/usr/share/doc/python-scientific-doc/Reference/Scientific.Functions.Derivatives-module.html is in python-scientific-doc 2.9.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | <?xml version="1.0" encoding="ascii"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Scientific.Functions.Derivatives</title>
<link rel="stylesheet" href="epydoc.css" type="text/css" />
<script type="text/javascript" src="epydoc.js"></script>
</head>
<body bgcolor="white" text="black" link="blue" vlink="#204080"
alink="#204080">
<!-- ==================== NAVIGATION BAR ==================== -->
<table class="navbar" border="0" width="100%" cellpadding="0"
bgcolor="#a0c0ff" cellspacing="0">
<tr valign="middle">
<!-- Home link -->
<th> <a
href="Scientific-module.html">Home</a> </th>
<!-- Tree link -->
<th> <a
href="module-tree.html">Trees</a> </th>
<!-- Index link -->
<th> <a
href="identifier-index.html">Indices</a> </th>
<!-- Help link -->
<th> <a
href="help.html">Help</a> </th>
<!-- Project homepage -->
<th class="navbar" align="right" width="100%">
<table border="0" cellpadding="0" cellspacing="0">
<tr><th class="navbar" align="center"
><a class="navbar" target="_top" href="http://dirac.cnrs-orleans.fr/ScientificPython/">Scientific Python</a></th>
</tr></table></th>
</tr>
</table>
<table width="100%" cellpadding="0" cellspacing="0">
<tr valign="top">
<td width="100%">
<span class="breadcrumbs">
<a href="Scientific-module.html">Package Scientific</a> ::
<a href="Scientific.Functions-module.html">Package Functions</a> ::
Module Derivatives
</span>
</td>
<td>
<table cellpadding="0" cellspacing="0">
<!-- hide/show private -->
<tr><td align="right"><span class="options"
>[<a href="frames.html" target="_top">frames</a
>] | <a href="Scientific.Functions.Derivatives-module.html"
target="_top">no frames</a>]</span></td></tr>
</table>
</td>
</tr>
</table>
<!-- ==================== MODULE DESCRIPTION ==================== -->
<h1 class="epydoc">Module Derivatives</h1><p class="nomargin-top"></p>
<p>Automatic differentiation for functions of any number of variables up
to any order</p>
<p>An instance of the class DerivVar represents the value of a function
and the values of its partial <a name="index-derivatives"></a><i
class="indexterm">derivatives</i> with respect to a list of variables.
All common mathematical operations and functions are available for these
numbers. There is no restriction on the type of the numbers fed into the
code; it works for real and complex numbers as well as for any Python
type that implements the necessary operations.</p>
<p>If only first-order derivatives are required, the module
FirstDerivatives should be used. It is compatible to this one, but
significantly faster.</p>
<p>Example:</p>
<pre class="literalblock">
print sin(DerivVar(2))
</pre>
<p>produces the output:</p>
<pre class="literalblock">
(0.909297426826, [-0.416146836547])
</pre>
<p>The first number is the value of sin(2); the number in the following
list is the value of the derivative of sin(x) at x=2, i.e. cos(2).</p>
<p>When there is more than one variable, DerivVar must be called with an
integer second argument that specifies the number of the variable.</p>
<p>Example:</p>
<pre class="literalblock">
>>>x = DerivVar(7., 0)
>>>y = DerivVar(42., 1)
>>>z = DerivVar(pi, 2)
>>>print (sqrt(pow(x,2)+pow(y,2)+pow(z,2)))
produces the output
>>>(42.6950770511, [0.163953328662, 0.98371997197, 0.0735820818365])
</pre>
<p>The numbers in the list are the partial derivatives with respect to x,
y, and z, respectively.</p>
<p>Higher-order derivatives are requested with an optional third argument
to DerivVar.</p>
<p>Example:</p>
<pre class="literalblock">
>>>x = DerivVar(3., 0, 3)
>>>y = DerivVar(5., 1, 3)
>>>print sqrt(x*y)
produces the output
>>>(3.87298334621,
>>> [0.645497224368, 0.387298334621],
>>> [[-0.107582870728, 0.0645497224368],
>>> [0.0645497224368, -0.0387298334621]],
>>> [[[0.053791435364, -0.0107582870728],
>>> [-0.0107582870728, -0.00645497224368]],
>>> [[-0.0107582870728, -0.00645497224368],
>>> [-0.00645497224368, 0.0116189500386]]])
</pre>
<p>The individual orders can be extracted by indexing:</p>
<pre class="literalblock">
>>>print sqrt(x*y)[0]
>>>3.87298334621
>>>print sqrt(x*y)[1]
>>>[0.645497224368, 0.387298334621]
</pre>
<p>An n-th order derivative is represented by a nested list of depth
n.</p>
<p>When variables with different differentiation orders are mixed, the
result has the lower one of the two orders. An exception are zeroth-order
variables, which are treated as constants.</p>
<p>Caution: Higher-order derivatives are implemented by recursively using
DerivVars to represent derivatives. This makes the code very slow for
high orders.</p>
<p>Note: It doesn't make sense to use multiple DerivVar objects with
different values for the same variable index in one calculation, but
there is no check for this. I.e.:</p>
<pre class="literalblock">
>>>print DerivVar(3, 0)+DerivVar(5, 0)
produces
>>>(8, [2])
</pre>
<p>but this result is meaningless.</p>
<!-- ==================== CLASSES ==================== -->
<a name="section-Classes"></a>
<table class="summary" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr bgcolor="#70b0f0" class="table-header">
<td align="left" colspan="2" class="table-header">
<span class="table-header">Classes</span></td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"> </span>
</td><td class="summary">
<a href="Scientific.Functions.Derivatives.DerivVar-class.html" class="summary-name">DerivVar</a><br />
Numerical variable with automatic derivatives of arbitrary order
</td>
</tr>
</table>
<!-- ==================== FUNCTIONS ==================== -->
<a name="section-Functions"></a>
<table class="summary" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr bgcolor="#70b0f0" class="table-header">
<td align="left" colspan="2" class="table-header">
<span class="table-header">Functions</span></td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"><a href="Scientific.Geometry.Vector-class.html"
class="link">Scientific.Geometry.Vector</a></span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a href="Scientific.Functions.Derivatives-module.html#DerivVector" class="summary-sig-name">DerivVector</a>(<span class="summary-sig-arg">x</span>,
<span class="summary-sig-arg">y</span>,
<span class="summary-sig-arg">z</span>,
<span class="summary-sig-arg">index</span>=<span class="summary-sig-default">0</span>,
<span class="summary-sig-arg">order</span>=<span class="summary-sig-default">1</span>)</span><br />
Returns:
a vector whose components are DerivVar objects</td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"><code>bool</code></span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a href="Scientific.Functions.Derivatives-module.html#isDerivVar" class="summary-sig-name">isDerivVar</a>(<span class="summary-sig-arg">x</span>)</span><br />
Returns:
True if x is a DerivVar object, False otherwise</td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
</table>
<!-- ==================== FUNCTION DETAILS ==================== -->
<a name="section-FunctionDetails"></a>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr bgcolor="#70b0f0" class="table-header">
<td align="left" colspan="2" class="table-header">
<span class="table-header">Function Details</span></td>
</tr>
</table>
<a name="DerivVector"></a>
<div>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr><td>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr valign="top"><td>
<h3 class="epydoc"><span class="sig"><span class="sig-name">DerivVector</span>(<span class="sig-arg">x</span>,
<span class="sig-arg">y</span>,
<span class="sig-arg">z</span>,
<span class="sig-arg">index</span>=<span class="sig-default">0</span>,
<span class="sig-arg">order</span>=<span class="sig-default">1</span>)</span>
</h3>
</td><td align="right" valign="top"
>
</td>
</tr></table>
<dl class="fields">
<dt>Parameters:</dt>
<dd><ul class="nomargin-top">
<li><strong class="pname"><code>x</code></strong> (number) - x component of the vector</li>
<li><strong class="pname"><code>y</code></strong> (number) - y component of the vector</li>
<li><strong class="pname"><code>z</code></strong> (number) - z component of the vector</li>
<li><strong class="pname"><code>index</code></strong> (<code>int</code>) - the DerivVar index for the x component. The y and z components
receive consecutive indices.</li>
<li><strong class="pname"><code>order</code></strong> (<code>int</code>) - the derivative order</li>
</ul></dd>
<dt>Returns: <a href="Scientific.Geometry.Vector-class.html"
class="link">Scientific.Geometry.Vector</a></dt>
<dd>a vector whose components are DerivVar objects</dd>
</dl>
</td></tr></table>
</div>
<a name="isDerivVar"></a>
<div>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr><td>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr valign="top"><td>
<h3 class="epydoc"><span class="sig"><span class="sig-name">isDerivVar</span>(<span class="sig-arg">x</span>)</span>
</h3>
</td><td align="right" valign="top"
>
</td>
</tr></table>
<dl class="fields">
<dt>Parameters:</dt>
<dd><ul class="nomargin-top">
<li><strong class="pname"><code>x</code></strong> - an arbitrary object</li>
</ul></dd>
<dt>Returns: <code>bool</code></dt>
<dd>True if x is a DerivVar object, False otherwise</dd>
</dl>
</td></tr></table>
</div>
<br />
<!-- ==================== NAVIGATION BAR ==================== -->
<table class="navbar" border="0" width="100%" cellpadding="0"
bgcolor="#a0c0ff" cellspacing="0">
<tr valign="middle">
<!-- Home link -->
<th> <a
href="Scientific-module.html">Home</a> </th>
<!-- Tree link -->
<th> <a
href="module-tree.html">Trees</a> </th>
<!-- Index link -->
<th> <a
href="identifier-index.html">Indices</a> </th>
<!-- Help link -->
<th> <a
href="help.html">Help</a> </th>
<!-- Project homepage -->
<th class="navbar" align="right" width="100%">
<table border="0" cellpadding="0" cellspacing="0">
<tr><th class="navbar" align="center"
><a class="navbar" target="_top" href="http://dirac.cnrs-orleans.fr/ScientificPython/">Scientific Python</a></th>
</tr></table></th>
</tr>
</table>
<table border="0" cellpadding="0" cellspacing="0" width="100%%">
<tr>
<td align="left" class="footer">
Generated by Epydoc 3.0.1 on Thu Dec 4 08:05:35 2008
</td>
<td align="right" class="footer">
<a target="mainFrame" href="http://epydoc.sourceforge.net"
>http://epydoc.sourceforge.net</a>
</td>
</tr>
</table>
<script type="text/javascript">
<!--
// Private objects are initially displayed (because if
// javascript is turned off then we want them to be
// visible); but by default, we want to hide them. So hide
// them unless we have a cookie that says to show them.
checkCookie();
// -->
</script>
</body>
</html>
|