This file is indexed.

/usr/share/pyshared/mpmath/matrices/matrices.py is in python-mpmath 0.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
from ..libmp.backend import xrange

# TODO: interpret list as vectors (for multiplication)

rowsep = '\n'
colsep = '  '

class _matrix(object):
    """
    Numerical matrix.

    Specify the dimensions or the data as a nested list.
    Elements default to zero.
    Use a flat list to create a column vector easily.

    By default, only mpf is used to store the data. You can specify another type
    using force_type=type. It's possible to specify None.
    Make sure force_type(force_type()) is fast.

    Creating matrices
    -----------------

    Matrices in mpmath are implemented using dictionaries. Only non-zero values
    are stored, so it is cheap to represent sparse matrices.

    The most basic way to create one is to use the ``matrix`` class directly.
    You can create an empty matrix specifying the dimensions:

        >>> from mpmath import *
        >>> mp.dps = 15
        >>> matrix(2)
        matrix(
        [['0.0', '0.0'],
         ['0.0', '0.0']])
        >>> matrix(2, 3)
        matrix(
        [['0.0', '0.0', '0.0'],
         ['0.0', '0.0', '0.0']])

    Calling ``matrix`` with one dimension will create a square matrix.

    To access the dimensions of a matrix, use the ``rows`` or ``cols`` keyword:

        >>> A = matrix(3, 2)
        >>> A
        matrix(
        [['0.0', '0.0'],
         ['0.0', '0.0'],
         ['0.0', '0.0']])
        >>> A.rows
        3
        >>> A.cols
        2

    You can also change the dimension of an existing matrix. This will set the
    new elements to 0. If the new dimension is smaller than before, the
    concerning elements are discarded:

        >>> A.rows = 2
        >>> A
        matrix(
        [['0.0', '0.0'],
         ['0.0', '0.0']])

    Internally ``mpmathify`` is used every time an element is set. This
    is done using the syntax A[row,column], counting from 0:

        >>> A = matrix(2)
        >>> A[1,1] = 1 + 1j
        >>> A
        matrix(
        [['0.0', '0.0'],
         ['0.0', '(1.0 + 1.0j)']])

    You can use the keyword ``force_type`` to change the function which is
    called on every new element:

        >>> matrix(2, 5, force_type=int)
        matrix(
        [[0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0]])

    A more comfortable way to create a matrix lets you use nested lists:

        >>> matrix([[1, 2], [3, 4]])
        matrix(
        [['1.0', '2.0'],
         ['3.0', '4.0']])

    If you want to preserve the type of the elements you can use
    ``force_type=None``:

        >>> matrix([[1, 2.5], [1j, mpf(2)]], force_type=None)
        matrix(
        [[1, 2.5],
         [1j, '2.0']])

    Convenient advanced functions are available for creating various standard
    matrices, see ``zeros``, ``ones``, ``diag``, ``eye``, ``randmatrix`` and
    ``hilbert``.

    Vectors
    .......

    Vectors may also be represented by the ``matrix`` class (with rows = 1 or cols = 1).
    For vectors there are some things which make life easier. A column vector can
    be created using a flat list, a row vectors using an almost flat nested list::

        >>> matrix([1, 2, 3])
        matrix(
        [['1.0'],
         ['2.0'],
         ['3.0']])
        >>> matrix([[1, 2, 3]])
        matrix(
        [['1.0', '2.0', '3.0']])

    Optionally vectors can be accessed like lists, using only a single index::

        >>> x = matrix([1, 2, 3])
        >>> x[1]
        mpf('2.0')
        >>> x[1,0]
        mpf('2.0')

    Other
    .....

    Like you probably expected, matrices can be printed::

        >>> print randmatrix(3) # doctest:+SKIP
        [ 0.782963853573023  0.802057689719883  0.427895717335467]
        [0.0541876859348597  0.708243266653103  0.615134039977379]
        [ 0.856151514955773  0.544759264818486  0.686210904770947]

    Use ``nstr`` or ``nprint`` to specify the number of digits to print::

        >>> nprint(randmatrix(5), 3) # doctest:+SKIP
        [2.07e-1  1.66e-1  5.06e-1  1.89e-1  8.29e-1]
        [6.62e-1  6.55e-1  4.47e-1  4.82e-1  2.06e-2]
        [4.33e-1  7.75e-1  6.93e-2  2.86e-1  5.71e-1]
        [1.01e-1  2.53e-1  6.13e-1  3.32e-1  2.59e-1]
        [1.56e-1  7.27e-2  6.05e-1  6.67e-2  2.79e-1]

    As matrices are mutable, you will need to copy them sometimes::

        >>> A = matrix(2)
        >>> A
        matrix(
        [['0.0', '0.0'],
         ['0.0', '0.0']])
        >>> B = A.copy()
        >>> B[0,0] = 1
        >>> B
        matrix(
        [['1.0', '0.0'],
         ['0.0', '0.0']])
        >>> A
        matrix(
        [['0.0', '0.0'],
         ['0.0', '0.0']])

    Finally, it is possible to convert a matrix to a nested list. This is very useful,
    as most Python libraries involving matrices or arrays (namely NumPy or SymPy)
    support this format::

        >>> B.tolist()
        [[mpf('1.0'), mpf('0.0')], [mpf('0.0'), mpf('0.0')]]


    Matrix operations
    -----------------

    You can add and subtract matrices of compatible dimensions::

        >>> A = matrix([[1, 2], [3, 4]])
        >>> B = matrix([[-2, 4], [5, 9]])
        >>> A + B
        matrix(
        [['-1.0', '6.0'],
         ['8.0', '13.0']])
        >>> A - B
        matrix(
        [['3.0', '-2.0'],
         ['-2.0', '-5.0']])
        >>> A + ones(3) # doctest:+ELLIPSIS
        Traceback (most recent call last):
          ...
        ValueError: incompatible dimensions for addition

    It is possible to multiply or add matrices and scalars. In the latter case the
    operation will be done element-wise::

        >>> A * 2
        matrix(
        [['2.0', '4.0'],
         ['6.0', '8.0']])
        >>> A / 4
        matrix(
        [['0.25', '0.5'],
         ['0.75', '1.0']])
        >>> A - 1
        matrix(
        [['0.0', '1.0'],
         ['2.0', '3.0']])

    Of course you can perform matrix multiplication, if the dimensions are
    compatible::

        >>> A * B
        matrix(
        [['8.0', '22.0'],
         ['14.0', '48.0']])
        >>> matrix([[1, 2, 3]]) * matrix([[-6], [7], [-2]])
        matrix(
        [['2.0']])

    You can raise powers of square matrices::

        >>> A**2
        matrix(
        [['7.0', '10.0'],
         ['15.0', '22.0']])

    Negative powers will calculate the inverse::

        >>> A**-1
        matrix(
        [['-2.0', '1.0'],
         ['1.5', '-0.5']])
        >>> A * A**-1
        matrix(
        [['1.0', '1.0842021724855e-19'],
         ['-2.16840434497101e-19', '1.0']])

    Matrix transposition is straightforward::

        >>> A = ones(2, 3)
        >>> A
        matrix(
        [['1.0', '1.0', '1.0'],
         ['1.0', '1.0', '1.0']])
        >>> A.T
        matrix(
        [['1.0', '1.0'],
         ['1.0', '1.0'],
         ['1.0', '1.0']])

    Norms
    .....

    Sometimes you need to know how "large" a matrix or vector is. Due to their
    multidimensional nature it's not possible to compare them, but there are
    several functions to map a matrix or a vector to a positive real number, the
    so called norms.

    For vectors the p-norm is intended, usually the 1-, the 2- and the oo-norm are
    used.

        >>> x = matrix([-10, 2, 100])
        >>> norm(x, 1)
        mpf('112.0')
        >>> norm(x, 2)
        mpf('100.5186549850325')
        >>> norm(x, inf)
        mpf('100.0')

    Please note that the 2-norm is the most used one, though it is more expensive
    to calculate than the 1- or oo-norm.

    It is possible to generalize some vector norms to matrix norm::

        >>> A = matrix([[1, -1000], [100, 50]])
        >>> mnorm(A, 1)
        mpf('1050.0')
        >>> mnorm(A, inf)
        mpf('1001.0')
        >>> mnorm(A, 'F')
        mpf('1006.2310867787777')

    The last norm (the "Frobenius-norm") is an approximation for the 2-norm, which
    is hard to calculate and not available. The Frobenius-norm lacks some
    mathematical properties you might expect from a norm.
    """

    def __init__(self, *args, **kwargs):
        self.__data = {}
        # LU decompostion cache, this is useful when solving the same system
        # multiple times, when calculating the inverse and when calculating the
        # determinant
        self._LU = None
        convert = kwargs.get('force_type', self.ctx.convert)
        if isinstance(args[0], (list, tuple)):
            if isinstance(args[0][0], (list, tuple)):
                # interpret nested list as matrix
                A = args[0]
                self.__rows = len(A)
                self.__cols = len(A[0])
                for i, row in enumerate(A):
                    for j, a in enumerate(row):
                        self[i, j] = convert(a)
            else:
                # interpret list as row vector
                v = args[0]
                self.__rows = len(v)
                self.__cols = 1
                for i, e in enumerate(v):
                    self[i, 0] = e
        elif isinstance(args[0], int):
            # create empty matrix of given dimensions
            if len(args) == 1:
                self.__rows = self.__cols = args[0]
            else:
                assert isinstance(args[1], int), 'expected int'
                self.__rows = args[0]
                self.__cols = args[1]
        elif isinstance(args[0], _matrix):
            A = args[0].copy()
            self.__data = A._matrix__data
            self.__rows = A._matrix__rows
            self.__cols = A._matrix__cols
            convert = kwargs.get('force_type', self.ctx.convert)
            for i in xrange(A.__rows):
                for j in xrange(A.__cols):
                    A[i,j] = convert(A[i,j])
        elif hasattr(args[0], 'tolist'):
            A = self.ctx.matrix(args[0].tolist())
            self.__data = A._matrix__data
            self.__rows = A._matrix__rows
            self.__cols = A._matrix__cols
        else:
            raise TypeError('could not interpret given arguments')

    def apply(self, f):
        """
        Return a copy of self with the function `f` applied elementwise.
        """
        new = self.ctx.matrix(self.__rows, self.__cols)
        for i in xrange(self.__rows):
            for j in xrange(self.__cols):
                new[i,j] = f(self[i,j])
        return new

    def __nstr__(self, n=None, **kwargs):
        # Build table of string representations of the elements
        res = []
        # Track per-column max lengths for pretty alignment
        maxlen = [0] * self.cols
        for i in range(self.rows):
            res.append([])
            for j in range(self.cols):
                if n:
                    string = self.ctx.nstr(self[i,j], n, **kwargs)
                else:
                    string = str(self[i,j])
                res[-1].append(string)
                maxlen[j] = max(len(string), maxlen[j])
        # Patch strings together
        for i, row in enumerate(res):
            for j, elem in enumerate(row):
                # Pad each element up to maxlen so the columns line up
                row[j] = elem.rjust(maxlen[j])
            res[i] = "[" + colsep.join(row) + "]"
        return rowsep.join(res)

    def __str__(self):
        return self.__nstr__()

    def _toliststr(self, avoid_type=False):
        """
        Create a list string from a matrix.

        If avoid_type: avoid multiple 'mpf's.
        """
        # XXX: should be something like self.ctx._types
        typ = self.ctx.mpf
        s = '['
        for i in xrange(self.__rows):
            s += '['
            for j in xrange(self.__cols):
                if not avoid_type or not isinstance(self[i,j], typ):
                    a = repr(self[i,j])
                else:
                    a = "'" + str(self[i,j]) + "'"
                s += a + ', '
            s = s[:-2]
            s += '],\n '
        s = s[:-3]
        s += ']'
        return s

    def tolist(self):
        """
        Convert the matrix to a nested list.
        """
        return [[self[i,j] for j in range(self.__cols)] for i in range(self.__rows)]

    def __repr__(self):
        if self.ctx.pretty:
            return self.__str__()
        s = 'matrix(\n'
        s += self._toliststr(avoid_type=True) + ')'
        return s

    def __get_element(self, key):
        '''
        Fast extraction of the i,j element from the matrix   
            This function is for private use only because is unsafe:
                1. Does not check on the value of key it expects key to be a integer tuple (i,j)
                2. Does not check bounds
        '''
        if key in self.__data:
            return self.__data[key]
        else:
            return self.ctx.zero

    def __set_element(self, key, value):
        '''
        Fast assignment of the i,j element in the matrix
            This function is unsafe:
                1. Does not check on the value of key it expects key to be a integer tuple (i,j)
                2. Does not check bounds
                3. Does not check the value type
        '''
        if value: # only store non-zeros
            self.__data[key] = value
        elif key in self.__data:
            del self.__data[key]


    def __getitem__(self, key):
        ''' 
            Getitem function for mp matrix class with slice index enabled
            it allows the following assingments
            scalar to a slice of the matrix
         B = A[:,2:6] 
        '''
        # Convert vector to matrix indexing
        if isinstance(key, int) or isinstance(key,slice):
            # only sufficent for vectors
            if self.__rows == 1:
                key = (0, key)
            elif self.__cols == 1:
                key = (key, 0)
            else:
                raise IndexError('insufficient indices for matrix')
            
        if isinstance(key[0],slice) or isinstance(key[1],slice):

            #Rows
            if isinstance(key[0],slice):
                #Check bounds
                if (key[0].start is None or key[0].start >= 0) and \
                    (key[0].stop is None or key[0].stop <= self.__rows+1):
                    # Generate indices
                    rows = xrange(*key[0].indices(self.__rows))
                else:
                    raise IndexError('Row index out of bounds')
            else:
                # Single row
                rows = [key[0]]
            
            # Columns
            if isinstance(key[1],slice):
                # Check bounds
                if (key[1].start is None or key[1].start >= 0) and \
                    (key[1].stop is None or key[1].stop <= self.__cols+1):
                    # Generate indices
                    columns = xrange(*key[1].indices(self.__cols))
                else:
                    raise IndexError('Column index out of bounds')
                
            else:
                # Single column
                columns = [key[1]]

            # Create matrix slice
            m = self.ctx.matrix(len(rows),len(columns)) 

            # Assign elements to the output matrix
            for i,x in enumerate(rows):
                for j,y in enumerate(columns):
                    m.__set_element((i,j),self.__get_element((x,y)))
            
            return m
            
        else:
            # single element extraction
            if key[0] >= self.__rows or key[1] >= self.__cols:
                raise IndexError('matrix index out of range')
            if key in self.__data:
                return self.__data[key]
            else:
                return self.ctx.zero

    def __setitem__(self, key, value):
        # setitem function for mp matrix class with slice index enabled
        # it allows the following assingments
        #  scalar to a slice of the matrix
        # A[:,2:6] = 2.5
        #  submatrix to matrix (the value matrix should be the same size as the slice size)
        # A[3,:] = B   where A is n x m  and B is n x 1
        # Convert vector to matrix indexing
        if isinstance(key, int) or isinstance(key,slice):
            # only sufficent for vectors
            if self.__rows == 1:
                key = (0, key)
            elif self.__cols == 1:
                key = (key, 0)
            else:
                raise IndexError('insufficient indices for matrix')
        # Slice indexing            
        if isinstance(key[0],slice) or isinstance(key[1],slice):
            # Rows
            if isinstance(key[0],slice):
                # Check bounds
                if (key[0].start is None or key[0].start >= 0) and \
                    (key[0].stop is None or key[0].stop <= self.__rows+1):
                    # generate row indices
                    rows = xrange(*key[0].indices(self.__rows))
                else:
                    raise IndexError('Row index out of bounds')
            else:
                # Single row
                rows = [key[0]]
            # Columns
            if isinstance(key[1],slice):
                # Check bounds
                if (key[1].start is None or key[1].start >= 0) and \
                    (key[1].stop is None or key[1].stop <= self.__cols+1):
                    # Generate column indices
                    columns = xrange(*key[1].indices(self.__cols))
                else:
                    raise IndexError('Column index out of bounds')
            else:
                # Single column
                columns = [key[1]]
            # Assign slice with a scalar
            if isinstance(value,self.ctx.matrix):
                # Assign elements to matrix if input and output dimensions match
                if len(rows) == value.rows and len(columns) == value.cols:
                    for i,x in enumerate(rows):
                        for j,y in enumerate(columns):
                            self.__set_element((x,y), value.__get_element((i,j)))
                else:
                    raise ValueError('Dimensions do not match')
            else:
                # Assign slice with scalars
                value = self.ctx.convert(value)
                for i in rows:
                    for j in columns:
                        self.__set_element((i,j), value)
        else:
            # Single element assingment
            # Check bounds
            if key[0] >= self.__rows or key[1] >= self.__cols:
                raise IndexError('matrix index out of range')
            # Convert and store value
            value = self.ctx.convert(value)
            if value: # only store non-zeros
                self.__data[key] = value
            elif key in self.__data:
                del self.__data[key]
        
        if self._LU:
            self._LU = None
        return
        

    def __iter__(self):
        for i in xrange(self.__rows):
            for j in xrange(self.__cols):
                yield self[i,j]

    def __mul__(self, other):
        if isinstance(other, self.ctx.matrix):
            # dot multiplication  TODO: use Strassen's method?
            if self.__cols != other.__rows:
                raise ValueError('dimensions not compatible for multiplication')
            new = self.ctx.matrix(self.__rows, other.__cols)
            for i in xrange(self.__rows):
                for j in xrange(other.__cols):
                    new[i, j] = self.ctx.fdot((self[i,k], other[k,j])
                                     for k in xrange(other.__rows))
            return new
        else:
            # try scalar multiplication
            new = self.ctx.matrix(self.__rows, self.__cols)
            for i in xrange(self.__rows):
                for j in xrange(self.__cols):
                    new[i, j] = other * self[i, j]
            return new

    def __rmul__(self, other):
        # assume other is scalar and thus commutative
        assert not isinstance(other, self.ctx.matrix)
        return self.__mul__(other)

    def __pow__(self, other):
        # avoid cyclic import problems
        #from linalg import inverse
        if not isinstance(other, int):
            raise ValueError('only integer exponents are supported')
        if not self.__rows == self.__cols:
            raise ValueError('only powers of square matrices are defined')
        n = other
        if n == 0:
            return self.ctx.eye(self.__rows)
        if n < 0:
            n = -n
            neg = True
        else:
            neg = False
        i = n
        y = 1
        z = self.copy()
        while i != 0:
            if i % 2 == 1:
                y = y * z
            z = z*z
            i = i // 2
        if neg:
            y = self.ctx.inverse(y)
        return y

    def __div__(self, other):
        # assume other is scalar and do element-wise divison
        assert not isinstance(other, self.ctx.matrix)
        new = self.ctx.matrix(self.__rows, self.__cols)
        for i in xrange(self.__rows):
            for j in xrange(self.__cols):
                new[i,j] = self[i,j] / other
        return new

    __truediv__ = __div__

    def __add__(self, other):
        if isinstance(other, self.ctx.matrix):
            if not (self.__rows == other.__rows and self.__cols == other.__cols):
                raise ValueError('incompatible dimensions for addition')
            new = self.ctx.matrix(self.__rows, self.__cols)
            for i in xrange(self.__rows):
                for j in xrange(self.__cols):
                    new[i,j] = self[i,j] + other[i,j]
            return new
        else:
            # assume other is scalar and add element-wise
            new = self.ctx.matrix(self.__rows, self.__cols)
            for i in xrange(self.__rows):
                for j in xrange(self.__cols):
                    new[i,j] += self[i,j] + other
            return new

    def __radd__(self, other):
        return self.__add__(other)

    def __sub__(self, other):
        if isinstance(other, self.ctx.matrix) and not (self.__rows == other.__rows
                                              and self.__cols == other.__cols):
            raise ValueError('incompatible dimensions for substraction')
        return self.__add__(other * (-1))

    def __neg__(self):
        return (-1) * self

    def __rsub__(self, other):
        return -self + other

    def __eq__(self, other):
        return self.__rows == other.__rows and self.__cols == other.__cols \
               and self.__data == other.__data

    def __len__(self):
        if self.rows == 1:
            return self.cols
        elif self.cols == 1:
            return self.rows
        else:
            return self.rows # do it like numpy

    def __getrows(self):
        return self.__rows

    def __setrows(self, value):
        for key in self.__data.copy():
            if key[0] >= value:
                del self.__data[key]
        self.__rows = value

    rows = property(__getrows, __setrows, doc='number of rows')

    def __getcols(self):
        return self.__cols

    def __setcols(self, value):
        for key in self.__data.copy():
            if key[1] >= value:
                del self.__data[key]
        self.__cols = value

    cols = property(__getcols, __setcols, doc='number of columns')

    def transpose(self):
        new = self.ctx.matrix(self.__cols, self.__rows)
        for i in xrange(self.__rows):
            for j in xrange(self.__cols):
                new[j,i] = self[i,j]
        return new

    T = property(transpose)

    def conjugate(self):
        return self.apply(self.ctx.conj)

    def transpose_conj(self):
        return self.conjugate().transpose()

    H = property(transpose_conj)

    def copy(self):
        new = self.ctx.matrix(self.__rows, self.__cols)
        new.__data = self.__data.copy()
        return new

    __copy__ = copy

    def column(self, n):
        m = self.ctx.matrix(self.rows, 1)
        for i in range(self.rows):
            m[i] = self[i,n]
        return m

class MatrixMethods(object):

    def __init__(ctx):
        # XXX: subclass
        ctx.matrix = type('matrix', (_matrix,), {})
        ctx.matrix.ctx = ctx
        ctx.matrix.convert = ctx.convert

    def eye(ctx, n, **kwargs):
        """
        Create square identity matrix n x n.
        """
        A = ctx.matrix(n, **kwargs)
        for i in xrange(n):
            A[i,i] = 1
        return A

    def diag(ctx, diagonal, **kwargs):
        """
        Create square diagonal matrix using given list.

        Example:
        >>> from mpmath import diag, mp
        >>> mp.pretty = False
        >>> diag([1, 2, 3])
        matrix(
        [['1.0', '0.0', '0.0'],
         ['0.0', '2.0', '0.0'],
         ['0.0', '0.0', '3.0']])
        """
        A = ctx.matrix(len(diagonal), **kwargs)
        for i in xrange(len(diagonal)):
            A[i,i] = diagonal[i]
        return A

    def zeros(ctx, *args, **kwargs):
        """
        Create matrix m x n filled with zeros.
        One given dimension will create square matrix n x n.

        Example:
        >>> from mpmath import zeros, mp
        >>> mp.pretty = False
        >>> zeros(2)
        matrix(
        [['0.0', '0.0'],
         ['0.0', '0.0']])
        """
        if len(args) == 1:
            m = n = args[0]
        elif len(args) == 2:
            m = args[0]
            n = args[1]
        else:
            raise TypeError('zeros expected at most 2 arguments, got %i' % len(args))
        A = ctx.matrix(m, n, **kwargs)
        for i in xrange(m):
            for j in xrange(n):
                A[i,j] = 0
        return A

    def ones(ctx, *args, **kwargs):
        """
        Create matrix m x n filled with ones.
        One given dimension will create square matrix n x n.

        Example:
        >>> from mpmath import ones, mp
        >>> mp.pretty = False
        >>> ones(2)
        matrix(
        [['1.0', '1.0'],
         ['1.0', '1.0']])
        """
        if len(args) == 1:
            m = n = args[0]
        elif len(args) == 2:
            m = args[0]
            n = args[1]
        else:
            raise TypeError('ones expected at most 2 arguments, got %i' % len(args))
        A = ctx.matrix(m, n, **kwargs)
        for i in xrange(m):
            for j in xrange(n):
                A[i,j] = 1
        return A

    def hilbert(ctx, m, n=None):
        """
        Create (pseudo) hilbert matrix m x n.
        One given dimension will create hilbert matrix n x n.

        The matrix is very ill-conditioned and symmetric, positive definite if
        square.
        """
        if n is None:
            n = m
        A = ctx.matrix(m, n)
        for i in xrange(m):
            for j in xrange(n):
                A[i,j] = ctx.one / (i + j + 1)
        return A

    def randmatrix(ctx, m, n=None, min=0, max=1, **kwargs):
        """
        Create a random m x n matrix.

        All values are >= min and <max.
        n defaults to m.

        Example:
        >>> from mpmath import randmatrix
        >>> randmatrix(2) # doctest:+SKIP
        matrix(
        [['0.53491598236191806', '0.57195669543302752'],
         ['0.85589992269513615', '0.82444367501382143']])
        """
        if not n:
            n = m
        A = ctx.matrix(m, n, **kwargs)
        for i in xrange(m):
            for j in xrange(n):
                A[i,j] = ctx.rand() * (max - min) + min
        return A

    def swap_row(ctx, A, i, j):
        """
        Swap row i with row j.
        """
        if i == j:
            return
        if isinstance(A, ctx.matrix):
            for k in xrange(A.cols):
                A[i,k], A[j,k] = A[j,k], A[i,k]
        elif isinstance(A, list):
            A[i], A[j] = A[j], A[i]
        else:
            raise TypeError('could not interpret type')

    def extend(ctx, A, b):
        """
        Extend matrix A with column b and return result.
        """
        assert isinstance(A, ctx.matrix)
        assert A.rows == len(b)
        A = A.copy()
        A.cols += 1
        for i in xrange(A.rows):
            A[i, A.cols-1] = b[i]
        return A

    def norm(ctx, x, p=2):
        r"""
        Gives the entrywise `p`-norm of an iterable *x*, i.e. the vector norm
        `\left(\sum_k |x_k|^p\right)^{1/p}`, for any given `1 \le p \le \infty`.

        Special cases:

        If *x* is not iterable, this just returns ``absmax(x)``.

        ``p=1`` gives the sum of absolute values.

        ``p=2`` is the standard Euclidean vector norm.

        ``p=inf`` gives the magnitude of the largest element.

        For *x* a matrix, ``p=2`` is the Frobenius norm.
        For operator matrix norms, use :func:`~mpmath.mnorm` instead.

        You can use the string 'inf' as well as float('inf') or mpf('inf')
        to specify the infinity norm.

        **Examples**

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> x = matrix([-10, 2, 100])
            >>> norm(x, 1)
            mpf('112.0')
            >>> norm(x, 2)
            mpf('100.5186549850325')
            >>> norm(x, inf)
            mpf('100.0')

        """
        try:
            iter(x)
        except TypeError:
            return ctx.absmax(x)
        if type(p) is not int:
            p = ctx.convert(p)
        if p == ctx.inf:
            return max(ctx.absmax(i) for i in x)
        elif p == 1:
            return ctx.fsum(x, absolute=1)
        elif p == 2:
            return ctx.sqrt(ctx.fsum(x, absolute=1, squared=1))
        elif p > 1:
            return ctx.nthroot(ctx.fsum(abs(i)**p for i in x), p)
        else:
            raise ValueError('p has to be >= 1')

    def mnorm(ctx, A, p=1):
        r"""
        Gives the matrix (operator) `p`-norm of A. Currently ``p=1`` and ``p=inf``
        are supported:

        ``p=1`` gives the 1-norm (maximal column sum)

        ``p=inf`` gives the `\infty`-norm (maximal row sum).
        You can use the string 'inf' as well as float('inf') or mpf('inf')

        ``p=2`` (not implemented) for a square matrix is the usual spectral
        matrix norm, i.e. the largest singular value.

        ``p='f'`` (or 'F', 'fro', 'Frobenius, 'frobenius') gives the
        Frobenius norm, which is the elementwise 2-norm. The Frobenius norm is an
        approximation of the spectral norm and satisfies

        .. math ::

            \frac{1}{\sqrt{\mathrm{rank}(A)}} \|A\|_F \le \|A\|_2 \le \|A\|_F

        The Frobenius norm lacks some mathematical properties that might
        be expected of a norm.

        For general elementwise `p`-norms, use :func:`~mpmath.norm` instead.

        **Examples**

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = False
            >>> A = matrix([[1, -1000], [100, 50]])
            >>> mnorm(A, 1)
            mpf('1050.0')
            >>> mnorm(A, inf)
            mpf('1001.0')
            >>> mnorm(A, 'F')
            mpf('1006.2310867787777')

        """
        A = ctx.matrix(A)
        if type(p) is not int:
            if type(p) is str and 'frobenius'.startswith(p.lower()):
                return ctx.norm(A, 2)
            p = ctx.convert(p)
        m, n = A.rows, A.cols
        if p == 1:
            return max(ctx.fsum((A[i,j] for i in xrange(m)), absolute=1) for j in xrange(n))
        elif p == ctx.inf:
            return max(ctx.fsum((A[i,j] for j in xrange(n)), absolute=1) for i in xrange(m))
        else:
            raise NotImplementedError("matrix p-norm for arbitrary p")

if __name__ == '__main__':
    import doctest
    doctest.testmod()