This file is indexed.

/usr/share/pyshared/mvpa/clfs/plr.py is in python-mvpa 0.4.8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Penalized logistic regression classifier."""

__docformat__ = 'restructuredtext'


import numpy as N

from mvpa.misc.exceptions import ConvergenceError
from mvpa.clfs.base import Classifier, FailedToTrainError

if __debug__:
    from mvpa.base import debug


class PLR(Classifier):
    """Penalized logistic regression `Classifier`.
    """

    _clf_internals = [ 'plr', 'binary', 'linear' ]

    def __init__(self, lm=1, criterion=1, reduced=0.0, maxiter=20, **kwargs):
        """
        Initialize a penalized logistic regression analysis

        :Parameters:
          lm : int
            the penalty term lambda.
          criterion : int
            the criterion applied to judge convergence.
          reduced : float
            if not 0, the rank of the data is reduced before
            performing the calculations. In that case, reduce is taken
            as the fraction of the first singular value, at which a
            dimension is not considered significant anymore. A
            reasonable criterion is reduced=0.01
          maxiter : int
            maximum number of iterations. If no convergence occurs
            after this number of iterations, an exception is raised.

        """
        # init base class first
        Classifier.__init__(self, **kwargs)

        self.__lm   = lm
        self.__criterion = criterion
        self.__reduced = reduced
        self.__maxiter = maxiter


    def __repr__(self):
        """String summary over the object
        """
        return """PLR(lm=%f, criterion=%d, reduced=%s, maxiter=%d, enable_states=%s)""" % \
               (self.__lm, self.__criterion, self.__reduced, self.__maxiter,
                str(self.states.enabled))


    def _train(self, data):
        """Train the classifier using `data` (`Dataset`).
        """
        # Set up the environment for fitting the data
        X = data.samples.T
        d = data.labels
        if set(d) != set([0, 1]):
            raise ValueError, \
                  "Regressors for logistic regression should be [0,1]. Got %s" \
                  %(set(d),)

        if self.__reduced != 0 :
            # Data have reduced rank
            from scipy.linalg import svd

            # Compensate for reduced rank:
            # Select only the n largest eigenvectors
            U, S, V = svd(X.T)
            if S[0] == 0:
                raise FailedToTrainError(
                    "Data provided to PLR seems to be degenerate -- "
                    "0-th singular value is 0")
            S /= S[0]
            V = N.matrix(V[:, :N.max(N.where(S > self.__reduced)) + 1])
            # Map Data to the subspace spanned by the eigenvectors
            X = (X.T * V).T

        nfeatures, npatterns = X.shape

        # Weighting vector
        w  = N.matrix(N.zeros( (nfeatures + 1, 1), 'd'))
        # Error for convergence criterion
        dw = N.matrix(N.ones(  (nfeatures + 1, 1), 'd'))
        # Patterns of interest in the columns
        X = N.matrix( \
                N.concatenate((X, N.ones((1, npatterns), 'd')), 0) \
                )
        p = N.matrix(N.zeros((1, npatterns), 'd'))
        # Matrix implementation of penalty term
        Lambda = self.__lm * N.identity(nfeatures + 1, 'd')
        Lambda[nfeatures, nfeatures] = 0
        # Gradient
        g = N.matrix(N.zeros((nfeatures + 1, 1), 'd'))
        # Fisher information matrix
        H = N.matrix(N.identity(nfeatures + 1, 'd'))

        # Optimize
        k = 0
        while N.sum(N.ravel(dw.A ** 2)) > self.__criterion:
            p[:, :] = self.__f(w.T * X)
            g[:, :] = X * (d - p).T - Lambda * w
            H[:, :] = X * N.diag(p.A1 * (1 - p.A1)) * X.T + Lambda
            dw[:, :] = H.I * g
            w += dw
            k += 1
            if k > self.__maxiter:
                raise ConvergenceError, \
                      "More than %d Iterations without convergence" % \
                      (self.__maxiter)

        if __debug__:
            debug("PLR", \
                  "PLR converged after %d steps. Error: %g" % \
                  (k, N.sum(N.ravel(dw.A ** 2))))

        if self.__reduced:
            # We have computed in rank reduced space ->
            # Project to original space
            self.w = V * w[:-1]
            self.offset = w[-1]
        else:
            self.w = w[:-1]
            self.offset = w[-1]


    def __f(self, y):
        """This is the logistic function f, that is used for determination of
        the vector w"""
        return 1. / (1 + N.exp(-y))


    def _predict(self, data):
        """
        Predict the class labels for the provided data

        Returns a list of class labels
        """
        # make sure the data are in matrix form
        data = N.matrix(N.asarray(data))

        # get the values and then predictions
        values = N.ravel(self.__f(self.offset + data * self.w))
        predictions = values > 0.5

        # save the state if desired, relying on State._setitem_ to
        # decide if we will actually save the values
        self.predictions = predictions
        self.values = values

        return predictions