/usr/share/pyshared/mvpa/clfs/stats.py is in python-mvpa 0.4.8-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Estimator for classifier error distributions."""
__docformat__ = 'restructuredtext'
import numpy as N
from mvpa.base import externals, warning
from mvpa.misc.state import ClassWithCollections, StateVariable
if __debug__:
from mvpa.base import debug
class Nonparametric(object):
"""Non-parametric 1d distribution -- derives cdf based on stored values.
Introduced to complement parametric distributions present in scipy.stats.
"""
def __init__(self, dist_samples, correction='clip'):
"""
:Parameters:
dist_samples : ndarray
Samples to be used to assess the distribution.
correction : {'clip'} or None, optional
Determines the behavior when .cdf is queried. If None -- no
correction is made. If 'clip' -- values are clipped to lie
in the range [1/(N+2), (N+1)/(N+2)] (simply because
non-parametric assessment lacks the power to resolve with
higher precision in the tails, so 'imagery' samples are
placed in each of the two tails).
"""
self._dist_samples = N.ravel(dist_samples)
self._correction = correction
def __repr__(self):
return '%s(%r%s)' % (
self.__class__.__name__,
self._dist_samples,
('', ', correction=%r' % self._correction)
[int(self._correction != 'clip')])
@staticmethod
def fit(dist_samples):
return [dist_samples]
def cdf(self, x):
"""Returns the cdf value at `x`.
"""
dist_samples = self._dist_samples
res = N.vectorize(lambda v:(dist_samples <= v).mean())(x)
if self._correction == 'clip':
nsamples = len(dist_samples)
N.clip(res, 1.0/(nsamples+2), (nsamples+1.0)/(nsamples+2), res)
elif self._correction is None:
pass
else:
raise ValueError, \
'%r is incorrect value for correction parameter of %s' \
% (self._correction, self.__class__.__name__)
return res
def _pvalue(x, cdf_func, tail, return_tails=False, name=None):
"""Helper function to return p-value(x) given cdf and tail
:Parameters:
cdf_func : callable
Function to be used to derive cdf values for x
tail : str ('left', 'right', 'any', 'both')
Which tail of the distribution to report. For 'any' and 'both'
it chooses the tail it belongs to based on the comparison to
p=0.5. In the case of 'any' significance is taken like in a
one-tailed test.
return_tails : bool
If True, a tuple return (pvalues, tails), where tails contain
1s if value was from the right tail, and 0 if the value was
from the left tail.
"""
is_scalar = N.isscalar(x)
if is_scalar:
x = [x]
cdf = cdf_func(x)
if __debug__ and 'CHECK_STABILITY' in debug.active:
cdf_min, cdf_max = N.min(cdf), N.max(cdf)
if cdf_min < 0 or cdf_max > 1.0:
s = ('', ' for %s' % name)[int(name is not None)]
warning('Stability check of cdf %s failed%s. Min=%s, max=%s' % \
(cdf_func, s, cdf_min, cdf_max))
# no escape but to assure that CDF is in the right range. Some
# distributions from scipy tend to jump away from [0,1]
cdf = N.clip(cdf, 0, 1.0)
if tail == 'left':
if return_tails:
right_tail = N.zeros(cdf.shape, dtype=bool)
elif tail == 'right':
cdf = 1 - cdf
if return_tails:
right_tail = N.ones(cdf.shape, dtype=bool)
elif tail in ('any', 'both'):
right_tail = (cdf >= 0.5)
cdf[right_tail] = 1.0 - cdf[right_tail]
if tail == 'both':
# we need to half the signficance
cdf *= 2
# Assure that NaNs didn't get significant value
cdf[N.isnan(x)] = 1.0
if is_scalar: res = cdf[0]
else: res = cdf
if return_tails:
return (res, right_tail)
else:
return res
class NullDist(ClassWithCollections):
"""Base class for null-hypothesis testing.
"""
# Although base class is not benefiting from states, derived
# classes do (MCNullDist). For the sake of avoiding multiple
# inheritance and associated headache -- let them all be ClassWithCollections,
# performance hit should be negligible in most of the scenarios
_ATTRIBUTE_COLLECTIONS = ['states']
def __init__(self, tail='both', **kwargs):
"""Cheap initialization.
:Parameter:
tail: str ('left', 'right', 'any', 'both')
Which tail of the distribution to report. For 'any' and 'both'
it chooses the tail it belongs to based on the comparison to
p=0.5. In the case of 'any' significance is taken like in a
one-tailed test.
"""
ClassWithCollections.__init__(self, **kwargs)
self._setTail(tail)
def __repr__(self, prefixes=[]):
return super(NullDist, self).__repr__(
prefixes=["tail=%s" % `self.__tail`] + prefixes)
def _setTail(self, tail):
# sanity check
if tail not in ('left', 'right', 'any', 'both'):
raise ValueError, 'Unknown value "%s" to `tail` argument.' \
% tail
self.__tail = tail
def fit(self, measure, wdata, vdata=None):
"""Implement to fit the distribution to the data."""
raise NotImplementedError
def cdf(self, x):
"""Implementations return the value of the cumulative distribution
function (left or right tail dpending on the setting).
"""
raise NotImplementedError
def p(self, x, **kwargs):
"""Returns the p-value for values of `x`.
Returned values are determined left, right, or from any tail
depending on the constructor setting.
In case a `FeaturewiseDatasetMeasure` was used to estimate the
distribution the method returns an array. In that case `x` can be
a scalar value or an array of a matching shape.
"""
return _pvalue(x, self.cdf, self.__tail, **kwargs)
tail = property(fget=lambda x:x.__tail, fset=_setTail)
class MCNullDist(NullDist):
"""Null-hypothesis distribution is estimated from randomly permuted data labels.
The distribution is estimated by calling fit() with an appropriate
`DatasetMeasure` or `TransferError` instance and a training and a
validation dataset (in case of a `TransferError`). For a customizable
amount of cycles the training data labels are permuted and the
corresponding measure computed. In case of a `TransferError` this is the
error when predicting the *correct* labels of the validation dataset.
The distribution can be queried using the `cdf()` method, which can be
configured to report probabilities/frequencies from `left` or `right` tail,
i.e. fraction of the distribution that is lower or larger than some
critical value.
This class also supports `FeaturewiseDatasetMeasure`. In that case `cdf()`
returns an array of featurewise probabilities/frequencies.
"""
_DEV_DOC = """
TODO automagically decide on the number of samples/permutations needed
Caution should be paid though since resultant distributions might be
quite far from some conventional ones (e.g. Normal) -- it is expected to
them to be bimodal (or actually multimodal) in many scenarios.
"""
dist_samples = StateVariable(enabled=False,
doc='Samples obtained for each permutation')
def __init__(self, dist_class=Nonparametric, permutations=100, **kwargs):
"""Initialize Monte-Carlo Permutation Null-hypothesis testing
:Parameters:
dist_class: class
This can be any class which provides parameters estimate
using `fit()` method to initialize the instance, and
provides `cdf(x)` method for estimating value of x in CDF.
All distributions from SciPy's 'stats' module can be used.
permutations: int
This many permutations of label will be performed to
determine the distribution under the null hypothesis.
"""
NullDist.__init__(self, **kwargs)
self._dist_class = dist_class
self._dist = [] # actual distributions
self.__permutations = permutations
"""Number of permutations to compute the estimate the null
distribution."""
def __repr__(self, prefixes=[]):
prefixes_ = ["permutations=%s" % self.__permutations]
if self._dist_class != Nonparametric:
prefixes_.insert(0, 'dist_class=%s' % `self._dist_class`)
return super(MCNullDist, self).__repr__(
prefixes=prefixes_ + prefixes)
def fit(self, measure, wdata, vdata=None):
"""Fit the distribution by performing multiple cycles which repeatedly
permuted labels in the training dataset.
:Parameters:
measure: (`Featurewise`)`DatasetMeasure` | `TransferError`
TransferError instance used to compute all errors.
wdata: `Dataset` which gets permuted and used to compute the
measure/transfer error multiple times.
vdata: `Dataset` used for validation.
If provided measure is assumed to be a `TransferError` and
working and validation dataset are passed onto it.
"""
dist_samples = []
"""Holds the values for randomized labels."""
# Needs to be imported here upon demand due to circular imports
# TODO: place MC into a separate module
from mvpa.clfs.base import DegenerateInputError, FailedToTrainError
# decide on the arguments to measure
if not vdata is None:
measure_args = [vdata, wdata]
else:
measure_args = [wdata]
# estimate null-distribution
skipped = 0 # # of skipped permutations
for p in xrange(self.__permutations):
# new permutation all the time
# but only permute the training data and keep the testdata constant
#
if __debug__:
debug('STATMC', "Doing %i permutations: %i" \
% (self.__permutations, p+1), cr=True)
# TODO this really needs to be more clever! If data samples are
# shuffled within a class it really makes no difference for the
# classifier, hence the number of permutations to estimate the
# null-distribution of transfer errors can be reduced dramatically
# when the *right* permutations (the ones that matter) are done.
wdata.permuteLabels(True, perchunk=False)
# compute and store the measure of this permutation
# assume it has `TransferError` interface
try:
dist_samples.append(measure(*measure_args))
except (DegenerateInputError, FailedToTrainError), e:
if __debug__:
debug('STATMC', " skipped", cr=True)
warning("Failed to estimate %s on %s, due to %s. "
"Permutation %d skipped." %
(measure, measure_args, e, p))
skipped += 1
continue
if __debug__:
debug('STATMC', ' Skipped: %d permutations' % skipped)
# restore original labels
wdata.permuteLabels(False, perchunk=False)
# store samples
self.dist_samples = dist_samples = N.asarray(dist_samples)
# fit distribution per each element
# to decide either it was done on scalars or vectors
shape = dist_samples.shape
nshape = len(shape)
# if just 1 dim, original data was scalar, just create an
# artif dimension for it
if nshape == 1:
dist_samples = dist_samples[:, N.newaxis]
# fit per each element.
# XXX could be more elegant? may be use N.vectorize?
dist_samples_rs = dist_samples.reshape((shape[0], -1))
dist = []
for samples in dist_samples_rs.T:
params = self._dist_class.fit(samples)
if __debug__ and 'STAT' in debug.active:
debug('STAT', 'Estimated parameters for the %s are %s'
% (self._dist_class, str(params)))
dist.append(self._dist_class(*params))
self._dist = dist
def cdf(self, x):
"""Return value of the cumulative distribution function at `x`.
"""
if self._dist is None:
# XXX We might not want to descriminate that way since
# usually generators also have .cdf where they rely on the
# default parameters. But then what about Nonparametric
raise RuntimeError, "Distribution has to be fit first"
is_scalar = N.isscalar(x)
if is_scalar:
x = [x]
x = N.asanyarray(x)
xshape = x.shape
# assure x is a 1D array now
x = x.reshape((-1,))
if len(self._dist) != len(x):
raise ValueError, 'Distribution was fit for structure with %d' \
' elements, whenever now queried with %d elements' \
% (len(self._dist), len(x))
# extract cdf values per each element
cdfs = [ dist.cdf(v) for v, dist in zip(x, self._dist) ]
return N.array(cdfs).reshape(xshape)
def clean(self):
"""Clean stored distributions
Storing all of the distributions might be too expensive
(e.g. in case of Nonparametric), and the scope of the object
might be too broad to wait for it to be destroyed. Clean would
bind dist_samples to empty list to let gc revoke the memory.
"""
self._dist = []
class FixedNullDist(NullDist):
"""Proxy/Adaptor class for SciPy distributions.
All distributions from SciPy's 'stats' module can be used with this class.
>>> import numpy as N
>>> from scipy import stats
>>> from mvpa.clfs.stats import FixedNullDist
>>>
>>> dist = FixedNullDist(stats.norm(loc=2, scale=4))
>>> dist.p(2)
0.5
>>>
>>> dist.cdf(N.arange(5))
array([ 0.30853754, 0.40129367, 0.5 , 0.59870633, 0.69146246])
>>>
>>> dist = FixedNullDist(stats.norm(loc=2, scale=4), tail='right')
>>> dist.p(N.arange(5))
array([ 0.69146246, 0.59870633, 0.5 , 0.40129367, 0.30853754])
"""
def __init__(self, dist, **kwargs):
"""
:Parameter:
dist: distribution object
This can be any object the has a `cdf()` method to report the
cumulative distribition function values.
"""
NullDist.__init__(self, **kwargs)
self._dist = dist
def fit(self, measure, wdata, vdata=None):
"""Does nothing since the distribution is already fixed."""
pass
def cdf(self, x):
"""Return value of the cumulative distribution function at `x`.
"""
return self._dist.cdf(x)
def __repr__(self, prefixes=[]):
prefixes_ = ["dist=%s" % `self._dist`]
return super(FixedNullDist, self).__repr__(
prefixes=prefixes_ + prefixes)
class AdaptiveNullDist(FixedNullDist):
"""Adaptive distribution which adjusts parameters according to the data
WiP: internal implementation might change
"""
def fit(self, measure, wdata, vdata=None):
"""Cares about dimensionality of the feature space in measure
"""
try:
nfeatures = len(measure.feature_ids)
except ValueError: # XXX
nfeatures = N.prod(wdata.shape[1:])
dist_gen = self._dist
if not hasattr(dist_gen, 'fit'): # frozen already
dist_gen = dist_gen.dist # rv_frozen at least has it ;)
args, kwargs = self._adapt(nfeatures, measure, wdata, vdata)
if __debug__:
debug('STAT', 'Adapted parameters for %s to be %s, %s'
% (dist_gen, args, kwargs))
self._dist = dist_gen(*args, **kwargs)
def _adapt(self, nfeatures, measure, wdata, vdata=None):
raise NotImplementedError
class AdaptiveRDist(AdaptiveNullDist):
"""Adaptive rdist: params are (nfeatures-1, 0, 1)
"""
def _adapt(self, nfeatures, measure, wdata, vdata=None):
return (nfeatures-1, 0, 1), {}
# XXX: RDist has stability issue, just run
# python -c "import scipy.stats; print scipy.stats.rdist(541,0,1).cdf(0.72)"
# to get some improbable value, so we need to take care about that manually
# here
def cdf(self, x):
cdf_ = self._dist.cdf(x)
bad_values = N.where(N.abs(cdf_)>1)
# XXX there might be better implementation (faster/elegant) using N.clip,
# the only problem is that instability results might flip the sign
# arbitrarily
if len(bad_values[0]):
# in this distribution we have mean at 0, so we can take that easily
# into account
cdf_bad = cdf_[bad_values]
x_bad = x[bad_values]
cdf_bad[x_bad<0] = 0.0
cdf_bad[x_bad>=0] = 1.0
cdf_[bad_values] = cdf_bad
return cdf_
class AdaptiveNormal(AdaptiveNullDist):
"""Adaptive Normal Distribution: params are (0, sqrt(1/nfeatures))
"""
def _adapt(self, nfeatures, measure, wdata, vdata=None):
return (0, 1.0/N.sqrt(nfeatures)), {}
if externals.exists('scipy'):
from mvpa.support.stats import scipy
from scipy.stats import kstest
"""
Thoughts:
So we can use `scipy.stats.kstest` (Kolmogorov-Smirnov test) to
check/reject H0 that samples come from a given distribution. But
since it is based on a full range of data, we might better of with
some ad-hoc checking by the detection power of the values in the
tail of a tentative distribution.
"""
# We need a way to fixate estimation of some parameters
# (e.g. mean) so lets create a simple proxy, or may be class
# generator later on, which would take care about punishing change
# from the 'right' arguments
import scipy
class rv_semifrozen(object):
"""Helper proxy-class to fit distribution when some parameters are known
It is an ugly hack with snippets of code taken from scipy, which is
Copyright (c) 2001, 2002 Enthought, Inc.
and is distributed under BSD license
http://www.scipy.org/License_Compatibility
"""
def __init__(self, dist, loc=None, scale=None, args=None):
self._dist = dist
# loc and scale
theta = (loc, scale)
# args
Narg_ = dist.numargs
if args is not None:
Narg = len(args)
if Narg > Narg_:
raise ValueError, \
'Distribution %s has only %d arguments. Got %d' \
% (dist, Narg_, Narg)
args += (None,) * (Narg_ - Narg)
else:
args = (None,) * Narg_
args_i = [i for i,v in enumerate(args) if v is None]
self._fargs = (list(args+theta), args_i)
"""Arguments which should get some fixed value"""
def __call__(self, *args, **kwargs):
"""Upon call mimic call to get actual rv_frozen distribution
"""
return self._dist(*args, **kwargs)
def nnlf(self, theta, x):
# - sum (log pdf(x, theta),axis=0)
# where theta are the parameters (including loc and scale)
#
fargs, fargs_i = self._fargs
try:
i=-1
if fargs[-1] is not None:
scale = fargs[-1]
else:
scale = theta[i]
i -= 1
if fargs[-2] is not None:
loc = fargs[-2]
else:
loc = theta[i]
i -= 1
args = theta[:i+1]
# adjust args if there were fixed
for i,a in zip(fargs_i, args):
fargs[i] = a
args = fargs[:-2]
except IndexError:
raise ValueError, "Not enough input arguments."
if not self._argcheck(*args) or scale <= 0:
return N.inf
x = N.asarray((x-loc) / scale)
cond0 = (x <= self.a) | (x >= self.b)
if (N.any(cond0)):
return N.inf
else:
return self._nnlf(x, *args) + len(x)*N.log(scale)
def fit(self, data, *args, **kwds):
loc0, scale0 = map(kwds.get, ['loc', 'scale'], [0.0, 1.0])
fargs, fargs_i = self._fargs
Narg = len(args)
Narg_ = self.numargs
if Narg != Narg_:
if Narg > Narg_:
raise ValueError, "Too many input arguments."
else:
args += (1.0,)*(self.numargs-Narg)
# Provide only those args which are not fixed, and
# append location and scale (if not fixed) at the end
if len(fargs_i) != Narg_:
x0 = tuple([args[i] for i in fargs_i])
else:
x0 = args
if fargs[-2] is None: x0 = x0 + (loc0,)
if fargs[-1] is None: x0 = x0 + (scale0,)
opt_x = scipy.optimize.fmin(self.nnlf, x0, args=(N.ravel(data),), disp=0)
# reconstruct back
i = 0
loc, scale = fargs[-2:]
if fargs[-1] is None:
i -= 1
scale = opt_x[i]
if fargs[-2] is None:
i -= 1
loc = opt_x[i]
# assign those which weren't fixed
for i in fargs_i:
fargs[i] = opt_x[i]
#raise ValueError
opt_x = N.hstack((fargs[:-2], (loc, scale)))
return opt_x
def __setattr__(self, a, v):
if not a in ['_dist', '_fargs', 'fit', 'nnlf']:
self._dist.__setattr__(a, v)
else:
object.__setattr__(self, a, v)
def __getattribute__(self, a):
"""We need to redirect all queries correspondingly
"""
if not a in ['_dist', '_fargs', 'fit', 'nnlf']:
return getattr(self._dist, a)
else:
return object.__getattribute__(self, a)
def matchDistribution(data, nsamples=None, loc=None, scale=None,
args=None, test='kstest', distributions=None,
**kwargs):
"""Determine best matching distribution.
Can be used for 'smelling' the data, as well to choose a
parametric distribution for data obtained from non-parametric
testing (e.g. `MCNullDist`).
WiP: use with caution, API might change
:Parameters:
data : N.ndarray
Array of the data for which to deduce the distribution. It has
to be sufficiently large to make a reliable conclusion
nsamples : int or None
If None -- use all samples in data to estimate parametric
distribution. Otherwise use only specified number randomly selected
from data.
loc : float or None
Loc for the distribution (if known)
scale : float or None
Scale for the distribution (if known)
test : basestring
What kind of testing to do. Choices:
'p-roc' : detection power for a given ROC. Needs two
parameters: `p=0.05` and `tail='both'`
'kstest' : 'full-body' distribution comparison. The best
choice is made by minimal reported distance after estimating
parameters of the distribution. Parameter `p=0.05` sets
threshold to reject null-hypothesis that distribution is the
same.
WARNING: older versions (e.g. 0.5.2 in etch) of scipy have
incorrect kstest implementation and do not function
properly
distributions : None or list of basestring or tuple(basestring, dict)
Distributions to check. If None, all known in scipy.stats
are tested. If distribution is specified as a tuple, then
it must contain name and additional parameters (name, loc,
scale, args) in the dictionary. Entry 'scipy' adds all known
in scipy.stats.
**kwargs
Additional arguments which are needed for each particular test
(see above)
:Example:
data = N.random.normal(size=(1000,1));
matches = matchDistribution(
data,
distributions=['rdist',
('rdist', {'name':'rdist_fixed',
'loc': 0.0,
'args': (10,)})],
nsamples=30, test='p-roc', p=0.05)
"""
# Handle parameters
_KNOWN_TESTS = ['p-roc', 'kstest']
if not test in _KNOWN_TESTS:
raise ValueError, 'Unknown kind of test %s. Known are %s' \
% (test, _KNOWN_TESTS)
data = N.ravel(data)
# data sampled
if nsamples is not None:
if __debug__:
debug('STAT', 'Sampling %d samples from data for the ' \
'estimation of the distributions parameters' % nsamples)
indexes_selected = (N.random.sample(nsamples)*len(data)).astype(int)
data_selected = data[indexes_selected]
else:
indexes_selected = N.arange(len(data))
data_selected = data
p_thr = kwargs.get('p', 0.05)
if test == 'p-roc':
tail = kwargs.get('tail', 'both')
data_p = _pvalue(data, Nonparametric(data).cdf, tail)
data_p_thr = N.abs(data_p) <= p_thr
true_positives = N.sum(data_p_thr)
if true_positives == 0:
raise ValueError, "Provided data has no elements in non-" \
"parametric distribution under p<=%.3f. Please " \
"increase the size of data or value of p" % p
if __debug__:
debug('STAT_', 'Number of positives in non-parametric '
'distribution is %d' % true_positives)
if distributions is None:
distributions = ['scipy']
# lets see if 'scipy' entry was in there
try:
scipy_ind = distributions.index('scipy')
distributions.pop(scipy_ind)
sp_dists = scipy.stats.distributions.__all__
sp_version = externals.versions['scipy']
if sp_version >= '0.9.0':
for d_ in ['ncf']:
if d_ in sp_dists:
warning("Not considering %s distribution because of "
"known issues in scipy %s" % (d_, sp_version))
_ = sp_dists.pop(sp_dists.index(d_))
distributions += sp_dists
except ValueError:
pass
results = []
for d in distributions:
dist_gen, loc_, scale_, args_ = None, loc, scale, args
if isinstance(d, basestring):
dist_gen = d
dist_name = d
elif isinstance(d, tuple):
if not (len(d)==2 and isinstance(d[1], dict)):
raise ValueError,\
"Tuple specification of distribution must be " \
"(d, {params}). Got %s" % (d,)
dist_gen = d[0]
loc_ = d[1].get('loc', loc)
scale_ = d[1].get('scale', scale)
args_ = d[1].get('args', args)
dist_name = d[1].get('name', str(dist_gen))
else:
dist_gen = d
dist_name = str(d)
# perform actions which might puke for some distributions
try:
dist_gen_ = getattr(scipy.stats, dist_gen)
# specify distribution 'optimizer'. If loc or scale was provided,
# use home-brewed rv_semifrozen
if args_ is not None or loc_ is not None or scale_ is not None:
dist_opt = rv_semifrozen(dist_gen_, loc=loc_, scale=scale_, args=args_)
else:
dist_opt = dist_gen_
dist_params = dist_opt.fit(data_selected)
if __debug__:
debug('STAT__',
'Got distribution parameters %s for %s'
% (dist_params, dist_name))
if test == 'p-roc':
cdf_func = lambda x: dist_gen_.cdf(x, *dist_params)
# We need to compare detection under given p
cdf_p = N.abs(_pvalue(data, cdf_func, tail, name=dist_gen))
cdf_p_thr = cdf_p <= p_thr
D, p = N.sum(N.abs(data_p_thr - cdf_p_thr))*1.0/true_positives, 1
if __debug__: res_sum = 'D=%.2f' % D
elif test == 'kstest':
D, p = kstest(data, d, args=dist_params)
if __debug__: res_sum = 'D=%.3f p=%.3f' % (D, p)
except (TypeError, ValueError, AttributeError,
NotImplementedError), e:#Exception, e:
if __debug__:
debug('STAT__',
'Testing for %s distribution failed due to %s'
% (d, str(e)))
continue
if p > p_thr and not N.isnan(D):
results += [ (D, dist_gen, dist_name, dist_params) ]
if __debug__:
debug('STAT_', 'Testing for %s dist.: %s' % (dist_name, res_sum))
else:
if __debug__:
debug('STAT__', 'Cannot consider %s dist. with %s'
% (d, res_sum))
continue
# sort in ascending order, so smaller is better
results.sort()
if __debug__ and 'STAT' in debug.active:
# find the best and report it
nresults = len(results)
sresult = lambda r:'%s(%s)=%.2f' % (r[1], ', '.join(map(str, r[3])), r[0])
if nresults>0:
nnextbest = min(2, nresults-1)
snextbest = ', '.join(map(sresult, results[1:1+nnextbest]))
debug('STAT', 'Best distribution %s. Next best: %s'
% (sresult(results[0]), snextbest))
else:
debug('STAT', 'Could not find suitable distribution')
# return all the results
return results
if externals.exists('pylab'):
import pylab as P
def plotDistributionMatches(data, matches, nbins=31, nbest=5,
expand_tails=8, legend=2, plot_cdf=True,
p=None, tail='both'):
"""Plot best matching distributions
:Parameters:
data : N.ndarray
Data which was used to obtain the matches
matches : list of tuples
Sorted matches as provided by matchDistribution
nbins : int
Number of bins in the histogram
nbest : int
Number of top matches to plot
expand_tails : int
How many bins away to add to parametrized distributions
plots
legend : int
Either to provide legend and statistics in the legend.
1 -- just lists distributions.
2 -- adds distance measure
3 -- tp/fp/fn in the case if p is provided
plot_cdf : bool
Either to plot cdf for data using non-parametric distribution
p : float or None
If not None, visualize null-hypothesis testing (given p).
Bars in the histogram which fall under given p are colored
in red. False positives and false negatives are marked as
triangle up and down symbols correspondingly
tail : ('left', 'right', 'any', 'both')
If p is not None, the choise of tail for null-hypothesis
testing
:Returns: tuple(histogram, list of lines)
"""
hist = P.hist(data, nbins, normed=1, align='center')
data_range = [N.min(data), N.max(data)]
# x's
x = hist[1]
dx = x[expand_tails] - x[0] # how much to expand tails by
x = N.hstack((x[:expand_tails] - dx, x, x[-expand_tails:] + dx))
nonparam = Nonparametric(data)
# plot cdf
if plot_cdf:
P.plot(x, nonparam.cdf(x), 'k--', linewidth=1)
p_thr = p
data_p = _pvalue(data, nonparam.cdf, tail)
data_p_thr = (data_p <= p_thr).ravel()
x_p = _pvalue(x, Nonparametric(data).cdf, tail)
x_p_thr = N.abs(x_p) <= p_thr
# color bars which pass thresholding in red
for thr, bar in zip(x_p_thr[expand_tails:], hist[2]):
bar.set_facecolor(('w','r')[int(thr)])
if not len(matches):
# no matches were provided
warning("No matching distributions were provided -- nothing to plot")
return (hist, )
lines = []
labels = []
for i in xrange(min(nbest, len(matches))):
D, dist_gen, dist_name, params = matches[i]
dist = getattr(scipy.stats, dist_gen)(*params)
label = '%s' % (dist_name)
if legend > 1: label += '(D=%.2f)' % (D)
xcdf_p = N.abs(_pvalue(x, dist.cdf, tail))
xcdf_p_thr = (xcdf_p <= p_thr).ravel()
if p is not None and legend > 2:
# We need to compare detection under given p
data_cdf_p = N.abs(_pvalue(data, dist.cdf, tail))
data_cdf_p_thr = (data_cdf_p <= p_thr).ravel()
# true positives
tp = N.logical_and(data_cdf_p_thr, data_p_thr)
# false positives
fp = N.logical_and(data_cdf_p_thr, ~data_p_thr)
# false negatives
fn = N.logical_and(~data_cdf_p_thr, data_p_thr)
label += ' tp/fp/fn=%d/%d/%d)' % \
tuple(map(N.sum, [tp,fp,fn]))
pdf = dist.pdf(x)
line = P.plot(x, pdf, '-', linewidth=2, label=label)
color = line[0].get_color()
if plot_cdf:
cdf = dist.cdf(x)
P.plot(x, cdf, ':', linewidth=1, color=color, label=label)
# TODO: decide on tp/fp/fn by not centers of the bins but
# by the values in data in the ranges covered by
# those bins. Then it would correspond to the values
# mentioned in the legend
if p is not None:
# true positives
xtp = N.logical_and(xcdf_p_thr, x_p_thr)
# false positives
xfp = N.logical_and(xcdf_p_thr, ~x_p_thr)
# false negatives
xfn = N.logical_and(~xcdf_p_thr, x_p_thr)
# no need to plot tp explicitely -- marked by color of the bar
# P.plot(x[xtp], pdf[xtp], 'o', color=color)
P.plot(x[xfp], pdf[xfp], '^', color=color)
P.plot(x[xfn], pdf[xfn], 'v', color=color)
lines.append(line)
labels.append(label)
if legend:
P.legend(lines, labels)
return (hist, lines)
#if True:
# data = N.random.normal(size=(1000,1));
# matches = matchDistribution(
# data,
# distributions=['scipy',
# ('norm', {'name':'norm_known',
# 'scale': 1.0,
# 'loc': 0.0})],
# nsamples=30, test='p-roc', p=0.05)
# P.figure(); plotDistributionMatches(data, matches, nbins=101,
# p=0.05, legend=4, nbest=5)
def autoNullDist(dist):
"""Cheater for human beings -- wraps `dist` if needed with some
NullDist
tail and other arguments are assumed to be default as in
NullDist/MCNullDist
"""
if dist is None or isinstance(dist, NullDist):
return dist
elif hasattr(dist, 'fit'):
if __debug__:
debug('STAT', 'Wrapping %s into MCNullDist' % dist)
return MCNullDist(dist)
else:
if __debug__:
debug('STAT', 'Wrapping %s into FixedNullDist' % dist)
return FixedNullDist(dist)
# if no scipy, we need nanmean
def _chk_asarray(a, axis):
if axis is None:
a = N.ravel(a)
outaxis = 0
else:
a = N.asarray(a)
outaxis = axis
return a, outaxis
def nanmean(x, axis=0):
"""Compute the mean over the given axis ignoring nans.
:Parameters:
x : ndarray
input array
axis : int
axis along which the mean is computed.
:Results:
m : float
the mean."""
x, axis = _chk_asarray(x,axis)
x = x.copy()
Norig = x.shape[axis]
factor = 1.0-N.sum(N.isnan(x),axis)*1.0/Norig
x[N.isnan(x)] = 0
return N.mean(x,axis)/factor
|