/usr/share/pyshared/mvpa2/kernels/base.py is in python-mvpa2 2.2.0-4ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Base Kernel classes
"""
_DEV_DOC_ = """
Concerns:
- Assure proper type of _k assigned
- The same issue "Dataset vs data" in input arguments
"""
__docformat__ = 'restructuredtext'
import numpy as np
from mvpa2.base.types import is_datasetlike
from mvpa2.base.state import ClassWithCollections
from mvpa2.base.param import Parameter
from mvpa2.misc.sampleslookup import SamplesLookup # required for CachedKernel
if __debug__:
from mvpa2.base import debug
__all__ = ['Kernel', 'NumpyKernel', 'CustomKernel', 'PrecomputedKernel',
'CachedKernel']
class Kernel(ClassWithCollections):
"""Abstract class which calculates a kernel function between datasets
Each instance has an internal representation self._k which might be of
a different form depending on the intended use. Some kernel types should
be translatable to other representations where possible, e.g., between
Numpy and Shogun-based kernels.
This class should not be used directly, but rather use a subclass which
enforces a consistent internal representation, such as a NumpyKernel.
Notes
-----
Conversion mechanisms: Each kernel type should implement methods
as necessary for the following two methods to work:
:meth:`~mvpa2.kernels.Kernel.as_np`
*Return a new NumpyKernel object with internal Numpy kernel*.
This method can be generally inherited from the base Kernel class by
creating a PrecomputedKernel from the raw numpy matrix, as implemented
here.
:meth:`~mvpa2.kernels.Kernel.as_raw_np`
*Return a raw Numpy array from this kernel*.
This method should behave identically to numpy.array(kernel), and in fact,
defining either method (via defining Kernel.__array__) will be sufficient
for both method calls to work. See this source code for more details.
Other kernel types should implement similar mechanisms to convert numpy
arrays to their own internal representations. See `add_conversion` for a
helper method, and examples in mvpa2.kernels.sg
Assuming such `Kernel.as_*` methods exist, all kernel types should be
seamlessly convertable amongst each other.
Note that kernels are not meant to be 'functionally translateable' in the
sense that one kernel can be created, translated, then used to compute
results in a new framework. Rather, the results are meant to be
exchangeable, hence the standard practice of using a precomputed kernel
object to store the results in the new kernel type.
For example:
::
k = SomeShogunKernel()
k.compute(data1, data2)
# Incorrect and unsupported use
k2 = k.as_cuda()
k2.compute(data3, data4) # Would require 'functional translation' to the new
# backend, which is impossible
# Correct use
someOtherAlgorithm(k.as_raw_cuda()) # Simply uses kernel results in CUDA
"""
_ATTRIBUTE_COLLECTIONS = ['params'] # enforce presence of params collections
# Define this per class: standard string describing kernel type, ie
# 'linear', or 'rbf', to help coordinate kernel types across backends
__kernel_name__ = None
def __init__(self, *args, **kwargs):
"""Base Kernel class has no parameters
"""
ClassWithCollections.__init__(self, *args, **kwargs)
self._k = None
"""Implementation specific version of the kernel"""
def compute(self, ds1, ds2=None):
"""Generic computation of any kernel
Assumptions:
- ds1, ds2 are either datasets or arrays,
- presumably 2D (not checked neither enforced here
- _compute takes ndarrays. If your kernel needs datasets,
override compute
"""
if is_datasetlike(ds1):
ds1 = ds1.samples
if ds2 is None:
ds2 = ds1
elif is_datasetlike(ds2):
ds2 = ds2.samples
# TODO: assure 2D shape
self._compute(ds1, ds2)
def _compute(self, d1, d2):
"""Specific implementation to be overridden
"""
raise NotImplemented, "Abstract method"
def computed(self, *args, **kwargs):
"""Compute kernel and return self
"""
self.compute(*args, **kwargs)
return self
############################################################################
# The following methods are circularly defined. Child kernel types can
# override either one or both to allow conversion to Numpy
def __array__(self):
return self.as_raw_np()
def as_raw_np(self):
"""Directly return this kernel as a numpy array"""
return np.array(self)
############################################################################
def as_np(self):
"""Converts this kernel to a Numpy-based representation"""
p = PrecomputedKernel(matrix=self.as_raw_np())
p.compute()
return p
def cleanup(self):
"""Wipe out internal representation
XXX unify: we have reset in other places to accomplish similar
thing
"""
self._k = None
@classmethod
def add_conversion(cls, typename, methodfull, methodraw):
"""Adds methods to the Kernel class for new conversions
Parameters
----------
typename : string
Describes kernel type
methodfull : function
Method which converts to the new kernel object class
methodraw : function
Method which returns a raw kernel
Examples
--------
Kernel.add_conversion('np', fullmethod, rawmethod)
binds kernel.as_np() to fullmethod()
binds kernel.as_raw_np() to rawmethod()
Can also be used on subclasses to override the default conversions
"""
setattr(cls, 'as_%s'%typename, methodfull)
setattr(cls, 'as_raw_%s'%typename, methodraw)
class NumpyKernel(Kernel):
"""A Kernel object with internal representation as a 2d numpy array"""
_ATTRIBUTE_COLLECTIONS = Kernel._ATTRIBUTE_COLLECTIONS + ['ca']
# enforce presence of params AND ca collections for gradients etc
def __array__(self):
# By definintion, a NumpyKernel's internal representation is an array
return self._k
def as_np(self):
"""Converts this kernel to a Numpy-based representation"""
# Already numpy!!
return self
def as_raw_np(self):
"""Directly return this kernel as a numpy array.
For Numpy-based kernels - simply returns stored matrix."""
return self._k
# wasn't that easy?
class CustomKernel(NumpyKernel):
"""Custom Kernel defined by an arbitrary function
Examples
--------
Basic linear kernel
>>> k = CustomKernel(kernelfunc=lambda a,b: numpy.dot(a,b.T))
"""
__TODO__ = """
- repr/doc sicne now kernelfunc is not a Parameter
"""
def __init__(self, kernelfunc=None, *args, **kwargs):
"""Initialize CustomKernel with an arbitrary function.
Parameters
----------
kernelfunc : function
Any callable function which takes two numpy arrays and
calculates a kernel function, treating the rows as samples and the
columns as features. It is called from compute(d1, d2) -> func(d1,d2)
and should return a numpy matrix K(i,j) which holds the kernel
evaluated from d1 sample i and d2 sample j
"""
NumpyKernel.__init__(self, *args, **kwargs)
self._kernelfunc = kernelfunc
def _compute(self, d1, d2):
self._k = self._kernelfunc(d1, d2)
class PrecomputedKernel(NumpyKernel):
"""Precomputed matrix
"""
__TODO__ = """
- repr/doc sicne now matrix is not a Parameter
"""
# NB: to avoid storing matrix twice, after compute
# self.params.matrix = self._k
def __init__(self, matrix=None, *args, **kwargs):
"""
Parameters
----------
matrix : Numpy array or convertable kernel, or other object type
"""
NumpyKernel.__init__(self, *args, **kwargs)
self._k = np.array(matrix)
def compute(self, *args, **kwargs):
pass
class CachedKernel(NumpyKernel):
"""Kernel which caches all data to avoid duplicate computation
This kernel is very useful for any analysis which will retrain or
repredict the same data multiple times, as this kernel will avoid
recalculating the kernel function. Examples of such analyses include cross
validation, bootstrapping, and model selection (assuming the kernel function
itself does not change, e.g. when selecting for C in an SVM).
The kernel will automatically cache any new data sent through compute, and
will be able to use this cache whenever a subset of this data is sent
through compute again. If new (uncached) data is sent through compute, then
the cache is recreated from scratch. Therefore, you should compute the
kernel on the entire superset of your data before using this kernel
normally (computing a new cache invalidates any previous cached data).
The cache is asymmetric for lhs and rhs, so compute(d1, d2) does not create
a cache usable for compute(d2, d1).
"""
# TODO: Figure out how to design objects like CrossValidation etc to
# precompute this kernel automatically, making it transparent to the user
@property
def __kernel_name__(self):
"""Allows checking name of subkernel"""
return self._kernel.__kernel_name__
def __init__(self, kernel=None, *args, **kwargs):
"""Initialize `CachedKernel`
Parameters
----------
kernel : Kernel
Base kernel to cache. Any kernel which can be converted to a
`NumpyKernel` is allowed
"""
super(CachedKernel, self).__init__(*args, **kwargs)
self._kernel = kernel
self.params.update(self._kernel.params)
self._rhsids = self._lhsids = self._kfull = None
self._recomputed = None
def _cache(self, ds1, ds2=None):
"""Initializes internal lookups + _kfull via caching the kernel matrix
"""
if __debug__ and 'KRN' in debug.active:
debug('KRN', "Caching %(inst)s for ds1=%(ds1)s, ds2=%(ds1)s"
% dict(inst=self, ds1=ds1, ds2=ds2))
self._lhsids = SamplesLookup(ds1)
if (ds2 is None) or (ds2 is ds1):
self._rhsids = self._lhsids
else:
self._rhsids = SamplesLookup(ds2)
ckernel = self._kernel
ckernel.compute(ds1, ds2)
self._kfull = ckernel.as_raw_np()
ckernel.cleanup()
self._k = self._kfull
self._recomputed = True
self.params.reset()
# TODO: store params representation for later comparison
def compute(self, ds1, ds2=None, force=False):
"""Automatically computes and caches the kernel or extracts the
relevant part of a precached kernel into self._k
Parameters
----------
force : bool
If True it forces re-caching of the kernel. It is advised
to be used whenever explicitly pre-caching the kernel and
it is known that data was changed.
"""
if __debug__ and 'KRN' in debug.active:
debug('KRN', "Computing kernel %(inst)s on ds1=%(ds1)s, ds2=%(ds1)s"
% dict(inst=self, ds1=ds1, ds2=ds2))
# Flag lets us know whether cache was recomputed
self._recomputed = False
#if self._ds_cached_info is not None:
# Check either those ds1, ds2 are coming from the same
# dataset as before
# TODO: figure out if data were modified...
# params_modified = True
changedData = False or force
if len(self.params.which_set()) or changedData \
or self._lhsids is None:
self._cache(ds1, ds2)# hopefully this will never reset values, just
# changed status
else:
# figure d1, d2
try:
lhsids = self._lhsids(ds1) #
if ds2 is None:
rhsids = lhsids
else:
rhsids = self._rhsids(ds2)
self._k = self._kfull[np.ix_(lhsids, rhsids)]
except KeyError:
self._cache(ds1, ds2)
if __debug__ and self._recomputed:
debug('KRN',
"Kernel %(inst)s was recomputed on ds1=%(ds1)s, ds2=%(ds1)s"
% dict(inst=self, ds1=ds1, ds2=ds2))
__BOGUS_NOTES__ = """
if ds1 is the "derived" dataset as it was computed on:
* ds2 is None
ds2 bound to ds1
-
* ds1 and ds2 present
- ds1 and ds2 come from the same dataset
- whatever CachedKernel was computed on is a superset
- not a superset -- puke?
- ds2 comes from different than ds1
- puke?
else:
compute (ds1, ds2)
- different data ids
ckernel = PrecomputedKernel(matrix=np.array([1,2,3]))
ck = CachedKernel(kernel=ckernel)
"""
|