This file is indexed.

/usr/share/pyshared/mvpa/mappers/svd.py is in python-mvpa 0.4.8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Singular-value decomposition mapper"""

__docformat__ = 'restructuredtext'

import numpy as N

from mvpa.base.dochelpers import enhancedDocString
from mvpa.mappers.base import ProjectionMapper
from mvpa.featsel.helpers import ElementSelector

if __debug__:
    from mvpa.base import debug


class SVDMapper(ProjectionMapper):
    """Mapper to project data onto SVD components estimated from some dataset.
    """
    def __init__(self, **kwargs):
        """Initialize the SVDMapper

        :Parameters:
          **kwargs:
            All keyword arguments are passed to the ProjectionMapper
            constructor.

            Note, that for the 'selector' argument this class also supports
            passing a `ElementSelector` instance, which will be used to
            determine the to be selected features, based on the singular
            values of each component.
        """
        ProjectionMapper.__init__(self, **kwargs)

        self._sv = None
        """Singular values of the training matrix."""

    __doc__ = enhancedDocString('SVDMapper', locals(), ProjectionMapper)


    def _train(self, dataset):
        """Determine the projection matrix onto the SVD components from
        a 2D samples x feature data matrix.
        """
        X = N.asmatrix(dataset.samples)
        X = self._demeanData(X)

        # singular value decomposition
        U, SV, Vh = N.linalg.svd(X, full_matrices=0)

        # store the final matrix with the new basis vectors to project the
        # features onto the SVD components. And store its .H right away to
        # avoid computing it in forward()
        self._proj = Vh.H

        # also store singular values of all components
        self._sv = SV

        if __debug__:
            debug("MAP", "SVD was done on %s and obtained %d SVs " %
                  (dataset, len(SV)) + " (%d non-0, max=%f)" %
                  (len(SV.nonzero()), SV[0]))
            # .norm might be somewhat expensive to compute
            if "MAP_" in debug.active:
                debug("MAP_", "Mixing matrix has %s shape and norm=%f" %
                      (self._proj.shape, N.linalg.norm(self._proj)))


    def selectOut(self, outIds):
        """Choose a subset of SVD components (and remove all others)."""
        # handle ElementSelector operating on SV (base class has no idea about)
        # XXX think about more generic interface, where some 'measure' is assigned
        # per each projection dimension, like in _sv in case of SVD.
        # May be selector could be parametrized with an instance + attribute as literal
        # so later on it could extract necessary values?
        if isinstance(self._selector, ElementSelector):
            ProjectionMapper.selectOut(self, self._selector(self._sv))
        else:
            ProjectionMapper.selectOut(self, outIds)

    def _computeRecon(self):
        """Since singular vectors are orthonormal, sufficient to take hermitian
        """
        return self._proj.H

    sv = property(fget=lambda self: self._sv, doc="Singular values")