/usr/lib/python2.7/dist-packages/spykeutils/tools.py is in python-spykeutils 0.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | import neo
import neo.description
import quantities as pq
import scipy as sp
import _scipy_quantities as spq
def apply_to_dict(fn, dictionary, *args):
""" Applies a function to all spike trains in a dictionary of spike train
sequences.
:param function fn: Function to apply. Should take a
:class:`neo.core.SpikeTrain` as first argument.
:param dict dictionary: Dictionary of sequences of
:class:`neo.core.SpikeTrain` objects to apply the function to.
:param args: Additional arguments which will be passed to ``fn``.
:returns: A new dictionary with the same keys as ``dictionary``.
:rtype: dict
"""
applied = {}
for k in dictionary:
applied[k] = [fn(st, *args) for st in dictionary[k]]
return applied
def bin_spike_trains(trains, sampling_rate, t_start=None, t_stop=None):
""" Creates binned representations of spike trains.
:param dict trains: A dictionary of sequences of
:class:`neo.core.SpikeTrain` objects.
:param sampling_rate: The sampling rate which will be used to bin
the spike trains as inverse time scalar.
:type sampling_rate: Quantity scalar
:type t_start: The desired time for the start of the first bin as time
scalar. It will be the minimum start time of all spike trains if
``None`` is passed.
:type t_start: Quantity scalar
:param t_stop: The desired time for the end of the last bin as time scalar.
It will be the maximum stop time of all spike trains if ``None`` is
passed.
:type t_stop: Quantity scalar
:returns: A dictionary (with the same indices as ``trains``) of lists
of spike train counts and the bin borders.
:rtype: dict, Quantity 1D with time units
"""
if t_start is None or t_stop is None:
max_start, max_stop = maximum_spike_train_interval(trains)
if t_start is None:
t_start = max_start
if t_stop is None:
t_stop = max_stop
t_start = t_start.rescale(t_stop.units)
duration = t_stop - t_start
num_bins = (sampling_rate * duration).simplified
bins = sp.arange(num_bins + 1) * (duration / num_bins) + t_start
return apply_to_dict(_bin_single_spike_train, trains, bins), bins
def _bin_single_spike_train(train, bins):
""" Return a binned representation of SpikeTrain object.
:param train: A spike train to bin.
:type train: :class:`neo.core.SpikeTrain`
:param bins: The bin edges, including the rightmost edge, with time units.
:type bins: Quantity 1D
:returns: The binned spike train.
:rtype: 1-D array
"""
return sp.histogram(train.rescale(bins.units), bins)[0]
def concatenate_spike_trains(trains):
""" Concatenates spike trains.
:param sequence trains: :class:`neo.core.SpikeTrain` objects to
concatenate.
:returns: A spike train consisting of the concatenated spike trains. The
spikes will be in the order of the given spike trains and ``t_start``
and ``t_stop`` will be set to the minimum and maximum value.
:rtype: :class:`neo.core.SpikeTrain`
"""
t_start, t_stop = maximum_spike_train_interval({0: trains})
return neo.SpikeTrain(
spq.concatenate([train.view(type=pq.Quantity) for train in trains]),
t_start=t_start, t_stop=t_stop)
def minimum_spike_train_interval(
trains, t_start=-sp.inf * pq.s, t_stop=sp.inf * pq.s):
""" Computes the maximum starting time and minimum end time that all
given spike trains share. This yields the shortest interval shared by all
spike trains.
:param dict trains: A dictionary of sequences of
:class:`neo.core.SpikeTrain` objects.
:param t_start: Minimal starting time to return.
:type t_start: Quantity scalar
:param t_stop: Maximum end time to return. If ``None``, infinity is used.
:type t_stop: Quantity scalar
:returns: Maximum shared t_start time and minimum shared t_stop time as
time scalars.
:rtype: Quantity scalar, Quantity scalar
"""
if t_stop is None:
t_stop = sp.inf * pq.s
# Load data and find shortest spike train
for st in trains.itervalues():
if len(st) > 0:
# Minimum length of spike of all spike trains for this unit
t_start = max(t_start, max((t.t_start for t in st)))
t_stop = min(t_stop, min((t.t_stop for t in st)))
return t_start, t_stop
def maximum_spike_train_interval(
trains, t_start=sp.inf * pq.s, t_stop=-sp.inf * pq.s):
""" Computes the minimum starting time and maximum end time of all
given spike trains. This yields an interval containing the spikes of
all spike trains.
:param dict trains: A dictionary of sequences of
:class:`neo.core.SpikeTrain` objects.
:param t_start: Maximum starting time to return.
:type t_start: Quantity scalar
:param t_stop: Minimum end time to return. If ``None``, infinity is used.
:type t_stop: Quantity scalar
:returns: Minimum t_start time and maximum t_stop time as time scalars.
:rtype: Quantity scalar, Quantity scalar
"""
if t_stop is None:
t_stop = sp.inf * pq.s
for st in trains.itervalues():
if len(st) > 0:
t_start = min(t_start, min((t.t_start for t in st)))
t_stop = max(t_stop, max((t.t_stop for t in st)))
return t_start, t_stop
def _handle_orphans(obj, remove):
""" Removes half-orphaned Spikes and SpikeTrains that occur when
removing an object upwards in the hierarchy.
"""
if isinstance(obj, neo.Segment):
for s in obj.spikes:
if s.unit:
if not remove:
s.segment = None
else:
try:
s.unit.spikes.remove(s)
except ValueError:
pass
for st in obj.spiketrains:
if st.unit:
if not remove:
st.segment = None
else:
try:
st.unit.spiketrains.remove(st)
except ValueError:
pass
elif isinstance(obj, neo.Unit):
for s in obj.spikes:
if s.segment:
if not remove:
s.unit = None
else:
try:
s.segment.spikes.remove(s)
except ValueError:
pass
for st in obj.spiketrains:
if st.segment:
if not remove:
st.unit = None
else:
try:
st.segment.spiketrains.remove(st)
except ValueError:
pass
elif isinstance(obj, neo.RecordingChannelGroup):
for u in obj.units:
_handle_orphans(u, remove)
def remove_from_hierarchy(obj, remove_half_orphans=True):
""" Removes a Neo object from the hierarchy it is embedded in. Mostly
downward links are removed (except for possible links in
:class:`neo.core.Spike` or :class:`neo.core.SpikeTrain` objects).
For example, when ``obj`` is a :class:`neo.core.Segment`, the link from
its parent :class:`neo.core.Block` will be severed. Also, all links to
the segment from its spikes and spike trains will be severed.
:param obj: The object to be removed.
:type obj: Neo object
:param bool remove_half_orphans: When True, :class:`neo.core.Spike`
and :class:`neo.core.SpikeTrain` belonging to a
:class:`neo.core.Segment` or :class:`neo.core.Unit` removed by
this function will be removed from the hierarchy as well, even
if they are still linked from a :class:`neo.core.Unit` or
:class:`neo.core.Segment`, respectively. In this case, their
links to the hierarchy defined by ``obj`` will be kept intact.
"""
classname = type(obj).__name__
# Parent for arbitrary object
if classname in neo.description.many_to_one_relationship:
for n in neo.description.many_to_one_relationship[classname]:
p = getattr(obj, n.lower())
if p is None:
continue
l = getattr(p, classname.lower() + 's', ())
try:
l.remove(obj)
except ValueError:
pass
# Many-to-many relationships
if isinstance(obj, neo.RecordingChannel):
for rcg in obj.recordingchannelgroups:
try:
idx = rcg.recordingchannels.index(obj)
if rcg.channel_indexes.shape[0] == len(rcg.recordingchannels):
rcg.channel_indexes = sp.delete(rcg.channel_indexes, idx)
if rcg.channel_names.shape[0] == len(rcg.recordingchannels):
rcg.channel_names = sp.delete(rcg.channel_names, idx)
rcg.recordingchannels.remove(obj)
except ValueError:
pass
if isinstance(obj, neo.RecordingChannelGroup):
for rc in obj.recordingchannels:
try:
rc.recordingchannelgroups.remove(obj)
except ValueError:
pass
_handle_orphans(obj, remove_half_orphans)
def extract_spikes(train, signals, length, align_time):
""" Extract spikes with waveforms from analog signals using a spike train.
Spikes that are too close to the beginning or end of the shortest signal
to be fully extracted are ignored.
:type train: :class:`neo.core.SpikeTrain`
:param train: The spike times.
:param sequence signals: A sequence of :class:`neo.core.AnalogSignal`
objects from which the spikes are extracted. The waveforms of
the returned spikes are extracted from these signals in the
same order they are given.
:type length: Quantity scalar
:param length: The length of the waveform to extract as time scalar.
:type align_time: Quantity scalar
:param align_time: The alignment time of the spike times as time scalar.
This is the time delta from the start of the extracted waveform
to the exact time of the spike.
:returns: A list of :class:`neo.core.Spike` objects, one for each
time point in ``train``. All returned spikes include their
``waveform`` property.
:rtype: list
"""
if not signals:
raise ValueError('No signals to extract spikes from')
ref = signals[0]
for s in signals[1:]:
if ref.sampling_rate != s.sampling_rate:
raise ValueError(
'All signals for spike extraction need the same sampling rate')
wave_unit = signals[0].units
srate = signals[0].sampling_rate
end = min(s.shape[0] for s in signals)
aligned_train = train - align_time
cut_samples = int((length * srate).simplified)
st = sp.asarray((aligned_train * srate).simplified)
# Find extraction epochs
st_ok = (st >= 0) * (st < end - cut_samples)
epochs = sp.vstack((st[st_ok], st[st_ok] + cut_samples)).T
nspikes = epochs.shape[0]
if not nspikes:
return []
# Create data
data = sp.vstack([sp.asarray(s.rescale(wave_unit)) for s in signals])
nc = len(signals)
spikes = []
for s in xrange(nspikes):
waveform = sp.zeros((cut_samples, nc))
for c in xrange(nc):
waveform[:, c] = \
data[c, epochs[s, 0]:epochs[s, 1]]
spikes.append(neo.Spike(train[st_ok][s], waveform=waveform * wave_unit,
sampling_rate=srate))
return spikes
|