This file is indexed.

/usr/share/pyshared/pytools/datatable.py is in python-pytools 2013.5.7-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from pytools import Record


class Row(Record):
    pass


class DataTable:
    """An in-memory relational database table."""

    def __init__(self, column_names, column_data=None):
        """Construct a new table, with the given C{column_names}.

        @arg column_names: An indexable of column name strings.
        @arg column_data: None or a list of tuples of the same length as
          C{column_names} indicating an initial set of data.
        """
        if column_data is None:
            self.data = []
        else:
            self.data = column_data

        self.column_names = column_names
        self.column_indices = dict(
                (colname, i) for i, colname in enumerate(column_names))

        if len(self.column_indices) != len(self.column_names):
            raise RuntimeError("non-unique column names encountered")

    def __bool__(self):
        return bool(self.data)

    def __len__(self):
        return len(self.data)

    def __iter__(self):
        return self.data.__iter__()

    def __str__(self):
        """Return a pretty-printed version of the table."""

        def col_width(i):
            width = len(self.column_names[i])
            if self:
                width = max(width, max(len(str(row[i])) for row in self.data))
            return width
        col_widths = [col_width(i) for i in range(len(self.column_names))]

        def format_row(row):
            return "|".join([str(cell).ljust(col_width)
                      for cell, col_width in zip(row, col_widths)])

        lines = [format_row(self.column_names),
                "+".join("-"*col_width for col_width in col_widths)] + \
                [format_row(row) for row in self.data]
        return "\n".join(lines)

    def insert(self, **kwargs):
        values = [None for i in range(len(self.column_names))]

        for key, val in kwargs.iteritems():
            values[self.column_indices[key]] = val

        self.insert_row(tuple(values))

    def insert_row(self, values):
        assert isinstance(values, tuple)
        assert len(values) == len(self.column_names)
        self.data.append(values)

    def insert_rows(self, rows):
        for row in rows:
            self.insert_row(row)

    def filtered(self, **kwargs):
        if not kwargs:
            return self

        criteria = tuple(
                (self.column_indices[key], value)
                for key, value in kwargs.iteritems())

        result_data = []

        for row in self.data:
            satisfied = True
            for idx, val in criteria:
                if row[idx] != val:
                    satisfied = False
                    break

            if satisfied:
                result_data.append(row)

        return DataTable(self.column_names, result_data)

    def get(self, **kwargs):
        filtered = self.filtered(**kwargs)
        if len(filtered) < 1:
            raise RuntimeError("no matching entry for get()")
        if len(filtered) > 1:
            raise RuntimeError("more than one matching entry for get()")

        return Row(dict(zip(self.column_names, filtered.data[0])))

    def clear(self):
        del self.data[:]

    def copy(self):
        """Make a copy of the instance, but leave individual rows untouched.

        If the rows are modified later, they will also be modified in the copy.
        """
        return DataTable(self.column_names, self.data[:])

    def deep_copy(self):
        """Make a copy of the instance down to the row level.

        The copy's rows may be modified independently from the original.
        """
        return DataTable(self.column_names, [row[:] for row in self.data])

    def sort(self, columns, reverse=False):
        col_indices = [self.column_indices[col] for col in columns]

        def mykey(row):
            return tuple(
                    row[col_index]
                    for col_index in col_indices)

        self.data.sort(reverse=reverse, key=mykey)

    def aggregated(self, groupby, agg_column, aggregate_func):
        gb_indices = [self.column_indices[col] for col in groupby]
        agg_index = self.column_indices[agg_column]

        first = True

        result_data = []

        # to pacify pyflakes:
        last_values = None
        agg_values = None

        for row in self.data:
            this_values = tuple(row[i] for i in gb_indices)
            if first or this_values != last_values:
                if not first:
                    result_data.append(last_values + (aggregate_func(agg_values),))

                agg_values = [row[agg_index]]
                last_values = this_values
                first = False
            else:
                agg_values.append(row[agg_index])

        if not first and agg_values:
            result_data.append(this_values + (aggregate_func(agg_values),))

        return DataTable(
                [self.column_names[i] for i in gb_indices] + [agg_column],
                result_data)

    def join(self, column, other_column, other_table, outer=False):
        """Return a tabled joining this and the C{other_table} on C{column}.

        The new table has the following columns:
        - C{column}, titled the same as in this table.
        - the columns of this table, minus C{column}.
        - the columns of C{other_table}, minus C{other_column}.

        Assumes both tables are sorted ascendingly by the column
        by which they are joined.
        """

        def without(indexable, idx):
            return indexable[:idx] + indexable[idx+1:]

        this_key_idx = self.column_indices[column]
        other_key_idx = other_table.column_indices[other_column]

        this_iter = self.data.__iter__()
        other_iter = other_table.data.__iter__()

        result_columns = [self.column_names[this_key_idx]] + \
                without(self.column_names, this_key_idx) + \
                without(other_table.column_names, other_key_idx)

        result_data = []

        this_row = this_iter.next()
        other_row = other_iter.next()

        this_over = False
        other_over = False

        while True:
            this_batch = []
            other_batch = []

            if this_over:
                run_other = True
            elif other_over:
                run_this = True
            else:
                this_key = this_row[this_key_idx]
                other_key = other_row[other_key_idx]

                run_this = this_key < other_key
                run_other = this_key > other_key
                if this_key == other_key:
                    run_this = run_other = True

            if run_this and not this_over:
                key = this_key
                while this_row[this_key_idx] == this_key:
                    this_batch.append(this_row)
                    try:
                        this_row = this_iter.next()
                    except StopIteration:
                        this_over = True
                        break
            else:
                if outer:
                    this_batch = [(None,) * len(self.column_names)]

            if run_other and not other_over:
                key = other_key
                while other_row[other_key_idx] == other_key:
                    other_batch.append(other_row)
                    try:
                        other_row = other_iter.next()
                    except StopIteration:
                        other_over = True
                        break
            else:
                if outer:
                    other_batch = [(None,) * len(other_table.column_names)]

            for this_batch_row in this_batch:
                for other_batch_row in other_batch:
                    result_data.append((key,) +
                            without(this_batch_row, this_key_idx) +
                            without(other_batch_row, other_key_idx))

            if outer:
                if this_over and other_over:
                    break
            else:
                if this_over or other_over:
                    break

        return DataTable(result_columns, result_data)

    def restricted(self, columns):
        col_indices = [self.column_indices[col] for col in columns]

        return DataTable(columns,
                [[row[i] for i in col_indices] for row in self.data])

    def column_data(self, column):
        col_index = self.column_indices[column]
        return [row[col_index] for row in self.data]

    def write_csv(self, filelike, **kwargs):
        from csv import writer
        csvwriter = writer(filelike, **kwargs)
        csvwriter.writerow(self.column_names)
        csvwriter.writerows(self.data)