This file is indexed.

/usr/share/pyshared/patsy/user_util.py is in python-patsy 0.2.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# This file is part of Patsy
# Copyright (C) 2012 Nathaniel Smith <njs@pobox.com>
# See file COPYING for license information.

# Miscellaneous utilities that are useful to users (as compared to
# patsy.util, which is misc. utilities useful for implementing patsy).

# These are made available in the patsy.* namespace
__all__ = ["balanced", "demo_data", "LookupFactor"]

import numpy as np
from patsy import PatsyError
from patsy.compat import itertools_product
from patsy.categorical import C

def balanced(**kwargs):
    """balanced(factor_name=num_levels, [factor_name=num_levels, ..., repeat=1])

    Create simple balanced factorial designs for testing.

    Given some factor names and the number of desired levels for each,
    generates a balanced factorial design in the form of a data
    dictionary. For example:

    .. ipython::

       In [1]: balanced(a=2, b=3)
       Out[1]:
       {'a': ['a1', 'a1', 'a1', 'a2', 'a2', 'a2'],
        'b': ['b1', 'b2', 'b3', 'b1', 'b2', 'b3']}

    By default it produces exactly one instance of each combination of levels,
    but if you want multiple replicates this can be accomplished via the
    `repeat` argument:

    .. ipython::

       In [2]: balanced(a=2, b=2, repeat=2)
       Out[2]:
       {'a': ['a1', 'a1', 'a2', 'a2', 'a1', 'a1', 'a2', 'a2'],
        'b': ['b1', 'b2', 'b1', 'b2', 'b1', 'b2', 'b1', 'b2']}
    """
    repeat = kwargs.pop("repeat", 1)
    levels = []
    names = sorted(kwargs)
    for name in names:
        level_count = kwargs[name]
        levels.append(["%s%s" % (name, i) for i in xrange(1, level_count + 1)])
    # zip(*...) does an "unzip"
    values = zip(*itertools_product(*levels))
    data = {}
    for name, value in zip(names, values):
        data[name] = list(value) * repeat
    return data

def test_balanced():
    data = balanced(a=2, b=3)
    assert data["a"] == ["a1", "a1", "a1", "a2", "a2", "a2"]
    assert data["b"] == ["b1", "b2", "b3", "b1", "b2", "b3"]
    data = balanced(a=2, b=3, repeat=2)
    assert data["a"] == ["a1", "a1", "a1", "a2", "a2", "a2",
                         "a1", "a1", "a1", "a2", "a2", "a2"]
    assert data["b"] == ["b1", "b2", "b3", "b1", "b2", "b3",
                         "b1", "b2", "b3", "b1", "b2", "b3"]

def demo_data(*names, **kwargs):
    """demo_data(*names, nlevels=2, min_rows=5)

    Create simple categorical/numerical demo data.

    Pass in a set of variable names, and this function will return a simple
    data set using those variable names.

    Names whose first letter falls in the range "a" through "m" will be made
    categorical (with `nlevels` levels). Those that start with a "p" through
    "z" are numerical.

    We attempt to produce a balanced design on the categorical variables,
    repeating as necessary to generate at least `min_rows` data
    points. Categorical variables are returned as a list of strings.

    Numerical data is generated by sampling from a normal distribution. A
    fixed random seed is used, so that identical calls to demo_data() will
    produce identical results. Numerical data is returned in a numpy array.

    Example:

    .. ipython:

       In [1]: patsy.demo_data("a", "b", "x", "y")
       Out[1]: 
       {'a': ['a1', 'a1', 'a2', 'a2', 'a1', 'a1', 'a2', 'a2'],
        'b': ['b1', 'b2', 'b1', 'b2', 'b1', 'b2', 'b1', 'b2'],
        'x': array([ 1.76405235,  0.40015721,  0.97873798,  2.2408932 ,
                     1.86755799, -0.97727788,  0.95008842, -0.15135721]),
        'y': array([-0.10321885,  0.4105985 ,  0.14404357,  1.45427351,
                     0.76103773,  0.12167502,  0.44386323,  0.33367433])}
    """
    nlevels = kwargs.pop("nlevels", 2)
    min_rows = kwargs.pop("min_rows", 5)
    if kwargs:
        raise TypeError, "unexpected keyword arguments %r" % (kwargs)
    numerical = set()
    categorical = {}
    for name in names:
        if name[0] in "abcdefghijklmn":
            categorical[name] = nlevels
        elif name[0] in "pqrstuvwxyz":
            numerical.add(name)
        else:
            raise PatsyError, "bad name %r" % (name,)
    balanced_design_size = np.prod(categorical.values())
    repeat = int(np.ceil(min_rows * 1.0 / balanced_design_size))
    num_rows = repeat * balanced_design_size
    data = balanced(repeat=repeat, **categorical)
    r = np.random.RandomState(0)
    for name in sorted(numerical):
        data[name] = r.normal(size=num_rows)
    return data
    
def test_demo_data():
    d1 = demo_data("a", "b", "x")
    assert sorted(d1.keys()) == ["a", "b", "x"]
    assert d1["a"] == ["a1", "a1", "a2", "a2", "a1", "a1", "a2", "a2"]
    assert d1["b"] == ["b1", "b2", "b1", "b2", "b1", "b2", "b1", "b2"]
    assert d1["x"].dtype == np.dtype(float)
    assert d1["x"].shape == (8,)

    d2 = demo_data("x", "y")
    assert sorted(d2.keys()) == ["x", "y"]
    assert len(d2["x"]) == len(d2["y"]) == 5

    assert len(demo_data("x", min_rows=10)["x"]) == 10
    assert len(demo_data("a", "b", "x", min_rows=10)["x"]) == 12
    assert len(demo_data("a", "b", "x", min_rows=10, nlevels=3)["x"]) == 18

    from nose.tools import assert_raises
    assert_raises(PatsyError, demo_data, "a", "b", "__123")
    assert_raises(TypeError, demo_data, "a", "b", asdfasdf=123)

class LookupFactor(object):
    """A simple factor class that simply looks up a named entry in the given
    data.

    Useful for programatically constructing formulas, and as a simple example
    of the factor protocol.  For details see
    :ref:`expert-model-specification`.

    Example::

      dmatrix(ModelDesc([], [Term([LookupFactor("x")])]), {"x": [1, 2, 3]})

    :arg varname: The name of this variable; used as a lookup key in the
      passed in data dictionary/DataFrame/whatever.
    :arg force_categorical: If True, then treat this factor as
      categorical. (Equivalent to using :func:`C` in a regular formula, but
      of course you can't do that with a :class:`LookupFactor`.
    :arg contrast: If given, the contrast to use; see :func:`C`. (Requires
      ``force_categorical=True``.)
    :arg levels: If given, the categorical levels; see :func:`C`. (Requires
      ``force_categorical=True``.)
    :arg origin: Either ``None``, or the :class:`Origin` of this factor for use
      in error reporting.

    .. versionadded:: 0.2.0
       The ``force_categorical`` and related arguments.
    """
    def __init__(self, varname,
                 force_categorical=False, contrast=None, levels=None,
                 origin=None):
        self._varname = varname
        self._force_categorical = force_categorical
        self._contrast = contrast
        self._levels = levels
        self.origin = origin
        if not self._force_categorical:
            if contrast is not None:
                raise ValueError("contrast= requires force_categorical=True")
            if levels is not None:
                raise ValueError("levels= requires force_categorical=True")

    def name(self):
        return self._varname

    def __repr__(self):
        return "%s(%r)" % (self.__class__.__name__, self._varname)
       
    def __eq__(self, other):
        return (isinstance(other, LookupFactor)
                and self._varname == other._varname
                and self._force_categorical == other._force_categorical
                and self._contrast == other._contrast
                and self._levels == other._levels)

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash((LookupFactor, self._varname,
                     self._force_categorical, self._contrast, self._levels))

    def memorize_passes_needed(self, state):
        return 0

    def memorize_chunk(self, state, which_pass, env): # pragma: no cover
        assert False

    def memorize_finish(self, state, which_pass): # pragma: no cover
        assert False

    def eval(self, memorize_state, data):
        value = data[self._varname]
        if self._force_categorical:
            value = C(value, contrast=self._contrast, levels=self._levels)
        return value

def test_LookupFactor():
    l_a = LookupFactor("a")
    assert l_a.name() == "a"
    assert l_a == LookupFactor("a")
    assert l_a != LookupFactor("b")
    assert hash(l_a) == hash(LookupFactor("a"))
    assert hash(l_a) != hash(LookupFactor("b"))
    assert l_a.eval({}, {"a": 1}) == 1
    assert l_a.eval({}, {"a": 2}) == 2
    assert repr(l_a) == "LookupFactor('a')"
    assert l_a.origin is None
    l_with_origin = LookupFactor("b", origin="asdf")
    assert l_with_origin.origin == "asdf"

    l_c = LookupFactor("c", force_categorical=True,
                       contrast="CONTRAST", levels=(1, 2))
    box = l_c.eval({}, {"c": [1, 1, 2]})
    assert box.data == [1, 1, 2]
    assert box.contrast == "CONTRAST"
    assert box.levels == (1, 2)

    from nose.tools import assert_raises
    assert_raises(ValueError, LookupFactor, "nc", contrast="CONTRAST")
    assert_raises(ValueError, LookupFactor, "nc", levels=(1, 2))