/usr/share/pyshared/mvpa/clfs/blr.py is in python-mvpa 0.4.8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# Copyright (c) 2008 Emanuele Olivetti <emanuele@relativita.com>
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Bayesian Linear Regression (BLR)."""
__docformat__ = 'restructuredtext'
import numpy as N
from mvpa.misc.state import StateVariable
from mvpa.clfs.base import Classifier
if __debug__:
from mvpa.misc import debug
class BLR(Classifier):
"""Bayesian Linear Regression (BLR).
"""
predicted_variances = StateVariable(enabled=False,
doc="Variance per each predicted value")
log_marginal_likelihood = StateVariable(enabled=False,
doc="Log Marginal Likelihood")
_clf_internals = [ 'blr', 'regression', 'linear' ]
def __init__(self, sigma_p = None, sigma_noise=1.0, **kwargs):
"""Initialize a BLR regression analysis.
:Parameters:
sigma_noise : float
the standard deviation of the gaussian noise.
(Defaults to 0.1)
"""
# init base class first
Classifier.__init__(self, **kwargs)
# pylint happiness
self.w = None
# It does not make sense to calculate a confusion matrix for a
# BLR:
self.states.enable('training_confusion', False)
# set the prior on w: N(0,sigma_p) , specifying the covariance
# sigma_p on w:
self.sigma_p = sigma_p
# set noise level:
self.sigma_noise = sigma_noise
self.predicted_variances = None
self.log_marginal_likelihood = None
self.labels = None
pass
def __repr__(self):
"""String summary of the object
"""
return """BLR(w=%s, sigma_p=%s, sigma_noise=%f, enable_states=%s)""" % \
(self.w, self.sigma_p, self.sigma_noise, str(self.states.enabled))
def compute_log_marginal_likelihood(self):
"""
Compute log marginal likelihood using self.train_fv and self.labels.
"""
# log_marginal_likelihood = None
# return log_marginal_likelihood
raise NotImplementedError
def _train(self, data):
"""Train regression using `data` (`Dataset`).
"""
# provide a basic (i.e. identity matrix) and correct prior
# sigma_p, if not provided before or not compliant to 'data':
if self.sigma_p == None: # case: not provided
self.sigma_p = N.eye(data.samples.shape[1]+1)
elif self.sigma_p.shape[1] != (data.samples.shape[1]+1): # case: wrong dimensions
self.sigma_p = N.eye(data.samples.shape[1]+1)
else:
# ...then everything is OK :)
pass
# add one fake column of '1.0' to model the intercept:
self.samples_train = N.hstack([data.samples,N.ones((data.samples.shape[0],1))])
if type(self.sigma_p)!=type(self.samples_train): # if sigma_p is a number...
self.sigma_p = N.eye(self.samples_train.shape[1])*self.sigma_p # convert in matrix
pass
self.A_inv = N.linalg.inv(1.0/(self.sigma_noise**2) *
N.dot(self.samples_train.T,
self.samples_train) +
N.linalg.inv(self.sigma_p))
self.w = 1.0/(self.sigma_noise**2) * N.dot(self.A_inv,
N.dot(self.samples_train.T,
data.labels))
pass
def _predict(self, data):
"""
Predict the output for the provided data.
"""
data = N.hstack([data,N.ones((data.shape[0],1),dtype=data.dtype)])
predictions = N.dot(data,self.w)
if self.states.isEnabled('predicted_variances'):
# do computation only if state variable was enabled
self.predicted_variances = N.dot(data, N.dot(self.A_inv, data.T)).diagonal()[:,N.newaxis]
return predictions
def set_hyperparameters(self,*args):
"""
Set hyperparameters' values.
Note that this is a list so the order of the values is
important.
"""
args=args[0]
self.sigma_noise = args[0]
if len(args)>1:
self.sigma_p = N.array(args[1:]) # XXX check if this is ok
pass
return
pass
if __name__ == "__main__":
import pylab
pylab.close("all")
pylab.ion()
from mvpa.misc.data_generators import linear_awgn
train_size = 10
test_size = 100
F = 1 # dimensions of the dataset
# N.random.seed(1)
slope = N.random.rand(F)
intercept = N.random.rand(1)
print "True slope:",slope
print "True intercept:",intercept
dataset_train = linear_awgn(train_size, intercept=intercept, slope=slope)
# print dataset.labels
dataset_test = linear_awgn(test_size, intercept=intercept, slope=slope, flat=True)
regression = True
logml = False
b = BLR(sigma_p=N.eye(F+1), sigma_noise=0.1, regression=True)
b.states.enable("predicted_variances")
b.train(dataset_train)
predictions = b.predict(dataset_test.samples)
print "Predicted slope and intercept:",b.w
if F==1:
pylab.plot(dataset_train.samples,dataset_train.labels,"ro",label="train")
pylab.plot(dataset_test.samples,predictions,"b-",label="prediction")
pylab.plot(dataset_test.samples,predictions+N.sqrt(b.predicted_variances),"b--",label="pred(+/-)std")
pylab.plot(dataset_test.samples,predictions-N.sqrt(b.predicted_variances),"b--",label=None)
# pylab.plot(dataset_test.samples,dataset_test.labels,"go")
pylab.legend()
pylab.xlabel("samples")
pylab.ylabel("labels")
pylab.title("Bayesian Linear Regression on dataset 'linear_AWGN'")
pass
|