This file is indexed.

/usr/share/pyshared/mvpa/measures/base.py is in python-mvpa 0.4.8-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Base class for data measures: algorithms that quantify properties of
datasets.

Besides the `DatasetMeasure` base class this module also provides the
(abstract) `FeaturewiseDatasetMeasure` class. The difference between a general
measure and the output of the `FeaturewiseDatasetMeasure` is that the latter
returns a 1d map (one value per feature in the dataset). In contrast there are
no restrictions on the returned value of `DatasetMeasure` except for that it
has to be in some iterable container.

"""

__docformat__ = 'restructuredtext'

import numpy as N
import mvpa.support.copy as copy

from mvpa.misc.state import StateVariable, ClassWithCollections
from mvpa.misc.args import group_kwargs
from mvpa.misc.transformers import FirstAxisMean, SecondAxisSumOfAbs
from mvpa.base.dochelpers import enhancedDocString
from mvpa.base import externals, warning
from mvpa.clfs.stats import autoNullDist

if __debug__:
    from mvpa.base import debug


class DatasetMeasure(ClassWithCollections):
    """A measure computed from a `Dataset`

    All dataset measures support arbitrary transformation of the measure
    after it has been computed. Transformation are done by processing the
    measure with a functor that is specified via the `transformer` keyword
    argument of the constructor. Upon request, the raw measure (before
    transformations are applied) is stored in the `raw_results` state variable.

    Additionally all dataset measures support the estimation of the
    probabilit(y,ies) of a measure under some distribution. Typically this will
    be the NULL distribution (no signal), that can be estimated with
    permutation tests. If a distribution estimator instance is passed to the
    `null_dist` keyword argument of the constructor the respective
    probabilities are automatically computed and stored in the `null_prob`
    state variable.

    .. note::
      For developers: All subclasses shall get all necessary parameters via
      their constructor, so it is possible to get the same type of measure for
      multiple datasets by passing them to the __call__() method successively.
    """

    raw_results = StateVariable(enabled=False,
        doc="Computed results before applying any " +
            "transformation algorithm")
    null_prob = StateVariable(enabled=True)
    """Stores the probability of a measure under the NULL hypothesis"""
    null_t = StateVariable(enabled=False)
    """Stores the t-score corresponding to null_prob under assumption
    of Normal distribution"""

    def __init__(self, transformer=None, null_dist=None, **kwargs):
        """Does nothing special.

        :Parameters:
          transformer: Functor
            This functor is called in `__call__()` to perform a final
            processing step on the to be returned dataset measure. If None,
            nothing is called
          null_dist: instance of distribution estimator
            The estimated distribution is used to assign a probability for a
            certain value of the computed measure.
        """
        ClassWithCollections.__init__(self, **kwargs)

        self.__transformer = transformer
        """Functor to be called in return statement of all subclass __call__()
        methods."""
        null_dist_ = autoNullDist(null_dist)
        if __debug__:
            debug('SA', 'Assigning null_dist %s whenever original given was %s'
                  % (null_dist_, null_dist))
        self.__null_dist = null_dist_


    __doc__ = enhancedDocString('DatasetMeasure', locals(), ClassWithCollections)


    def __call__(self, dataset):
        """Compute measure on a given `Dataset`.

        Each implementation has to handle a single arguments: the source
        dataset.

        Returns the computed measure in some iterable (list-like)
        container applying transformer if such is defined
        """
        result = self._call(dataset)
        result = self._postcall(dataset, result)
        return result


    def _call(self, dataset):
        """Actually compute measure on a given `Dataset`.

        Each implementation has to handle a single arguments: the source
        dataset.

        Returns the computed measure in some iterable (list-like) container.
        """
        raise NotImplemented


    def _postcall(self, dataset, result):
        """Some postprocessing on the result
        """
        self.states.raw_results = result
        if not self.__transformer is None:
            if __debug__:
                debug("SA_", "Applying transformer %s" % self.__transformer)
            result = self.__transformer(result)

        # estimate the NULL distribution when functor is given
        if not self.__null_dist is None:
            if __debug__:
                debug("SA_", "Estimating NULL distribution using %s"
                      % self.__null_dist)

            # we need a matching datameasure instance, but we have to disable
            # the estimation of the null distribution in that child to prevent
            # infinite looping.
            measure = copy.copy(self)
            measure.__null_dist = None
            self.__null_dist.fit(measure, dataset)

            if self.states.isEnabled('null_t'):
                # get probability under NULL hyp, but also request
                # either it belong to the right tail
                null_prob, null_right_tail = \
                           self.__null_dist.p(result, return_tails=True)
                self.states.null_prob = null_prob

                externals.exists('scipy', raiseException=True)
                from scipy.stats import norm

                # TODO: following logic should appear in NullDist,
                #       not here
                tail = self.null_dist.tail
                if tail == 'left':
                    acdf = N.abs(null_prob)
                elif tail == 'right':
                    acdf = 1.0 - N.abs(null_prob)
                elif tail in ['any', 'both']:
                    acdf = 1.0 - N.clip(N.abs(null_prob), 0, 0.5)
                else:
                    raise RuntimeError, 'Unhandled tail %s' % tail
                # We need to clip to avoid non-informative inf's ;-)
                # that happens due to lack of precision in mantissa
                # which is 11 bits in double. We could clip values
                # around 0 at as low as 1e-100 (correspond to z~=21),
                # but for consistency lets clip at 1e-16 which leads
                # to distinguishable value around p=1 and max z=8.2.
                # Should be sufficient range of z-values ;-)
                clip = 1e-16
                null_t = norm.ppf(N.clip(acdf, clip, 1.0 - clip))
                # assure that we deal with arrays:
                null_t = N.array(null_t, ndmin=1, copy=False)
                null_t[~null_right_tail] *= -1.0 # revert sign for negatives
                self.states.null_t = null_t                 # store
            else:
                # get probability of result under NULL hypothesis if available
                # and don't request tail information
                self.null_prob = self.__null_dist.p(result)

        return result


    def __repr__(self, prefixes=[]):
        """String representation of DatasetMeasure

        Includes only arguments which differ from default ones
        """
        prefixes = prefixes[:]
        if self.__transformer is not None:
            prefixes.append("transformer=%s" % self.__transformer)
        if self.__null_dist is not None:
            prefixes.append("null_dist=%s" % self.__null_dist)
        return super(DatasetMeasure, self).__repr__(prefixes=prefixes)

    def untrain(self):
        """'Untraining' Measure

        Some derived classes might used classifiers, so we need to
        untrain those
        """
        pass

    @property
    def null_dist(self):
        """Return Null Distribution estimator"""
        return self.__null_dist

    @property
    def transformer(self):
        """Return transformer"""
        return self.__transformer


class FeaturewiseDatasetMeasure(DatasetMeasure):
    """A per-feature-measure computed from a `Dataset` (base class).

    Should behave like a DatasetMeasure.
    """

    base_sensitivities = StateVariable(enabled=False,
        doc="Stores basic sensitivities if the sensitivity " +
            "relies on combining multiple ones")

    # XXX should we may be default to combiner=None to avoid
    # unexpected results? Also rethink if we need combiner here at
    # all... May be combiners should be 'adjoint' with transformer
    # YYY in comparison to CombinedSensitivityAnalyzer here default
    #     value for combiner is worse than anywhere. From now on,
    #     default combiners should be provided "in place", ie
    #     in SMLR it makes sense to have SecondAxisMaxOfAbs,
    #     in SVM (pair-wise) only for not-binary should be
    #     SecondAxisSumOfAbs, though could be Max as well... uff
    #   YOH: started to do so, but still have issues... thus
    #        reverting back for now
    #   MH: Full ack -- voting for no default combiners!
    def __init__(self, combiner=SecondAxisSumOfAbs, **kwargs): # SecondAxisSumOfAbs
        """Initialize

        :Parameters:
          combiner : Functor
            The combiner is only applied if the computed featurewise dataset
            measure is more than one-dimensional. This is different from a
            `transformer`, which is always applied. By default, the sum of
            absolute values along the second axis is computed.
        """
        DatasetMeasure.__init__(self, **kwargs)

        self.__combiner = combiner

    def __repr__(self, prefixes=None):
        if prefixes is None:
            prefixes = []
        if self.__combiner != SecondAxisSumOfAbs:
            prefixes.append("combiner=%s" % self.__combiner)
        return \
            super(FeaturewiseDatasetMeasure, self).__repr__(prefixes=prefixes)


    def _call(self, dataset):
        """Computes a per-feature-measure on a given `Dataset`.

        Behaves like a `DatasetMeasure`, but computes and returns a 1d ndarray
        with one value per feature.
        """
        raise NotImplementedError


    def _postcall(self, dataset, result):
        """Adjusts per-feature-measure for computed `result`


        TODO: overlaps in what it does heavily with
         CombinedSensitivityAnalyzer, thus this one might make use of
         CombinedSensitivityAnalyzer yoh thinks, and here
         base_sensitivities doesn't sound appropriate.
         MH: There is indeed some overlap, but also significant differences.
             This one operates on a single sensana and combines over second
             axis, CombinedFeaturewiseDatasetMeasure uses first axis.
             Additionally, 'Sensitivity' base class is
             FeaturewiseDatasetMeasures which would have to be changed to
             CombinedFeaturewiseDatasetMeasure to deal with stuff like
             SMLRWeights that return multiple sensitivity values by default.
             Not sure if unification of both (and/or removal of functionality
             here does not lead to an overall more complicated situation,
             without any real gain -- after all this one works ;-)
        """
        # !!! This is not stupid -- it is intended -- some times we might get
        #     scalars as input.
        result = N.atleast_1d(result)
        result_sq = result.squeeze()
        # Assure that we have some iterable (could be a scalar if it
        # was just a single value in 1D array)
        result_sq = N.atleast_1d(result_sq)

        if len(result_sq.shape)>1:
            n_base = result.shape[1]
            """Number of base sensitivities"""
            if self.states.isEnabled('base_sensitivities'):
                b_sensitivities = []
                if not self.states.isKnown('biases'):
                    biases = None
                else:
                    biases = self.states.biases
                    if len(self.states.biases) != n_base:
                        warning("Number of biases %d differs from number "
                                "of base sensitivities %d which could happen "
                                "when measure is collided across labels."
                                % (len(self.states.biases), n_base))
                for i in xrange(n_base):
                    if not biases is None:
                        if n_base > 1 and len(biases) == 1:
                            # The same bias for all bases
                            bias = biases[0]
                        else:
                            bias = biases[i]
                    else:
                        bias = None
                    b_sensitivities = StaticDatasetMeasure(
                        measure = result[:,i],
                        bias = bias)
                self.states.base_sensitivities = b_sensitivities

            # After we stored each sensitivity separately,
            # we can apply combiner
            if self.__combiner is not None:
                result = self.__combiner(result)
        else:
            # remove bogus dimensions
            # XXX we might need to come up with smth better. May be some naive
            # combiner? :-)
            result = result_sq

        # call base class postcall
        result = DatasetMeasure._postcall(self, dataset, result)

        return result

    @property
    def combiner(self):
        """Return combiner"""
        return self.__combiner



class StaticDatasetMeasure(DatasetMeasure):
    """A static (assigned) sensitivity measure.

    Since implementation is generic it might be per feature or
    per whole dataset
    """

    def __init__(self, measure=None, bias=None, *args, **kwargs):
        """Initialize.

        :Parameters:
          measure
             actual sensitivity to be returned
          bias
             optionally available bias
        """
        DatasetMeasure.__init__(self, *args, **kwargs)
        if measure is None:
            raise ValueError, "Sensitivity measure has to be provided"
        self.__measure = measure
        self.__bias = bias

    def _call(self, dataset):
        """Returns assigned sensitivity
        """
        return self.__measure

    #XXX Might need to move into StateVariable?
    bias = property(fget=lambda self:self.__bias)



#
# Flavored implementations of FeaturewiseDatasetMeasures

class Sensitivity(FeaturewiseDatasetMeasure):

    _LEGAL_CLFS = []
    """If Sensitivity is classifier specific, classes of classifiers
    should be listed in the list
    """

    def __init__(self, clf, force_training=True, **kwargs):
        """Initialize the analyzer with the classifier it shall use.

        :Parameters:
          clf : :class:`Classifier`
            classifier to use.
          force_training : Bool
            if classifier was already trained -- do not retrain
        """

        """Does nothing special."""
        FeaturewiseDatasetMeasure.__init__(self, **kwargs)

        _LEGAL_CLFS = self._LEGAL_CLFS
        if len(_LEGAL_CLFS) > 0:
            found = False
            for clf_class in _LEGAL_CLFS:
                if isinstance(clf, clf_class):
                    found = True
                    break
            if not found:
                raise ValueError, \
                  "Classifier %s has to be of allowed class (%s), but is %s" \
                              % (clf, _LEGAL_CLFS, `type(clf)`)

        self.__clf = clf
        """Classifier used to computed sensitivity"""

        self._force_training = force_training
        """Either to force it to train"""

    def __repr__(self, prefixes=None):
        if prefixes is None:
            prefixes = []
        prefixes.append("clf=%s" % repr(self.clf))
        if not self._force_training:
            prefixes.append("force_training=%s" % self._force_training)
        return super(Sensitivity, self).__repr__(prefixes=prefixes)


    def __call__(self, dataset=None):
        """Train classifier on `dataset` and then compute actual sensitivity.

        If the classifier is already trained it is possible to extract the
        sensitivities without passing a dataset.
        """
        # local bindings
        clf = self.__clf
        if not clf.trained or self._force_training:
            if dataset is None:
                raise ValueError, \
                      "Training classifier to compute sensitivities requires " \
                      "a dataset."
            if __debug__:
                debug("SA", "Training classifier %s %s" %
                      (`clf`,
                       {False: "since it wasn't yet trained",
                        True:  "although it was trained previousely"}
                       [clf.trained]))
            clf.train(dataset)

        return FeaturewiseDatasetMeasure.__call__(self, dataset)


    def _setClassifier(self, clf):
        self.__clf = clf


    def untrain(self):
        """Untrain corresponding classifier for Sensitivity
        """
        if self.__clf is not None:
            self.__clf.untrain()

    @property
    def feature_ids(self):
        """Return feature_ids used by the underlying classifier
        """
        return self.__clf._getFeatureIds()


    clf = property(fget=lambda self:self.__clf,
                   fset=_setClassifier)



class CombinedFeaturewiseDatasetMeasure(FeaturewiseDatasetMeasure):
    """Set sensitivity analyzers to be merged into a single output"""

    sensitivities = StateVariable(enabled=False,
        doc="Sensitivities produced by each analyzer")

    # XXX think again about combiners... now we have it in here and as
    #     well as in the parent -- FeaturewiseDatasetMeasure
    # YYY because we don't use parent's _call. Needs RF
    def __init__(self, analyzers=None,  # XXX should become actually 'measures'
                 combiner=None, #FirstAxisMean,
                 **kwargs):
        """Initialize CombinedFeaturewiseDatasetMeasure

        :Parameters:
          analyzers : list or None
            List of analyzers to be used. There is no logic to populate
            such a list in __call__, so it must be either provided to
            the constructor or assigned to .analyzers prior calling
        """
        if analyzers is None:
            analyzers = []

        FeaturewiseDatasetMeasure.__init__(self, **kwargs)
        self.__analyzers = analyzers
        """List of analyzers to use"""

        self.__combiner = combiner
        """Which functor to use to combine all sensitivities"""


    def _call(self, dataset):
        sensitivities = []
        for ind,analyzer in enumerate(self.__analyzers):
            if __debug__:
                debug("SA", "Computing sensitivity for SA#%d:%s" %
                      (ind, analyzer))
            sensitivity = analyzer(dataset)
            sensitivities.append(sensitivity)

        self.states.sensitivities = sensitivities
        if __debug__:
            debug("SA",
                  "Returning combined using %s sensitivity across %d items" %
                  (self.__combiner, len(sensitivities)))

        if self.__combiner is not None:
            sensitivities = self.__combiner(sensitivities)
        else:
            # assure that we have an ndarray on output
            sensitivities = N.asarray(sensitivities)
        return sensitivities


    def untrain(self):
        """Untrain CombinedFDM
        """
        if self.__analyzers is not None:
            for anal in self.__analyzers:
                anal.untrain()

    def _setAnalyzers(self, analyzers):
        """Set the analyzers
        """
        self.__analyzers = analyzers
        """Analyzers to use"""

    analyzers = property(fget=lambda x:x.__analyzers,
                         fset=_setAnalyzers,
                         doc="Used analyzers")


# XXX Why did we come to name everything analyzer? inputs of regular
#     things like CombinedFeaturewiseDatasetMeasure can be simple
#     measures....

class SplitFeaturewiseDatasetMeasure(FeaturewiseDatasetMeasure):
    """Compute measures across splits for a specific analyzer"""

    # XXX This beast is created based on code of
    #     CombinedFeaturewiseDatasetMeasure, thus another reason to refactor

    sensitivities = StateVariable(enabled=False,
        doc="Sensitivities produced for each split")

    splits = StateVariable(enabled=False, doc=
       """Store the actual splits of the data. Can be memory expensive""")

    def __init__(self, splitter, analyzer,
                 insplit_index=0, combiner=None, **kwargs):
        """Initialize SplitFeaturewiseDatasetMeasure

        :Parameters:
          splitter : Splitter
            Splitter to use to split the dataset
          analyzer : DatasetMeasure
            Measure to be used. Could be analyzer as well (XXX)
          insplit_index : int
            splitter generates tuples of dataset on each iteration
            (usually 0th for training, 1st for testing).
            On what split index in that tuple to operate.
        """

        # XXX might want to extend insplit_index to handle 'all', so we store
        #     sensitivities for all parts of the splits... not sure if it is needed

        # XXX We really think through whole transformer/combiners pipelining

        # Here we provide combiner None since if needs to be combined
        # within each sensitivity, it better be done within analyzer
        FeaturewiseDatasetMeasure.__init__(self, combiner=None, **kwargs)

        self.__analyzer = analyzer
        """Analyzer to use per split"""

        self.__combiner = combiner
        """Which functor to use to combine all sensitivities"""

        self.__splitter = splitter
        """Splitter to be used on the dataset"""

        self.__insplit_index = insplit_index


    def untrain(self):
        """Untrain SplitFeaturewiseDatasetMeasure
        """
        if self.__analyzer is not None:
            self.__analyzer.untrain()


    def _call(self, dataset):
        # local bindings
        analyzer = self.__analyzer
        insplit_index = self.__insplit_index

        sensitivities = []
        self.states.splits = splits = []
        store_splits = self.states.isEnabled("splits")

        for ind,split in enumerate(self.__splitter(dataset)):
            ds = split[insplit_index]
            if __debug__ and "SA" in debug.active:
                debug("SA", "Computing sensitivity for split %d on "
                      "dataset %s using %s" % (ind, ds, analyzer))
            sensitivity = analyzer(ds)
            sensitivities.append(sensitivity)
            if store_splits: splits.append(split)

        self.states.sensitivities = sensitivities
        if __debug__:
            debug("SA",
                  "Returning sensitivities combined using %s across %d items "
                  "generated by splitter %s" %
                  (self.__combiner, len(sensitivities), self.__splitter))

        if self.__combiner is not None:
            sensitivities = self.__combiner(sensitivities)
        else:
            # assure that we have an ndarray on output
            sensitivities = N.asarray(sensitivities)
        return sensitivities


class BoostedClassifierSensitivityAnalyzer(Sensitivity):
    """Set sensitivity analyzers to be merged into a single output"""


    # XXX we might like to pass parameters also for combined_analyzer
    @group_kwargs(prefixes=['slave_'], assign=True)
    def __init__(self,
                 clf,
                 analyzer=None,
                 combined_analyzer=None,
                 slave_kwargs={},
                 **kwargs):
        """Initialize Sensitivity Analyzer for `BoostedClassifier`

        :Parameters:
          clf : `BoostedClassifier`
            Classifier to be used
          analyzer : analyzer
            Is used to populate combined_analyzer 
          slave_*
            Arguments to pass to created analyzer if analyzer is None
        """
        Sensitivity.__init__(self, clf, **kwargs)
        if combined_analyzer is None:
            # sanitarize kwargs
            kwargs.pop('force_training', None)
            combined_analyzer = CombinedFeaturewiseDatasetMeasure(**kwargs)
        self.__combined_analyzer = combined_analyzer
        """Combined analyzer to use"""

        if analyzer is not None and len(self._slave_kwargs):
            raise ValueError, \
                  "Provide either analyzer of slave_* arguments, not both"
        self.__analyzer = analyzer
        """Analyzer to use for basic classifiers within boosted classifier"""


    def untrain(self):
        """Untrain BoostedClassifierSensitivityAnalyzer
        """
        if self.__analyzer is not None:
            self.__analyzer.untrain()
        self.__combined_analyzer.untrain()


    def _call(self, dataset):
        analyzers = []
        # create analyzers
        for clf in self.clf.clfs:
            if self.__analyzer is None:
                analyzer = clf.getSensitivityAnalyzer(**(self._slave_kwargs))
                if analyzer is None:
                    raise ValueError, \
                          "Wasn't able to figure basic analyzer for clf %s" % \
                          `clf`
                if __debug__:
                    debug("SA", "Selected analyzer %s for clf %s" % \
                          (`analyzer`, `clf`))
            else:
                # XXX shallow copy should be enough...
                analyzer = copy.copy(self.__analyzer)

            # assign corresponding classifier
            analyzer.clf = clf
            # if clf was trained already - don't train again
            if clf.trained:
                analyzer._force_training = False
            analyzers.append(analyzer)

        self.__combined_analyzer.analyzers = analyzers

        # XXX not sure if we don't want to call directly ._call(dataset) to avoid
        # double application of transformers/combiners, after all we are just
        # 'proxying' here to combined_analyzer...
        # YOH: decided -- lets call ._call
        return self.__combined_analyzer._call(dataset)

    combined_analyzer = property(fget=lambda x:x.__combined_analyzer)


class ProxyClassifierSensitivityAnalyzer(Sensitivity):
    """Set sensitivity analyzer output just to pass through"""

    clf_sensitivities = StateVariable(enabled=False,
        doc="Stores sensitivities of the proxied classifier")


    @group_kwargs(prefixes=['slave_'], assign=True)
    def __init__(self,
                 clf,
                 analyzer=None,
                 **kwargs):
        """Initialize Sensitivity Analyzer for `BoostedClassifier`
        """
        Sensitivity.__init__(self, clf, **kwargs)

        if analyzer is not None and len(self._slave_kwargs):
            raise ValueError, \
                  "Provide either analyzer of slave_* arguments, not both"

        self.__analyzer = analyzer
        """Analyzer to use for basic classifiers within boosted classifier"""


    def untrain(self):
        super(ProxyClassifierSensitivityAnalyzer, self).untrain()
        if self.__analyzer is not None:
            self.__analyzer.untrain()


    def _call(self, dataset):
        # OPT: local bindings
        clfclf = self.clf.clf
        analyzer = self.__analyzer

        if analyzer is None:
            analyzer = clfclf.getSensitivityAnalyzer(
                **(self._slave_kwargs))
            if analyzer is None:
                raise ValueError, \
                      "Wasn't able to figure basic analyzer for clf %s" % \
                      `clfclf`
            if __debug__:
                debug("SA", "Selected analyzer %s for clf %s" % \
                      (analyzer, clfclf))
            # bind to the instance finally
            self.__analyzer = analyzer

        # TODO "remove" unnecessary things below on each call...
        # assign corresponding classifier
        analyzer.clf = clfclf

        # if clf was trained already - don't train again
        if clfclf.trained:
            analyzer._force_training = False

        result = analyzer._call(dataset)
        self.states.clf_sensitivities = result

        return result

    analyzer = property(fget=lambda x:x.__analyzer)


class MappedClassifierSensitivityAnalyzer(ProxyClassifierSensitivityAnalyzer):
    """Set sensitivity analyzer output be reverse mapped using mapper of the
    slave classifier"""

    def _call(self, dataset):
        sens = super(MappedClassifierSensitivityAnalyzer, self)._call(dataset)
        # So we have here the case that some sensitivities are given
        #  as nfeatures x nclasses, thus we need to take .T for the
        #  mapper and revert back afterwards
        # devguide's TODO lists this point to 'disguss'
        sens_mapped = self.clf.mapper.reverse(sens.T)
        return sens_mapped.T


class FeatureSelectionClassifierSensitivityAnalyzer(ProxyClassifierSensitivityAnalyzer):
    """Set sensitivity analyzer output be reverse mapped using mapper of the
    slave classifier"""

    def _call(self, dataset):
        sens = super(FeatureSelectionClassifierSensitivityAnalyzer, self)._call(dataset)
        # So we have here the case that some sensitivities are given
        #  as nfeatures x nclasses, thus we need to take .T for the
        #  mapper and revert back afterwards
        # devguide's TODO lists this point to 'disguss'
        sens_mapped = self.clf.maskclf.mapper.reverse(sens.T)
        return sens_mapped.T