fnan: a = fninf
    if b == fnan: b = finf
    return a, b

def mpi_sub(s, t, prec=0):
    sa, sb = s
    ta, tb = t
    a = mpf_sub(sa, tb, prec, round_floor)
    b = mpf_sub(sb, ta, prec, round_ceiling)
    if a == fnan: a = fninf
    if b == fnan: b = finf
    return a, b

def mpi_delta(s, prec):
    sa, sb = s
    return mpf_sub(sb, sa, prec, round_up)

def mpi_mid(s, prec):
    sa, sb = s
    return mpf_shift(mpf_add(sa, sb, prec, round_nearest), -1)

def mpi_pos(s, prec):
    sa, sb = s
    a = mpf_pos(sa, prec, round_floor)
    b = mpf_pos(sb, prec, round_ceiling)
    return a, b

def mpi_neg(s, prec=0):
    sa, sb = s
    a = mpf_neg(sb, prec, round_floor)
    b = mpf_neg(sa, prec, round_ceiling)
    return a, b

def mpi_abs(s, prec=0):
    sa, sb = s
    sas = mpf_sign(sa)
    sbs = mpf_sign(sb)
    # Both points nonnegative?
    if sas >= 0:
        a = mpf_pos(sa, prec, round_floor)
        b = mpf_pos(sb, prec, round_ceiling)
    # Upper point nonnegative?
    elif sbs >= 0:
        a = fzero
        negsa = mpf_neg(sa)
        if mpf_lt(negsa, sb):
            b = mpf_pos(sb, prec, round_ceiling)
        else:
            b = mpf_pos(negsa, prec, round_ceiling)
    # Both negative?
    else:
        a = mpf_neg(sb, prec, round_floor)
        b = mpf_neg(sa, prec, round_ceiling)
    return a, b

# TODO: optimize
def mpi_mul_mpf(s, t, prec):
    return mpi_mul(s, (t, t), prec)

def mpi_div_mpf(s, t, prec):
    return mpi_div(s, (t, t), prec)

def mpi_mul(s, t, prec=0):
    sa, sb = s
    ta, tb = t
    sas = mpf_sign(sa)
    sbs = mpf_sign(sb)
    tas = mpf_sign(ta)
    tbs = mpf_sign(tb)
    if sas == sbs == 0:
        # Should maybe be undefined
        if ta == fninf or tb == finf:
            return fninf, finf
        return fzero, fzero
    if tas == tbs == 0:
        # Should maybe be undefined
        if sa == fninf or sb == finf:
            return fninf, finf
        return fzero, fzero
    if sas >= 0:
        # positive * positive
        if tas >= 0:
            a = mpf_mul(sa, ta, prec, round_floor)
            b = mpf_mul(sb, tb, prec, round_ceiling)
            if a == fnan: a = fzero
            if b == fnan: b = finf
        # positive * negative
        elif tbs <= 0:
            a = mpf_mul(sb, ta, prec, round_floor)
            b = mpf_mul(sa, tb, prec, round_ceiling)
            if a == fnan: a = fninf
            if b == fnan: b = fzero
        # positive * both signs
        else:
            a = mpf_mul(sb, ta, prec, round_floor)
            b = mpf_mul(sb, tb, prec, round_ceiling)
            if a == fnan: a = fninf
            if b == fnan: b = finf
    elif sbs <= 0:
        # negative * positive
        if tas >= 0:
            a = mpf_mul(sa, tb, prec, round_floor)
            b = mpf_mul(sb, ta, prec, round_ceiling)
            if a == fnan: a = fninf
            if b == fnan: b = fzero
        # negative * negative
        elif tbs <= 0:
            a = mpf_mul(sb, tb, prec, round_floor)
            b = mpf_mul(sa, ta, prec, round_ceiling)
            if a == fnan: a = fzero
            if b == fnan: b = finf
        # negative * both signs
        else:
            a = mpf_mul(sa, tb, prec, round_floor)
            b = mpf_mul(sa, ta, prec, round_ceiling)
            if a == fnan: a = fninf
            if b == fnan: b = finf
    else:
        # General case: perform all cross-multiplications and compare
        # Since the multiplications can be done exactly, we need only
        # do 4 (instead of 8: two for each rounding mode)
        cases = [mpf_mul(sa, ta), mpf_mul(sa, tb), mpf_mul(sb, ta), mpf_mul(sb, tb)]
        if fnan in cases:
            a, b = (fninf, finf)
        else:
            a, b = mpf_min_max(cases)
            a = mpf_pos(a, prec, round_floor)
            b = mpf_pos(b, prec, round_ceiling)
    return a, b

def mpi_square(s, prec=0):
    sa, sb = s
    if mpf_ge(sa, fzero):
        a = mpf_mul(sa, sa, prec, round_floor)
        b = mpf_mul(sb, sb, prec, round_ceiling)
    elif mpf_le(sb, fzero):
        a = mpf_mul(sb, sb, prec, round_floor)
        b = mpf_mul(sa, sa, prec, round_ceiling)
    else:
        sa = mpf_neg(sa)
        sa, sb = mpf_min_max([sa, sb])
        a = fzero
        b = mpf_mul(sb, sb, prec, round_ceiling)
    return a, b

def mpi_div(s, t, prec):
    sa, sb = s
    ta, tb = t
    sas = mpf_sign(sa)
    sbs = mpf_sign(sb)
    tas = mpf_sign(ta)
    tbs = mpf_sign(tb)
    # 0 / X
    if sas == sbs == 0:
        # 0 / <interval containing 0>
        if (tas < 0 and tbs > 0) or (tas == 0 or tbs == 0):
            return fninf, finf
        return fzero, fzero
    # Denominator contains both negative and positive numbers;
    # this should properly be a multi-interval, but the closest
    # match is the entire (extended) real line
    if tas < 0 and tbs > 0:
        return fninf, finf
    # Assume denominator to be nonnegative
    if tas < 0:
        return mpi_div(mpi_neg(s), mpi_neg(t), prec)
    # Division by zero
    # XXX: make sure all results make sense
    if tas == 0:
        # Numerator contains both signs?
        if sas < 0 and sbs > 0:
            return fninf, finf
        if tas == tbs:
            return fninf, finf
        # Numerator positive?
        if sas >= 0:
            a = mpf_div(sa, tb, prec, round_floor)
            b = finf
        if sbs <= 0:
            a = fninf
            b = mpf_div(sb, tb, prec, round_ceiling)
    # Division with positive denominator
    # We still have to handle nans resulting from inf/0 or inf/inf
    else:
        # Nonnegative numerator
        if sas >= 0:
            a = mpf_div(sa, tb, prec, round_floor)
            b = mpf_div(sb, ta, prec, round_ceiling)
            if a == fnan: a = fzero
            if b == fnan: b = finf
        # Nonpositive numerator
        elif sbs <= 0:
            a = mpf_div(sa, ta, prec, round_floor)
            b = mpf_div(sb, tb, prec, round_ceiling)
            if a == fnan: a = fninf
            if b == fnan: b = fzero
        # Numerator contains both signs?
        else:
            a = mpf_div(sa, ta, prec, round_floor)
            b = mpf_div(sb, ta, prec, round_ceiling)
            if a == fnan: a = fninf
            if b == fnan: b = finf
    return a, b

def mpi_pi(prec):
    a = mpf_pi(prec, round_floor)
    b = mpf_pi(prec, round_ceiling)
    return a, b

def mpi_exp(s, prec):
    sa, sb = s
    # exp is monotonic
    a = mpf_exp(sa, prec, round_floor)
    b = mpf_exp(sb, prec, round_ceiling)
    return a, b

def mpi_log(s, prec):
    sa, sb = s
    # log is monotonic
    a = mpf_log(sa, prec, round_floor)
    b = mpf_log(sb, prec, round_ceiling)
    return a, b

def mpi_sqrt(s, prec):
    sa, sb = s
    # sqrt is monotonic
    a = mpf_sqrt(sa, prec, round_floor)
    b = mpf_sqrt(sb, prec, round_ceiling)
    return a, b

def mpi_atan(s, prec):
    sa, sb = s
    a = mpf_atan(sa, prec, round_floor)
    b = mpf_atan(sb, prec, round_ceiling)
    return a, b

def mpi_pow_int(s, n, prec):
    sa, sb = s
    if n < 0:
        return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec)
    if n == 0:
        return (fone, fone)
    if n == 1:
        return s
    if n == 2:
        return mpi_square(s, prec)
    # Odd -- signs are preserved
    if n & 1:
        a = mpf_pow_int(sa, n, prec, round_floor)
        b = mpf_pow_int(sb, n, prec, round_ceiling)
    # Even -- important to ensure positivity
    else:
        sas = mpf_sign(sa)
        sbs = mpf_sign(sb)
        # Nonnegative?
        if sas >= 0:
            a = mpf_pow_int(sa, n, prec, round_floor)
            b = mpf_pow_int(sb, n, prec, round_ceiling)
        # Nonpositive?
        elif sbs <= 0:
            a = mpf_pow_int(sb, n, prec, round_floor)
            b = mpf_pow_int(sa, n, prec, round_ceiling)
        # Mixed signs?
        else:
            a = fzero
            # max(-a,b)**n
            sa = mpf_neg(sa)
            if mpf_ge(sa, sb):
                b = mpf_pow_int(sa, n, prec, round_ceiling)
            else:
                b = mpf_pow_int(sb, n, prec, round_ceiling)
    return a, b

def mpi_pow(s, t, prec):
    ta, tb = t
    if ta == tb and ta not in (finf, fninf):
        if ta == from_int(to_int(ta)):
            return mpi_pow_int(s, to_int(ta), prec)
        if ta == fhalf:
            return mpi_sqrt(s, prec)
    u = mpi_log(s, prec + 20)
    v = mpi_mul(u, t, prec + 20)
    return mpi_exp(v, prec)

def MIN(x, y):
    if mpf_le(x, y):
        return x
    return y

def MAX(x, y):
    if mpf_ge(x, y):
        return x
    return y

def cos_sin_quadrant(x, wp):
    sign, man, exp, bc = x
    if x == fzero:
        return fone, fzero, 0
    # TODO: combine evaluation code to avoid duplicate modulo
    c, s = mpf_cos_sin(x, wp)
    t, n, wp_ = mod_pi2(man, exp, exp+bc, 15)
    if sign:
        n = -1-n
    return c, s, n

def mpi_cos_sin(x, prec):
    a, b = x
    if a == b == fzero:
        return (fone, fone), (fzero, fzero)
    # Guaranteed to contain both -1 and 1
    if (finf in x) or (fninf in x):
        return (fnone, fone), (fnone, fone)
    wp = prec + 20
    ca, sa, na = cos_sin_quadrant(a, wp)
    cb, sb, nb = cos_sin_quadrant(b, wp)
    ca, cb = mpf_min_max([ca, cb])
    sa, sb = mpf_min_max([sa, sb])
    # Both functions are monotonic within one quadrant
    if na == nb:
        pass
    # Guaranteed to contain both -1 and 1
    elif nb - na >= 4:
        return (fnone, fone), (fnone, fone)
    else:
        # cos has maximum between a and b
        if na//4 != nb//4:
            cb = fone
        # cos has minimum
        if (na-2)//4 != (nb-2)//4:
            ca = fnone
        # sin has maximum
        if (na-1)//4 != (nb-1)//4:
            sb = fone
        # sin has minimum
        if (na-3)//4 != (nb-3)//4:
            sa = fnone
    # Perturb to force interval rounding
    more = from_man_exp((MPZ_ONE<<wp) + (MPZ_ONE<<10), -wp)
    less = from_man_exp((MPZ_ONE<<wp) - (MPZ_ONE<<10), -wp)
    def finalize(v, rounding):
        if bool(v[0]) == (rounding == round_floor):
            p = more
        else:
            p = less
        v = mpf_mul(v, p, prec, rounding)
        sign, man, exp, bc = v
        if exp+bc >= 1:
            if sign:
                return fnone
            return fone
        return v
    ca = finalize(ca, round_floor)
    cb = finalize(cb, round_ceiling)
    sa = finalize(sa, round_floor)
    sb = finalize(sb, round_ceiling)
    return (ca,cb), (sa,sb)

def mpi_cos(x, prec):
    return mpi_cos_sin(x, prec)[0]

def mpi_sin(x, prec):
    return mpi_cos_sin(x, prec)[1]

def mpi_tan(x, prec):
    cos, sin = mpi_cos_sin(x, prec+20)
    return mpi_div(sin, cos, prec)

def mpi_cot(x, prec):
    cos, sin = mpi_cos_sin(x, prec+20)
    return mpi_div(cos, sin, prec)

def mpi_from_str_a_b(x, y, percent, prec):
    wp = prec + 20
    xa = from_str(x, wp, round_floor)
    xb = from_str(x, wp, round_ceiling)
    #ya = from_str(y, wp, round_floor)
    y = from_str(y, wp, round_ceiling)
    assert mpf_ge(y, fzero)
    if percent:
        y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling)
        y = mpf_div(y, from_int(100), wp, round_ceiling)
    a = mpf_sub(xa, y, prec, round_floor)
    b = mpf_add(xb, y, prec, round_ceiling)
    return a, b

def mpi_from_str(s, prec):
    """
    Parse an interval number given as a string.

    Allowed forms are

    "-1.23e-27"
        Any single decimal floating-point literal.
    "a +- b"  or  "a (b)"
        a is the midpoint of the interval and b is the half-width
    "a +- b%"  or  "a (b%)"
        a is the midpoint of the interval and the half-width
        is b percent of a (`a \times b / 100`).
    "[a, b]"
        The interval indicated directly.
    "x[y,z]e"
        x are shared digits, y and z are unequal digits, e is the exponent.

    """
    e = ValueError("Improperly formed interval number '%s'" % s)
    s = s.replace(" ", "")
    wp = prec + 20
    if "+-" in s:
        x, y = s.split("+-")
        return mpi_from_str_a_b(x, y, False, prec)
    # case 2
    elif "(" in s:
        # Don't confuse with a complex number (x,y)
        if s[0] == "(" or ")" not in s:
            raise e
        s = s.replace(")", "")
        percent = False
        if "%" in s:
            if s[-1] != "%":
                raise e
            percent = True
            s = s.replace("%", "")
        x, y = s.split("(")
        return mpi_from_str_a_b(x, y, percent, prec)
    elif "," in s:
        if ('[' not in s) or (']' not in s):
            raise e
        if s[0] == '[':
            # case 3
            s = s.replace("[", "")
            s = s.replace("]", "")
            a, b = s.split(",")
            a = from_str(a, prec, round_floor)
            b = from_str(b, prec, round_ceiling)
            return a, b
        else:
            # case 4
            x, y = s.split('[')
            y, z = y.split(',')
            if 'e' in s:
                z, e = z.split(']')
            else:
                z, e = z.rstrip(']'), ''
            a = from_str(x+y+e, prec, round_floor)
            b = from_str(x+z+e, prec, round_ceiling)
            return a, b
    else:
        a = from_str(s, prec, round_floor)
        b = from_str(s, prec, round_ceiling)
        return a, b

def mpi_to_str(x, dps, use_spaces=True, brackets='[]', mode='brackets', error_dps=4, **kwargs):
    """
    Convert a mpi interval to a string.

    **Arguments**

    *dps*
        decimal places to use for printing
    *use_spaces*
        use spaces for more readable output, defaults to true
    *brackets*
        pair of strings (or two-character string) giving left and right brackets
    *mode*
        mode of display: 'plusminus', 'percent', 'brackets' (default) or 'diff'
    *error_dps*
        limit the error to *error_dps* digits (mode 'plusminus and 'percent')

    Additional keyword arguments are forwarded to the mpf-to-string conversion
    for the components of the output.

    **Examples**

        >>> from mpmath import mpi, mp
        >>> mp.dps = 30
        >>> x = mpi(1, 2)
        >>> mpi_to_str(x, mode='plusminus')
        '1.5 +- 5.0e-1'
        >>> mpi_to_str(x, mode='percent')
        '1.5 (33.33%)'
        >>> mpi_to_str(x, mode='brackets')
        '[1.0, 2.0]'
        >>> mpi_to_str(x, mode='brackets' , brackets=('<', '>'))
        '<1.0, 2.0>'
        >>> x = mpi('5.2582327113062393041', '5.2582327113062749951')
        >>> mpi_to_str(x, mode='diff')
        '5.2582327113062[4, 7]'
        >>> mpi_to_str(mpi(0), mode='percent')
        '0.0 (0%)'

    """
    prec = dps_to_prec(dps)
    wp = prec + 20
    a, b = x
    mid = mpi_mid(x, prec)
    delta = mpi_delta(x, prec)
    a_str = to_str(a, dps, **kwargs)
    b_str = to_str(b, dps, **kwargs)
    mid_str = to_str(mid, dps, **kwargs)
    sp = ""
    if use_spaces:
        sp = " "
    br1, br2 = brackets
    if mode == 'plusminus':
        delta_str = to_str(mpf_shift(delta,-1), dps, **kwargs)
        s = mid_str + sp + "+-" + sp + delta_str
    elif mode == 'percent':
        if mid == fzero:
            p = fzero
        else:
            # p = 100 * delta(x) / (2*mid(x))
            p = mpf_mul(delta, from_int(100))
            p = mpf_div(p, mpf_mul(mid, from_int(2)), wp)
        s = mid_str + sp + "(" + to_str(p, error_dps) + "%)"
    elif mode == 'brackets':
        s = br1 + a_str + "," + sp + b_str + br2
    elif mode == 'diff':
        # use more digits if str(x.a) and str(x.b) are equal
        if a_str == b_str:
            a_str = to_str(a, dps+3, **kwargs)
            b_str = to_str(b, dps+3, **kwargs)
        # separate mantissa and exponent
        a = a_str.split('e')
        if len(a) == 1:
            a.append('')
        b = b_str.split('e')
        if len(b) == 1:
            b.append('')
        if a[1] == b[1]:
            if a[0] != b[0]:
                for i in xrange(len(a[0]) + 1):
                    if a[0][i] != b[0][i]:
                        break
                s = (a[0][:i] + br1 + a[0][i:] + ',' + sp + b[0][i:] + br2
                     + 'e'*min(len(a[1]), 1) + a[1])
            else: # no difference
                s = a[0] + br1 + br2 + 'e'*min(len(a[1]), 1) + a[1]
        else:
            s = br1 + 'e'.join(a) + ',' + sp + 'e'.join(b) + br2
    else:
        raise ValueError("'%s' is unknown mode for printing mpi" % mode)
    return s

def mpci_add(x, y, prec):
    a, b = x
    c, d = y
    return mpi_add(a, c, prec), mpi_add(b, d, prec)

def mpci_sub(x, y, prec):
    a, b = x
    c, d = y
    return mpi_sub(a, c, prec), mpi_sub(b, d, prec)

def mpci_neg(x, prec=0):
    a, b = x
    return mpi_neg(a, prec), mpi_neg(b, prec)

def mpci_pos(x, prec):
    a, b = x
    return mpi_pos(a, prec), mpi_pos(b, prec)

def mpci_mul(x, y, prec):
    # TODO: optimize for real/imag cases
    a, b = x
    c, d = y
    r1 = mpi_mul(a,c)
    r2 = mpi_mul(b,d)
    re = mpi_sub(r1,r2,prec)
    i1 = mpi_mul(a,d)
    i2 = mpi_mul(b,c)
    im = mpi_add(i1,i2,prec)
    return re, im

def mpci_div(x, y, prec):
    # TODO: optimize for real/imag cases
    a, b = x
    c, d = y
    wp = prec+20
    m1 = mpi_square(c)
    m2 = mpi_square(d)
    m = mpi_add(m1,m2,wp)
    re = mpi_add(mpi_mul(a,c), mpi_mul(b,d), wp)
    im = mpi_sub(mpi_mul(b,c), mpi_mul(a,d), wp)
    re = mpi_div(re, m, prec)
    im = mpi_div(im, m, prec)
    return re, im

def mpci_exp(x, prec):
    a, b = x
    wp = prec+20
    r = mpi_exp(a, wp)
    c, s = mpi_cos_sin(b, wp)
    a = mpi_mul(r, c, prec)
    b = mpi_mul(r, s, prec)
    return a, b

def mpi_shift(x, n):
    a, b = x
    return mpf_shift(a,n), mpf_shift(b,n)

def mpi_cosh_sinh(x, prec):
    # TODO: accuracy for small x
    wp = prec+20
    e1 = mpi_exp(x, wp)
    e2 = mpi_div(mpi_one, e1, wp)
    c = mpi_add(e1, e2, prec)
    s = mpi_sub(e1, e2, prec)
    c = mpi_shift(c, -1)
    s = mpi_shift(s, -1)
    return c, s

def mpci_cos(x, prec):
    a, b = x
    wp = prec+10
    c, s = mpi_cos_sin(a, wp)
    ch, sh = mpi_cosh_sinh(b, wp)
    re = mpi_mul(c, ch, prec)
    im = mpi_mul(s, sh, prec)
    return re, mpi_neg(im)

def mpci_sin(x, prec):
    a, b = x
    wp = prec+10
    c, s = mpi_cos_sin(a, wp)
    ch, sh = mpi_cosh_sinh(b, wp)
    re = mpi_mul(s, ch, prec)
    im = mpi_mul(c, sh, prec)
    return re, im

def mpci_abs(x, prec):
    a, b = x
    if a == mpi_zero:
        return mpi_abs(b)
    if b == mpi_zero:
        return mpi_abs(a)
    # Important: nonnegative
    a = mpi_square(a)
    b = mpi_square(b)
    t = mpi_add(a, b, prec+20)
    return mpi_sqrt(t, prec)

def mpi_atan2(y, x, prec):
    ya, yb = y
    xa, xb = x
    # Constrained to the real line
    if ya == yb == fzero:
        if mpf_ge(xa, fzero):
            return mpi_zero
        return mpi_pi(prec)
    # Right half-plane
    if mpf_ge(xa, fzero):
        if mpf_ge(ya, fzero):
            a = mpf_atan2(ya, xb, prec, round_floor)
        else:
            a = mpf_atan2(ya, xa, prec, round_floor)
        if mpf_ge(yb, fzero):
            b = mpf_atan2(yb, xa, prec, round_ceiling)
        else:
            b = mpf_atan2(yb, xb, prec, round_ceiling)
    # Upper half-plane
    elif mpf_ge(ya, fzero):
        b = mpf_atan2(ya, xa, prec, round_ceiling)
        if mpf_le(xb, fzero):
            a = mpf_atan2(yb, xb, prec, round_floor)
        else:
            a = mpf_atan2(ya, xb, prec, round_floor)
    # Lower half-plane
    elif mpf_le(yb, fzero):
        a = mpf_atan2(yb, xa, prec, round_floor)
        if mpf_le(xb, fzero):
            b = mpf_atan2(ya, xb, prec, round_ceiling)
        else:
            b = mpf_atan2(yb, xb, prec, round_ceiling)
    # Covering the origin
    else:
        b = mpf_pi(prec, round_ceiling)
        a = mpf_neg(b)
    return a, b

def mpci_arg(z, prec):
    x, y = z
    return mpi_atan2(y, x, prec)

def mpci_log(z, prec):
    x, y = z
    re = mpi_log(mpci_abs(z, prec+20), prec)
    im = mpci_arg(z, prec)
    return re, im

def mpci_pow(x, y, prec):
    # TODO: recognize/speed up real cases, integer y
    yre, yim = y
    if yim == mpi_zero:
        ya, yb = yre
        if ya == yb:
            sign, man, exp, bc = yb
            if man and exp >= 0:
                return mpci_pow_int(x, (-1)**sign * int(man<<exp), prec)
            # x^0
            if yb == fzero:
                return mpci_pow_int(x, 0, prec)
    wp = prec+20
    return mpci_exp(mpci_mul(y, mpci_log(x, wp), wp), prec)

def mpci_square(x, prec):
    a, b = x
    # (a+bi)^2 = (a^2-b^2) + 2abi
    re = mpi_sub(mpi_square(a), mpi_square(b), prec)
    im = mpi_mul(a, b, prec)
    im = mpi_shift(im, 1)
    return re, im

def mpci_pow_int(x, n, prec):
    if n < 0:
        return mpci_div((mpi_one,mpi_zero), mpci_pow_int(x, -n, prec+20), prec)
    if n == 0:
        return mpi_one, mpi_zero
    if n == 1:
        return mpci_pos(x, prec)
    if n == 2:
        return mpci_square(x, prec)
    wp = prec + 20
    result = (mpi_one, mpi_zero)
    while n:
        if n & 1:
            result = mpci_mul(result, x, wp)
            n -= 1
        x = mpci_square(x, wp)
        n >>= 1
    return mpci_pos(result, prec)

gamma_min_a = from_float(1.46163214496)
gamma_min_b = from_float(1.46163214497)
gamma_min = (gamma_min_a, gamma_min_b)
gamma_mono_imag_a = from_float(-1.1)
gamma_mono_imag_b = from_float(1.1)

def mpi_overlap(x, y):
    a, b = x
    c, d = y
    if mpf_lt(d, a): return False
    if mpf_gt(c, b): return False
    return True

# type = 0 -- gamma
# type = 1 -- factorial
# type = 2 -- 1/gamma
# type = 3 -- log-gamma

def mpi_gamma(z, prec, type=0):
    a, b = z
    wp = prec+20

    if type == 1:
        return mpi_gamma(mpi_add(z, mpi_one, wp), prec, 0)

    # increasing
    if mpf_gt(a, gamma_min_b):
        if type == 0:
            c = mpf_gamma(a, prec, round_floor)
            d = mpf_gamma(b, prec, round_ceiling)
        elif type == 2:
            c = mpf_rgamma(b, prec, round_floor)
            d = mpf_rgamma(a, prec, round_ceiling)
        elif type == 3:
            c = mpf_loggamma(a, prec, round_floor)
            d = mpf_loggamma(b, prec, round_ceiling)
    # decreasing
    elif mpf_gt(a, fzero) and mpf_lt(b, gamma_min_a):
        if type == 0:
            c = mpf_gamma(b, prec, round_floor)
            d = mpf_gamma(a, prec, round_ceiling)
        elif type == 2:
            c = mpf_rgamma(a, prec, round_floor)
            d = mpf_rgamma(b, prec, round_ceiling)
        elif type == 3:
            c = mpf_loggamma(b, prec, round_floor)
            d = mpf_loggamma(a, prec, round_ceiling)
    else:
        # TODO: reflection formula
        znew = mpi_add(z, mpi_one, wp)
        if type == 0: return mpi_div(mpi_gamma(znew, prec+2, 0), z, prec)
        if type == 2: return mpi_mul(mpi_gamma(znew, prec+2, 2), z, prec)
        if type == 3: return mpi_sub(mpi_gamma(znew, prec+2, 3), mpi_log(z, prec+2), prec)
    return c, d

def mpci_gamma(z, prec, type=0):
    (a1,a2), (b1,b2) = z

    # Real case
    if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)):
        return mpi_gamma(z, prec, type), mpi_zero

    # Estimate precision
    wp = prec+20
    if type != 3:
        amag = a2[2]+a2[3]
        bmag = b2[2]+b2[3]
        if a2 != fzero:
            mag = max(amag, bmag)
        else:
            mag = bmag
        an = abs(to_int(a2))
        bn = abs(to_int(b2))
        absn = max(an, bn)
        gamma_size = max(0,absn*mag)
        wp += bitcount(gamma_size)

    # Assume type != 1
    if type == 1:
        (a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2)
        type = 0

    # Avoid non-monotonic region near the negative real axis
    if mpf_lt(a1, gamma_min_b):
        if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)):
            # TODO: reflection formula
            #if mpf_lt(a2, mpf_shift(fone,-1)):
            #    znew = mpci_sub((mpi_one,mpi_zero),z,wp)
            #    ...
            # Recurrence:
            # gamma(z) = gamma(z+1)/z
            znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2)
            if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec)
            if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec)
            if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec)

    # Use monotonicity (except for a small region close to the
    # origin and near poles)
    # upper half-plane
    if mpf_ge(b1, fzero):
        minre = mpc_loggamma((a1,b2), wp, round_floor)
        maxre = mpc_loggamma((a2,b1), wp, round_ceiling)
        minim = mpc_loggamma((a1,b1), wp, round_floor)
        maxim = mpc_loggamma((a2,b2), wp, round_ceiling)
    # lower half-plane
    elif mpf_le(b2, fzero):
        minre = mpc_loggamma((a1,b1), wp, round_floor)
        maxre = mpc_loggamma((a2,b2), wp, round_ceiling)
        minim = mpc_loggamma((a2,b1), wp, round_floor)
        maxim = mpc_loggamma((a1,b2), wp, round_ceiling)
    # crosses real axis
    else:
        maxre = mpc_loggamma((a2,fzero), wp, round_ceiling)
        # stretches more into the lower half-plane
        if mpf_gt(mpf_neg(b1), b2):
            minre = mpc_loggamma((a1,b1), wp, round_ceiling)
        else:
            minre = mpc_loggamma((a1,b2), wp, round_ceiling)
        minim = mpc_loggamma((a2,b1), wp, round_floor)
        maxim = mpc_loggamma((a2,b2), wp, round_floor)

    w = (minre[0], maxre[0]), (minim[1], maxim[1])
    if type == 3:
        return mpi_pos(w[0], prec), mpi_pos(w[1], prec)
    if type == 2:
        w = mpci_neg(w)
    return mpci_exp(w, prec)

def mpi_loggamma(z, prec): return mpi_gamma(z, prec, type=3)
def mpci_loggamma(z, prec): return mpci_gamma(z, prec, type=3)

def mpi_rgamma(z, prec): return mpi_gamma(z, prec, type=2)
def mpci_rgamma(z, prec): return mpci_gamma(z, prec, type=2)

def mpi_factorial(z, prec): return mpi_gamma(z, prec, type=1)
def mpci_factorial(z, prec): return mpci_gamma(z, prec, type=1)