/usr/lib/python2.7/dist-packages/munkres.py is in python-munkres 1.0.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | #!/usr/bin/env python
# -*- coding: iso-8859-1 -*-
# Documentation is intended to be processed by Epydoc.
"""
Introduction
============
The Munkres module provides an implementation of the Munkres algorithm
(also called the Hungarian algorithm or the Kuhn-Munkres algorithm),
useful for solving the Assignment Problem.
Assignment Problem
==================
Let *C* be an *n*\ x\ *n* matrix representing the costs of each of *n* workers
to perform any of *n* jobs. The assignment problem is to assign jobs to
workers in a way that minimizes the total cost. Since each worker can perform
only one job and each job can be assigned to only one worker the assignments
represent an independent set of the matrix *C*.
One way to generate the optimal set is to create all permutations of
the indexes necessary to traverse the matrix so that no row and column
are used more than once. For instance, given this matrix (expressed in
Python)::
matrix = [[5, 9, 1],
[10, 3, 2],
[8, 7, 4]]
You could use this code to generate the traversal indexes::
def permute(a, results):
if len(a) == 1:
results.insert(len(results), a)
else:
for i in range(0, len(a)):
element = a[i]
a_copy = [a[j] for j in range(0, len(a)) if j != i]
subresults = []
permute(a_copy, subresults)
for subresult in subresults:
result = [element] + subresult
results.insert(len(results), result)
results = []
permute(range(len(matrix)), results) # [0, 1, 2] for a 3x3 matrix
After the call to permute(), the results matrix would look like this::
[[0, 1, 2],
[0, 2, 1],
[1, 0, 2],
[1, 2, 0],
[2, 0, 1],
[2, 1, 0]]
You could then use that index matrix to loop over the original cost matrix
and calculate the smallest cost of the combinations::
n = len(matrix)
minval = sys.maxsize
for row in range(n):
cost = 0
for col in range(n):
cost += matrix[row][col]
minval = min(cost, minval)
print minval
While this approach works fine for small matrices, it does not scale. It
executes in O(*n*!) time: Calculating the permutations for an *n*\ x\ *n*
matrix requires *n*! operations. For a 12x12 matrix, that's 479,001,600
traversals. Even if you could manage to perform each traversal in just one
millisecond, it would still take more than 133 hours to perform the entire
traversal. A 20x20 matrix would take 2,432,902,008,176,640,000 operations. At
an optimistic millisecond per operation, that's more than 77 million years.
The Munkres algorithm runs in O(*n*\ ^3) time, rather than O(*n*!). This
package provides an implementation of that algorithm.
This version is based on
http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html.
This version was written for Python by Brian Clapper from the (Ada) algorithm
at the above web site. (The ``Algorithm::Munkres`` Perl version, in CPAN, was
clearly adapted from the same web site.)
Usage
=====
Construct a Munkres object::
from munkres import Munkres
m = Munkres()
Then use it to compute the lowest cost assignment from a cost matrix. Here's
a sample program::
from munkres import Munkres, print_matrix
matrix = [[5, 9, 1],
[10, 3, 2],
[8, 7, 4]]
m = Munkres()
indexes = m.compute(matrix)
print_matrix(matrix, msg='Lowest cost through this matrix:')
total = 0
for row, column in indexes:
value = matrix[row][column]
total += value
print '(%d, %d) -> %d' % (row, column, value)
print 'total cost: %d' % total
Running that program produces::
Lowest cost through this matrix:
[5, 9, 1]
[10, 3, 2]
[8, 7, 4]
(0, 0) -> 5
(1, 1) -> 3
(2, 2) -> 4
total cost=12
The instantiated Munkres object can be used multiple times on different
matrices.
Non-square Cost Matrices
========================
The Munkres algorithm assumes that the cost matrix is square. However, it's
possible to use a rectangular matrix if you first pad it with 0 values to make
it square. This module automatically pads rectangular cost matrices to make
them square.
Notes:
- The module operates on a *copy* of the caller's matrix, so any padding will
not be seen by the caller.
- The cost matrix must be rectangular or square. An irregular matrix will
*not* work.
Calculating Profit, Rather than Cost
====================================
The cost matrix is just that: A cost matrix. The Munkres algorithm finds
the combination of elements (one from each row and column) that results in
the smallest cost. It's also possible to use the algorithm to maximize
profit. To do that, however, you have to convert your profit matrix to a
cost matrix. The simplest way to do that is to subtract all elements from a
large value. For example::
from munkres import Munkres, print_matrix
matrix = [[5, 9, 1],
[10, 3, 2],
[8, 7, 4]]
cost_matrix = []
for row in matrix:
cost_row = []
for col in row:
cost_row += [sys.maxsize - col]
cost_matrix += [cost_row]
m = Munkres()
indexes = m.compute(cost_matrix)
print_matrix(matrix, msg='Highest profit through this matrix:')
total = 0
for row, column in indexes:
value = matrix[row][column]
total += value
print '(%d, %d) -> %d' % (row, column, value)
print 'total profit=%d' % total
Running that program produces::
Highest profit through this matrix:
[5, 9, 1]
[10, 3, 2]
[8, 7, 4]
(0, 1) -> 9
(1, 0) -> 10
(2, 2) -> 4
total profit=23
The ``munkres`` module provides a convenience method for creating a cost
matrix from a profit matrix. Since it doesn't know whether the matrix contains
floating point numbers, decimals, or integers, you have to provide the
conversion function; but the convenience method takes care of the actual
creation of the cost matrix::
import munkres
cost_matrix = munkres.make_cost_matrix(matrix,
lambda cost: sys.maxsize - cost)
So, the above profit-calculation program can be recast as::
from munkres import Munkres, print_matrix, make_cost_matrix
matrix = [[5, 9, 1],
[10, 3, 2],
[8, 7, 4]]
cost_matrix = make_cost_matrix(matrix, lambda cost: sys.maxsize - cost)
m = Munkres()
indexes = m.compute(cost_matrix)
print_matrix(matrix, msg='Lowest cost through this matrix:')
total = 0
for row, column in indexes:
value = matrix[row][column]
total += value
print '(%d, %d) -> %d' % (row, column, value)
print 'total profit=%d' % total
References
==========
1. http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html
2. Harold W. Kuhn. The Hungarian Method for the assignment problem.
*Naval Research Logistics Quarterly*, 2:83-97, 1955.
3. Harold W. Kuhn. Variants of the Hungarian method for assignment
problems. *Naval Research Logistics Quarterly*, 3: 253-258, 1956.
4. Munkres, J. Algorithms for the Assignment and Transportation Problems.
*Journal of the Society of Industrial and Applied Mathematics*,
5(1):32-38, March, 1957.
5. http://en.wikipedia.org/wiki/Hungarian_algorithm
Copyright and License
=====================
This software is released under a BSD license, adapted from
<http://opensource.org/licenses/bsd-license.php>
Copyright (c) 2008 Brian M. Clapper
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name "clapper.org" nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
"""
__docformat__ = 'restructuredtext'
# ---------------------------------------------------------------------------
# Imports
# ---------------------------------------------------------------------------
import sys
import copy
# ---------------------------------------------------------------------------
# Exports
# ---------------------------------------------------------------------------
__all__ = ['Munkres', 'make_cost_matrix']
# ---------------------------------------------------------------------------
# Globals
# ---------------------------------------------------------------------------
# Info about the module
__version__ = "1.0.6"
__author__ = "Brian Clapper, bmc@clapper.org"
__url__ = "http://software.clapper.org/munkres/"
__copyright__ = "(c) 2008 Brian M. Clapper"
__license__ = "BSD-style license"
# ---------------------------------------------------------------------------
# Classes
# ---------------------------------------------------------------------------
class Munkres:
"""
Calculate the Munkres solution to the classical assignment problem.
See the module documentation for usage.
"""
def __init__(self):
"""Create a new instance"""
self.C = None
self.row_covered = []
self.col_covered = []
self.n = 0
self.Z0_r = 0
self.Z0_c = 0
self.marked = None
self.path = None
def make_cost_matrix(profit_matrix, inversion_function):
"""
**DEPRECATED**
Please use the module function ``make_cost_matrix()``.
"""
import munkres
return munkres.make_cost_matrix(profit_matrix, inversion_function)
make_cost_matrix = staticmethod(make_cost_matrix)
def pad_matrix(self, matrix, pad_value=0):
"""
Pad a possibly non-square matrix to make it square.
:Parameters:
matrix : list of lists
matrix to pad
pad_value : int
value to use to pad the matrix
:rtype: list of lists
:return: a new, possibly padded, matrix
"""
max_columns = 0
total_rows = len(matrix)
for row in matrix:
max_columns = max(max_columns, len(row))
total_rows = max(max_columns, total_rows)
new_matrix = []
for row in matrix:
row_len = len(row)
new_row = row[:]
if total_rows > row_len:
# Row too short. Pad it.
new_row += [0] * (total_rows - row_len)
new_matrix += [new_row]
while len(new_matrix) < total_rows:
new_matrix += [[0] * total_rows]
return new_matrix
def compute(self, cost_matrix):
"""
Compute the indexes for the lowest-cost pairings between rows and
columns in the database. Returns a list of (row, column) tuples
that can be used to traverse the matrix.
:Parameters:
cost_matrix : list of lists
The cost matrix. If this cost matrix is not square, it
will be padded with zeros, via a call to ``pad_matrix()``.
(This method does *not* modify the caller's matrix. It
operates on a copy of the matrix.)
**WARNING**: This code handles square and rectangular
matrices. It does *not* handle irregular matrices.
:rtype: list
:return: A list of ``(row, column)`` tuples that describe the lowest
cost path through the matrix
"""
self.C = self.pad_matrix(cost_matrix)
self.n = len(self.C)
self.original_length = len(cost_matrix)
self.original_width = len(cost_matrix[0])
self.row_covered = [False for i in range(self.n)]
self.col_covered = [False for i in range(self.n)]
self.Z0_r = 0
self.Z0_c = 0
self.path = self.__make_matrix(self.n * 2, 0)
self.marked = self.__make_matrix(self.n, 0)
done = False
step = 1
steps = { 1 : self.__step1,
2 : self.__step2,
3 : self.__step3,
4 : self.__step4,
5 : self.__step5,
6 : self.__step6 }
while not done:
try:
func = steps[step]
step = func()
except KeyError:
done = True
# Look for the starred columns
results = []
for i in range(self.original_length):
for j in range(self.original_width):
if self.marked[i][j] == 1:
results += [(i, j)]
return results
def __copy_matrix(self, matrix):
"""Return an exact copy of the supplied matrix"""
return copy.deepcopy(matrix)
def __make_matrix(self, n, val):
"""Create an *n*x*n* matrix, populating it with the specific value."""
matrix = []
for i in range(n):
matrix += [[val for j in range(n)]]
return matrix
def __step1(self):
"""
For each row of the matrix, find the smallest element and
subtract it from every element in its row. Go to Step 2.
"""
C = self.C
n = self.n
for i in range(n):
minval = min(self.C[i])
# Find the minimum value for this row and subtract that minimum
# from every element in the row.
for j in range(n):
self.C[i][j] -= minval
return 2
def __step2(self):
"""
Find a zero (Z) in the resulting matrix. If there is no starred
zero in its row or column, star Z. Repeat for each element in the
matrix. Go to Step 3.
"""
n = self.n
for i in range(n):
for j in range(n):
if (self.C[i][j] == 0) and \
(not self.col_covered[j]) and \
(not self.row_covered[i]):
self.marked[i][j] = 1
self.col_covered[j] = True
self.row_covered[i] = True
self.__clear_covers()
return 3
def __step3(self):
"""
Cover each column containing a starred zero. If K columns are
covered, the starred zeros describe a complete set of unique
assignments. In this case, Go to DONE, otherwise, Go to Step 4.
"""
n = self.n
count = 0
for i in range(n):
for j in range(n):
if self.marked[i][j] == 1:
self.col_covered[j] = True
count += 1
if count >= n:
step = 7 # done
else:
step = 4
return step
def __step4(self):
"""
Find a noncovered zero and prime it. If there is no starred zero
in the row containing this primed zero, Go to Step 5. Otherwise,
cover this row and uncover the column containing the starred
zero. Continue in this manner until there are no uncovered zeros
left. Save the smallest uncovered value and Go to Step 6.
"""
step = 0
done = False
row = -1
col = -1
star_col = -1
while not done:
(row, col) = self.__find_a_zero()
if row < 0:
done = True
step = 6
else:
self.marked[row][col] = 2
star_col = self.__find_star_in_row(row)
if star_col >= 0:
col = star_col
self.row_covered[row] = True
self.col_covered[col] = False
else:
done = True
self.Z0_r = row
self.Z0_c = col
step = 5
return step
def __step5(self):
"""
Construct a series of alternating primed and starred zeros as
follows. Let Z0 represent the uncovered primed zero found in Step 4.
Let Z1 denote the starred zero in the column of Z0 (if any).
Let Z2 denote the primed zero in the row of Z1 (there will always
be one). Continue until the series terminates at a primed zero
that has no starred zero in its column. Unstar each starred zero
of the series, star each primed zero of the series, erase all
primes and uncover every line in the matrix. Return to Step 3
"""
count = 0
path = self.path
path[count][0] = self.Z0_r
path[count][1] = self.Z0_c
done = False
while not done:
row = self.__find_star_in_col(path[count][1])
if row >= 0:
count += 1
path[count][0] = row
path[count][1] = path[count-1][1]
else:
done = True
if not done:
col = self.__find_prime_in_row(path[count][0])
count += 1
path[count][0] = path[count-1][0]
path[count][1] = col
self.__convert_path(path, count)
self.__clear_covers()
self.__erase_primes()
return 3
def __step6(self):
"""
Add the value found in Step 4 to every element of each covered
row, and subtract it from every element of each uncovered column.
Return to Step 4 without altering any stars, primes, or covered
lines.
"""
minval = self.__find_smallest()
for i in range(self.n):
for j in range(self.n):
if self.row_covered[i]:
self.C[i][j] += minval
if not self.col_covered[j]:
self.C[i][j] -= minval
return 4
def __find_smallest(self):
"""Find the smallest uncovered value in the matrix."""
minval = sys.maxsize
for i in range(self.n):
for j in range(self.n):
if (not self.row_covered[i]) and (not self.col_covered[j]):
if minval > self.C[i][j]:
minval = self.C[i][j]
return minval
def __find_a_zero(self):
"""Find the first uncovered element with value 0"""
row = -1
col = -1
i = 0
n = self.n
done = False
while not done:
j = 0
while True:
if (self.C[i][j] == 0) and \
(not self.row_covered[i]) and \
(not self.col_covered[j]):
row = i
col = j
done = True
j += 1
if j >= n:
break
i += 1
if i >= n:
done = True
return (row, col)
def __find_star_in_row(self, row):
"""
Find the first starred element in the specified row. Returns
the column index, or -1 if no starred element was found.
"""
col = -1
for j in range(self.n):
if self.marked[row][j] == 1:
col = j
break
return col
def __find_star_in_col(self, col):
"""
Find the first starred element in the specified row. Returns
the row index, or -1 if no starred element was found.
"""
row = -1
for i in range(self.n):
if self.marked[i][col] == 1:
row = i
break
return row
def __find_prime_in_row(self, row):
"""
Find the first prime element in the specified row. Returns
the column index, or -1 if no starred element was found.
"""
col = -1
for j in range(self.n):
if self.marked[row][j] == 2:
col = j
break
return col
def __convert_path(self, path, count):
for i in range(count+1):
if self.marked[path[i][0]][path[i][1]] == 1:
self.marked[path[i][0]][path[i][1]] = 0
else:
self.marked[path[i][0]][path[i][1]] = 1
def __clear_covers(self):
"""Clear all covered matrix cells"""
for i in range(self.n):
self.row_covered[i] = False
self.col_covered[i] = False
def __erase_primes(self):
"""Erase all prime markings"""
for i in range(self.n):
for j in range(self.n):
if self.marked[i][j] == 2:
self.marked[i][j] = 0
# ---------------------------------------------------------------------------
# Functions
# ---------------------------------------------------------------------------
def make_cost_matrix(profit_matrix, inversion_function):
"""
Create a cost matrix from a profit matrix by calling
'inversion_function' to invert each value. The inversion
function must take one numeric argument (of any type) and return
another numeric argument which is presumed to be the cost inverse
of the original profit.
This is a static method. Call it like this:
.. python::
cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func)
For example:
.. python::
cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxsize - x)
:Parameters:
profit_matrix : list of lists
The matrix to convert from a profit to a cost matrix
inversion_function : function
The function to use to invert each entry in the profit matrix
:rtype: list of lists
:return: The converted matrix
"""
cost_matrix = []
for row in profit_matrix:
cost_matrix.append([inversion_function(value) for value in row])
return cost_matrix
def print_matrix(matrix, msg=None):
"""
Convenience function: Displays the contents of a matrix of integers.
:Parameters:
matrix : list of lists
Matrix to print
msg : str
Optional message to print before displaying the matrix
"""
import math
if msg is not None:
print(msg)
# Calculate the appropriate format width.
width = 0
for row in matrix:
for val in row:
width = max(width, int(math.log10(val)) + 1)
# Make the format string
format = '%%%dd' % width
# Print the matrix
for row in matrix:
sep = '['
for val in row:
sys.stdout.write(sep + format % val)
sep = ', '
sys.stdout.write(']\n')
# ---------------------------------------------------------------------------
# Main
# ---------------------------------------------------------------------------
if __name__ == '__main__':
matrices = [
# Square
([[400, 150, 400],
[400, 450, 600],
[300, 225, 300]],
850), # expected cost
# Rectangular variant
([[400, 150, 400, 1],
[400, 450, 600, 2],
[300, 225, 300, 3]],
452), # expected cost
# Square
([[10, 10, 8],
[9, 8, 1],
[9, 7, 4]],
18),
# Rectangular variant
([[10, 10, 8, 11],
[9, 8, 1, 1],
[9, 7, 4, 10]],
15)]
m = Munkres()
for cost_matrix, expected_total in matrices:
print_matrix(cost_matrix, msg='cost matrix')
indexes = m.compute(cost_matrix)
total_cost = 0
for r, c in indexes:
x = cost_matrix[r][c]
total_cost += x
print('(%d, %d) -> %d' % (r, c, x))
print('lowest cost=%d' % total_cost)
assert expected_total == total_cost
|