/usr/lib/python2.7/dist-packages/tables/table.py is in python-tables 3.1.1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 | # -*- coding: utf-8 -*-
########################################################################
#
# License: BSD
# Created: September 4, 2002
# Author: Francesc Alted - faltet@pytables.com
#
# $Id$
#
########################################################################
"""Here is defined the Table class."""
import sys
import math
import warnings
import os.path
from time import time
from functools import reduce as _reduce
import numpy
import numexpr
from tables import tableextension
from tables.lrucacheextension import ObjectCache, NumCache
from tables.atom import Atom
from tables.conditions import compile_condition
from numexpr.necompiler import (
getType as numexpr_getType, double, is_cpu_amd_intel)
from numexpr.expressions import functions as numexpr_functions
from tables.flavor import flavor_of, array_as_internal, internal_to_flavor
from tables.utils import is_idx, lazyattr, SizeType, NailedDict as CacheDict
from tables.leaf import Leaf
from tables.description import (
IsDescription, Description, Col, descr_from_dtype)
from tables.exceptions import (NodeError, HDF5ExtError, PerformanceWarning,
OldIndexWarning, NoSuchNodeError)
from tables.utilsextension import get_nested_field
from tables.path import join_path, split_path
from tables.index import (
OldIndex, default_index_filters, default_auto_index, Index, IndexesDescG,
IndexesTableG)
profile = False
# profile = True # Uncomment for profiling
if profile:
from tables.utils import show_stats
from tables._past import previous_api, previous_api_property
# 2.2: Added support for complex types. Introduced in version 0.9.
# 2.2.1: Added suport for time types.
# 2.3: Changed the indexes naming schema.
# 2.4: Changed indexes naming schema (again).
# 2.5: Added the FIELD_%d_FILL attributes.
# 2.6: Added the FLAVOR attribute (optional).
# 2.7: Numeric and numarray flavors are gone.
obversion = "2.7" # The Table VERSION number
try:
# int_, long_ are only available in numexpr >= 2.1
from numexpr.necompiler import int_, long_
except ImportError:
int_ = int
long_ = long
# Maps NumPy types to the types used by Numexpr.
_nxtype_from_nptype = {
numpy.bool_: bool,
numpy.int8: int_,
numpy.int16: int_,
numpy.int32: int_,
numpy.int64: long_,
numpy.uint8: int_,
numpy.uint16: int_,
numpy.uint32: long_,
numpy.uint64: long_,
numpy.float32: float,
numpy.float64: double,
numpy.complex64: complex,
numpy.complex128: complex,
numpy.bytes_: bytes,
}
if sys.version_info[0] > 2:
_nxtype_from_nptype[numpy.str_] = str
if hasattr(numpy, 'float16'):
_nxtype_from_nptype[numpy.float16] = float # XXX: check
if hasattr(numpy, 'float96'):
_nxtype_from_nptype[numpy.float96] = double # XXX: check
if hasattr(numpy, 'float128'):
_nxtype_from_nptype[numpy.float128] = double # XXX: check
if hasattr(numpy, 'complec192'):
_nxtype_from_nptype[numpy.complex192] = complex # XXX: check
if hasattr(numpy, 'complex256'):
_nxtype_from_nptype[numpy.complex256] = complex # XXX: check
# The NumPy scalar type corresponding to `SizeType`.
_npsizetype = numpy.array(SizeType(0)).dtype.type
def _index_name_of(node):
return '_i_%s' % node._v_name
_indexNameOf = previous_api(_index_name_of)
def _index_pathname_of(node):
nodeParentPath = split_path(node._v_pathname)[0]
return join_path(nodeParentPath, _index_name_of(node))
_indexPathnameOf = previous_api(_index_pathname_of)
def _index_pathname_of_column(table, colpathname):
return join_path(_index_pathname_of(table), colpathname)
_indexPathnameOfColumn = previous_api(_index_pathname_of_column)
# The next are versions that work with just paths (i.e. we don't need
# a node instance for using them, which can be critical in certain
# situations)
def _index_name_of_(nodeName):
return '_i_%s' % nodeName
_indexNameOf_ = previous_api(_index_name_of_)
def _index_pathname_of_(nodePath):
nodeParentPath, nodeName = split_path(nodePath)
return join_path(nodeParentPath, _index_name_of_(nodeName))
_indexPathnameOf_ = previous_api(_index_pathname_of_)
def _index_pathname_of_column_(tablePath, colpathname):
return join_path(_index_pathname_of_(tablePath), colpathname)
_indexPathnameOfColumn_ = previous_api(_index_pathname_of_column_)
def _table__setautoindex(self, auto):
auto = bool(auto)
try:
indexgroup = self._v_file._get_node(_index_pathname_of(self))
except NoSuchNodeError:
indexgroup = create_indexes_table(self)
indexgroup.auto = auto
# Update the cache in table instance as well
self._autoindex = auto
_table__setautoIndex = previous_api(_table__setautoindex)
# **************** WARNING! ***********************
# This function can be called during the destruction time of a table
# so measures have been taken so that it doesn't have to revive
# another node (which can fool the LRU cache). The solution devised
# has been to add a cache for autoindex (Table._autoindex), populate
# it in creation time of the cache (which is a safe period) and then
# update the cache whenever it changes.
# This solves the error when running test_indexes.py ManyNodesTestCase.
# F. Alted 2007-04-20
# **************************************************
def _table__getautoindex(self):
if self._autoindex is None:
try:
indexgroup = self._v_file._get_node(_index_pathname_of(self))
except NoSuchNodeError:
self._autoindex = default_auto_index # update cache
return self._autoindex
else:
self._autoindex = indexgroup.auto # update cache
return self._autoindex
else:
# The value is in cache, return it
return self._autoindex
_table__getautoIndex = previous_api(_table__getautoindex)
_table__autoindex = property(
_table__getautoindex, _table__setautoindex, None,
"""Automatically keep column indexes up to date?
Setting this value states whether existing indexes should be
automatically updated after an append operation or recomputed
after an index-invalidating operation (i.e. removal and
modification of rows). The default is true.
This value gets into effect whenever a column is altered. If you
don't have automatic indexing activated and you want to do an an
immediate update use `Table.flush_rows_to_index()`; for an immediate
reindexing of invalidated indexes, use `Table.reindex_dirty()`.
This value is persistent.
""")
_table__autoIndex = previous_api(_table__autoindex)
def restorecache(self):
# Define a cache for sparse table reads
params = self._v_file.params
chunksize = self._v_chunkshape[0]
nslots = params['TABLE_MAX_SIZE'] / (chunksize * self._v_dtype.itemsize)
self._chunkcache = NumCache((nslots, chunksize), self._v_dtype,
'table chunk cache')
self._seqcache = ObjectCache(params['ITERSEQ_MAX_SLOTS'],
params['ITERSEQ_MAX_SIZE'],
'Iter sequence cache')
self._dirtycache = False
def _table__where_indexed(self, compiled, condition, condvars,
start, stop, step):
if profile:
tref = time()
if profile:
show_stats("Entering table_whereIndexed", tref)
self._use_index = True
# Clean the table caches for indexed queries if needed
if self._dirtycache:
restorecache(self)
# Get the values in expression that are not columns
values = []
for key, value in condvars.iteritems():
if isinstance(value, numpy.ndarray):
values.append((key, value.item()))
# Build a key for the sequence cache
seqkey = (condition, tuple(values), (start, stop, step))
# Do a lookup in sequential cache for this query
nslot = self._seqcache.getslot(seqkey)
if nslot >= 0:
# Get the row sequence from the cache
seq = self._seqcache.getitem(nslot)
if len(seq) == 0:
return None
seq = numpy.array(seq, dtype='int64')
# Correct the ranges in cached sequence
if (start, stop, step) != (0, self.nrows, 1):
seq = seq[(seq >= start) & (
seq < stop) & ((seq - start) % step == 0)]
return self.itersequence(seq)
else:
# No luck. Set row sequence to empty. It will be populated
# in the iterator. If not possible, the slot entry will be
# removed there.
self._nslotseq = self._seqcache.setitem(seqkey, [], 1)
# Compute the chunkmap for every index in indexed expression
idxexprs = compiled.index_expressions
strexpr = compiled.string_expression
cmvars = {}
tcoords = 0
for i, idxexpr in enumerate(idxexprs):
var, ops, lims = idxexpr
col = condvars[var]
index = col.index
assert index is not None, "the chosen column is not indexed"
assert not index.dirty, "the chosen column has a dirty index"
# Get the number of rows that the indexed condition yields.
range_ = index.get_lookup_range(ops, lims)
ncoords = index.search(range_)
tcoords += ncoords
if index.reduction == 1 and ncoords == 0:
# No values from index condition, thus the chunkmap should be empty
nrowsinchunk = self.chunkshape[0]
nchunks = long(math.ceil(float(self.nrows) / nrowsinchunk))
chunkmap = numpy.zeros(shape=nchunks, dtype="bool")
else:
# Get the chunkmap from the index
chunkmap = index.get_chunkmap()
# Assign the chunkmap to the cmvars dictionary
cmvars["e%d" % i] = chunkmap
if index.reduction == 1 and tcoords == 0:
# No candidates found in any indexed expression component, so leave now
return None
# Compute the final chunkmap
chunkmap = numexpr.evaluate(strexpr, cmvars)
# Method .any() is twice as faster than method .sum()
if not chunkmap.any():
# The chunkmap is empty
return None
if profile:
show_stats("Exiting table_whereIndexed", tref)
return chunkmap
_table__whereIndexed = previous_api(_table__where_indexed)
def create_indexes_table(table):
itgroup = IndexesTableG(
table._v_parent, _index_name_of(table),
"Indexes container for table " + table._v_pathname, new=True)
return itgroup
createIndexesTable = previous_api(create_indexes_table)
def create_indexes_descr(igroup, dname, iname, filters):
idgroup = IndexesDescG(
igroup, iname,
"Indexes container for sub-description " + dname,
filters=filters, new=True)
return idgroup
createIndexesDescr = previous_api(create_indexes_descr)
def _column__create_index(self, optlevel, kind, filters, tmp_dir,
blocksizes, verbose):
name = self.name
table = self.table
dtype = self.dtype
descr = self.descr
index = self.index
get_node = table._v_file._get_node
# Warn if the index already exists
if index:
raise ValueError("%s for column '%s' already exists. If you want to "
"re-create it, please, try with reindex() method "
"better" % (str(index), str(self.pathname)))
# Check that the datatype is indexable.
if dtype.str[1:] == 'u8':
raise NotImplementedError(
"indexing 64-bit unsigned integer columns "
"is not supported yet, sorry")
if dtype.kind == 'c':
raise TypeError("complex columns can not be indexed")
if dtype.shape != ():
raise TypeError("multidimensional columns can not be indexed")
# Get the indexes group for table, and if not exists, create it
try:
itgroup = get_node(_index_pathname_of(table))
except NoSuchNodeError:
itgroup = create_indexes_table(table)
# Create the necessary intermediate groups for descriptors
idgroup = itgroup
dname = ""
pathname = descr._v_pathname
if pathname != '':
inames = pathname.split('/')
for iname in inames:
if dname == '':
dname = iname
else:
dname += '/' + iname
try:
idgroup = get_node('%s/%s' % (itgroup._v_pathname, dname))
except NoSuchNodeError:
idgroup = create_indexes_descr(idgroup, dname, iname, filters)
# Create the atom
assert dtype.shape == ()
atom = Atom.from_dtype(numpy.dtype((dtype, (0,))))
# Protection on tables larger than the expected rows (perhaps the
# user forgot to pass this parameter to the Table constructor?)
expectedrows = table._v_expectedrows
if table.nrows > expectedrows:
expectedrows = table.nrows
# Create the index itself
index = Index(
idgroup, name, atom=atom,
title="Index for %s column" % name,
kind=kind,
optlevel=optlevel,
filters=filters,
tmp_dir=tmp_dir,
expectedrows=expectedrows,
byteorder=table.byteorder,
blocksizes=blocksizes)
table._set_column_indexing(self.pathname, True)
# Feed the index with values
# Add rows to the index if necessary
if table.nrows > 0:
indexedrows = table._add_rows_to_index(
self.pathname, 0, table.nrows, lastrow=True, update=False)
else:
indexedrows = 0
index.dirty = False
table._indexedrows = indexedrows
table._unsaved_indexedrows = table.nrows - indexedrows
# Optimize the index that has been already filled-up
index.optimize(verbose=verbose)
# We cannot do a flush here because when reindexing during a
# flush, the indexes are created anew, and that creates a nested
# call to flush().
# table.flush()
return indexedrows
_column__createIndex = previous_api(_column__create_index)
class _ColIndexes(dict):
"""Provides a nice representation of column indexes."""
def __repr__(self):
"""Gives a detailed Description column representation."""
rep = [' \"%s\": %s' % (k, self[k]) for k in self.iterkeys()]
return '{\n %s}' % (',\n '.join(rep))
class Table(tableextension.Table, Leaf):
"""This class represents heterogeneous datasets in an HDF5 file.
Tables are leaves (see the Leaf class in :ref:`LeafClassDescr`) whose data
consists of a unidimensional sequence of *rows*, where each row contains
one or more *fields*. Fields have an associated unique *name* and
*position*, with the first field having position 0. All rows have the same
fields, which are arranged in *columns*.
Fields can have any type supported by the Col class (see
:ref:`ColClassDescr`) and its descendants, which support multidimensional
data. Moreover, a field can be *nested* (to an arbitrary depth), meaning
that it includes further fields inside. A field named x inside a nested
field a in a table can be accessed as the field a/x (its *path name*) from
the table.
The structure of a table is declared by its description, which is made
available in the Table.description attribute (see :class:`Table`).
This class provides new methods to read, write and search table data
efficiently. It also provides special Python methods to allow accessing
the table as a normal sequence or array (with extended slicing supported).
PyTables supports *in-kernel* searches working simultaneously on several
columns using complex conditions. These are faster than selections using
Python expressions. See the :meth:`Table.where` method for more
information on in-kernel searches.
Non-nested columns can be *indexed*. Searching an indexed column can be
several times faster than searching a non-nested one. Search methods
automatically take advantage of indexing where available.
When iterating a table, an object from the Row (see :ref:`RowClassDescr`)
class is used. This object allows to read and write data one row at a
time, as well as to perform queries which are not supported by in-kernel
syntax (at a much lower speed, of course).
Objects of this class support access to individual columns via *natural
naming* through the :attr:`Table.cols` accessor. Nested columns are
mapped to Cols instances, and non-nested ones to Column instances.
See the Column class in :ref:`ColumnClassDescr` for examples of this
feature.
Parameters
----------
parentnode
The parent :class:`Group` object.
.. versionchanged:: 3.0
Renamed from *parentNode* to *parentnode*.
name : str
The name of this node in its parent group.
description
An IsDescription subclass or a dictionary where the keys are the field
names, and the values the type definitions. In addition, a pure NumPy
dtype is accepted. If None, the table metadata is read from disk,
else, it's taken from previous parameters.
title
Sets a TITLE attribute on the HDF5 table entity.
filters : Filters
An instance of the Filters class that provides information about the
desired I/O filters to be applied during the life of this object.
expectedrows
A user estimate about the number of rows that will be on table. If not
provided, the default value is ``EXPECTED_ROWS_TABLE`` (see
``tables/parameters.py``). If you plan to save bigger tables, try
providing a guess; this will optimize the HDF5 B-Tree creation and
management process time and memory used.
chunkshape
The shape of the data chunk to be read or written as a single HDF5 I/O
operation. The filters are applied to those chunks of data. Its rank
for tables has to be 1. If ``None``, a sensible value is calculated
based on the `expectedrows` parameter (which is recommended).
byteorder
The byteorder of the data *on-disk*, specified as 'little' or 'big'. If
this is not specified, the byteorder is that of the platform, unless
you passed a recarray as the `description`, in which case the recarray
byteorder will be chosen.
Notes
-----
The instance variables below are provided in addition to those in
Leaf (see :ref:`LeafClassDescr`). Please note that there are several
col* dictionaries to ease retrieving information about a column
directly by its path name, avoiding the need to walk through
Table.description or Table.cols.
.. rubric:: Table attributes
.. attribute:: coldescrs
Maps the name of a column to its Col description (see
:ref:`ColClassDescr`).
.. attribute:: coldflts
Maps the name of a column to its default value.
.. attribute:: coldtypes
Maps the name of a column to its NumPy data type.
.. attribute:: colindexed
Is the column which name is used as a key indexed?
.. attribute:: colinstances
Maps the name of a column to its Column (see
:ref:`ColumnClassDescr`) or Cols (see :ref:`ColsClassDescr`)
instance.
.. attribute:: colnames
A list containing the names of *top-level* columns in the table.
.. attribute:: colpathnames
A list containing the pathnames of *bottom-level* columns in
the table.
These are the leaf columns obtained when walking the table
description left-to-right, bottom-first. Columns inside a
nested column have slashes (/) separating name components in
their pathname.
.. attribute:: cols
A Cols instance that provides *natural naming* access to
non-nested (Column, see :ref:`ColumnClassDescr`) and nested
(Cols, see :ref:`ColsClassDescr`) columns.
.. attribute:: coltypes
Maps the name of a column to its PyTables data type.
.. attribute:: description
A Description instance (see :ref:`DescriptionClassDescr`)
reflecting the structure of the table.
.. attribute:: extdim
The index of the enlargeable dimension (always 0 for tables).
.. attribute:: indexed
Does this table have any indexed columns?
.. attribute:: nrows
The current number of rows in the table.
"""
# Class identifier.
_c_classid = 'TABLE'
_c_classId = previous_api_property('_c_classid')
_v_objectId = previous_api_property('_v_objectid')
# Properties
# ~~~~~~~~~~
@lazyattr
def row(self):
"""The associated Row instance (see :ref:`RowClassDescr`)."""
return tableextension.Row(self)
@lazyattr
def dtype(self):
"""The NumPy ``dtype`` that most closely matches this table."""
return self.description._v_dtype
# Read-only shorthands
# ````````````````````
shape = property(
lambda self: (self.nrows,), None, None,
"The shape of this table.")
rowsize = property(
lambda self: self.description._v_dtype.itemsize, None, None,
"The size in bytes of each row in the table.")
size_in_memory = property(
lambda self: self.nrows * self.rowsize, None, None,
"""The size of this table's data in bytes when it is fully loaded into
memory. This may be used in combination with size_on_disk to calculate
the compression ratio of the data.""")
# Lazy attributes
# ```````````````
@lazyattr
def _v_iobuf(self):
"""A buffer for doing I/O."""
return self._get_container(self.nrowsinbuf)
@lazyattr
def _v_wdflts(self):
"""The defaults for writing in recarray format."""
# First, do a check to see whether we need to set default values
# different from 0 or not.
for coldflt in self.coldflts.itervalues():
if isinstance(coldflt, numpy.ndarray) or coldflt:
break
else:
# No default different from 0 found. Returning None.
return None
wdflts = self._get_container(1)
for colname, coldflt in self.coldflts.iteritems():
ra = get_nested_field(wdflts, colname)
ra[:] = coldflt
return wdflts
@lazyattr
def _colunaligned(self):
"""The pathnames of unaligned, *unidimensional* columns."""
colunaligned, rarr = [], self._get_container(0)
for colpathname in self.colpathnames:
carr = get_nested_field(rarr, colpathname)
if not carr.flags.aligned and carr.ndim == 1:
colunaligned.append(colpathname)
return frozenset(colunaligned)
# Index-related properties
# ````````````````````````
autoindex = _table__autoindex
"""Automatically keep column indexes up to date?
Setting this value states whether existing indexes should be automatically
updated after an append operation or recomputed after an index-invalidating
operation (i.e. removal and modification of rows). The default is true.
This value gets into effect whenever a column is altered. If you don't have
automatic indexing activated and you want to do an immediate update use
:meth:`Table.flush_rows_to_index`; for immediate reindexing of invalidated
indexes, use :meth:`Table.reindex_dirty`.
This value is persistent.
.. versionchanged:: 3.0
The *autoIndex* property has been renamed into *autoindex*.
"""
autoIndex = previous_api_property('autoindex')
indexedcolpathnames = property(
lambda self: [_colpname for _colpname in self.colpathnames
if self.colindexed[_colpname]],
None, None,
"""List of pathnames of indexed columns in the table.""")
colindexes = property(
lambda self: _ColIndexes(
((_colpname, self.cols._f_col(_colpname).index)
for _colpname in self.colpathnames
if self.colindexed[_colpname])),
None, None,
"""A dictionary with the indexes of the indexed columns.""")
_dirtyindexes = property(
lambda self: self._condition_cache._nailcount > 0,
None, None,
"""Whether some index in table is dirty.""")
# Other methods
# ~~~~~~~~~~~~~
def __init__(self, parentnode, name,
description=None, title="", filters=None,
expectedrows=None, chunkshape=None,
byteorder=None, _log=True):
self._v_new = new = description is not None
"""Is this the first time the node has been created?"""
self._v_new_title = title
"""New title for this node."""
self._v_new_filters = filters
"""New filter properties for this node."""
self.extdim = 0 # Tables only have one dimension currently
"""The index of the enlargeable dimension (always 0 for tables)."""
self._v_recarray = None
"""A structured array to be stored in the table."""
self._rabyteorder = None
"""The computed byteorder of the self._v_recarray."""
if expectedrows is None:
expectedrows = parentnode._v_file.params['EXPECTED_ROWS_TABLE']
self._v_expectedrows = expectedrows
"""The expected number of rows to be stored in the table."""
self.nrows = SizeType(0)
"""The current number of rows in the table."""
self.description = None
"""A Description instance (see :ref:`DescriptionClassDescr`)
reflecting the structure of the table."""
self._time64colnames = []
"""The names of ``Time64`` columns."""
self._strcolnames = []
"""The names of ``String`` columns."""
self._colenums = {}
"""Maps the name of an enumerated column to its ``Enum`` instance."""
self._v_chunkshape = None
"""Private storage for the `chunkshape` property of the leaf."""
self.indexed = False
"""Does this table have any indexed columns?"""
self._indexedrows = 0
"""Number of rows indexed in disk."""
self._unsaved_indexedrows = 0
"""Number of rows indexed in memory but still not in disk."""
self._listoldindexes = []
"""The list of columns with old indexes."""
self._autoindex = None
"""Private variable that caches the value for autoindex."""
self.colnames = []
"""A list containing the names of *top-level* columns in the table."""
self.colpathnames = []
"""A list containing the pathnames of *bottom-level* columns in the
table.
These are the leaf columns obtained when walking the
table description left-to-right, bottom-first. Columns inside a
nested column have slashes (/) separating name components in
their pathname.
"""
self.colinstances = {}
"""Maps the name of a column to its Column (see
:ref:`ColumnClassDescr`) or Cols (see :ref:`ColsClassDescr`)
instance."""
self.coldescrs = {}
"""Maps the name of a column to its Col description (see
:ref:`ColClassDescr`)."""
self.coltypes = {}
"""Maps the name of a column to its PyTables data type."""
self.coldtypes = {}
"""Maps the name of a column to its NumPy data type."""
self.coldflts = {}
"""Maps the name of a column to its default value."""
self.colindexed = {}
"""Is the column which name is used as a key indexed?"""
self._use_index = False
"""Whether an index can be used or not in a search. Boolean."""
self._where_condition = None
"""Condition function and argument list for selection of values."""
max_slots = parentnode._v_file.params['COND_CACHE_SLOTS']
self._condition_cache = CacheDict(max_slots)
"""Cache of already compiled conditions."""
self._exprvars_cache = {}
"""Cache of variables participating in numexpr expressions."""
self._enabled_indexing_in_queries = True
"""Is indexing enabled in queries? *Use only for testing.*"""
self._empty_array_cache = {}
"""Cache of empty arrays."""
self._v_dtype = None
"""The NumPy datatype fopr this table."""
self.cols = None
"""
A Cols instance that provides *natural naming* access to non-nested
(Column, see :ref:`ColumnClassDescr`) and nested (Cols, see
:ref:`ColsClassDescr`) columns.
"""
self._dirtycache = True
"""Whether the data caches are dirty or not. Initially set to yes."""
self._descflavor = None
"""Temporarily keeps the flavor of a description with data."""
# Initialize this object in case is a new Table
# Try purely descriptive description objects.
if new and isinstance(description, dict):
# Dictionary case
self.description = Description(description)
elif new and (type(description) == type(IsDescription)
and issubclass(description, IsDescription)):
# IsDescription subclass case
descr = description()
self.description = Description(descr.columns)
elif new and isinstance(description, Description):
# It is a Description instance already
self.description = description
# No description yet?
if new and self.description is None:
# Try NumPy dtype instances
if isinstance(description, numpy.dtype):
self.description, self._rabyteorder = \
descr_from_dtype(description)
# No description yet?
if new and self.description is None:
# Try structured array description objects.
try:
self._descflavor = flavor = flavor_of(description)
except TypeError: # probably not an array
pass
else:
if flavor == 'python':
nparray = numpy.rec.array(description)
else:
nparray = array_as_internal(description, flavor)
self.nrows = nrows = SizeType(nparray.size)
# If `self._v_recarray` is set, it will be used as the
# initial buffer.
if nrows > 0:
self._v_recarray = nparray
self.description, self._rabyteorder = \
descr_from_dtype(nparray.dtype)
# No description yet?
if new and self.description is None:
raise TypeError(
"the ``description`` argument is not of a supported type: "
"``IsDescription`` subclass, ``Description`` instance, "
"dictionary, or structured array")
# Check the chunkshape parameter
if new and chunkshape is not None:
if isinstance(chunkshape, (int, numpy.integer, long)):
chunkshape = (chunkshape,)
try:
chunkshape = tuple(chunkshape)
except TypeError:
raise TypeError(
"`chunkshape` parameter must be an integer or sequence "
"and you passed a %s" % type(chunkshape))
if len(chunkshape) != 1:
raise ValueError("`chunkshape` rank (length) must be 1: %r"
% (chunkshape,))
self._v_chunkshape = tuple(SizeType(s) for s in chunkshape)
super(Table, self).__init__(parentnode, name, new, filters,
byteorder, _log)
def _g_post_init_hook(self):
# We are putting here the index-related issues
# as well as filling general info for table
# This is needed because we need first the index objects created
# First, get back the flavor of input data (if any) for
# `Leaf._g_post_init_hook()`.
self._flavor, self._descflavor = self._descflavor, None
super(Table, self)._g_post_init_hook()
# Create a cols accessor.
self.cols = Cols(self, self.description)
# Place the `Cols` and `Column` objects into `self.colinstances`.
colinstances, cols = self.colinstances, self.cols
for colpathname in self.description._v_pathnames:
colinstances[colpathname] = cols._g_col(colpathname)
if self._v_new:
# Columns are never indexed on creation.
self.colindexed = dict((cpn, False) for cpn in self.colpathnames)
return
# The following code is only for opened tables.
# Do the indexes group exist?
indexesgrouppath = _index_pathname_of(self)
igroup = indexesgrouppath in self._v_file
oldindexes = False
for colobj in self.description._f_walk(type="Col"):
colname = colobj._v_pathname
# Is this column indexed?
if igroup:
indexname = _index_pathname_of_column(self, colname)
indexed = indexname in self._v_file
self.colindexed[colname] = indexed
if indexed:
column = self.cols._g_col(colname)
indexobj = column.index
if isinstance(indexobj, OldIndex):
indexed = False # Not a vaild index
oldindexes = True
self._listoldindexes.append(colname)
else:
# Tell the condition cache about columns with dirty
# indexes.
if indexobj.dirty:
self._condition_cache.nail()
else:
indexed = False
self.colindexed[colname] = False
if indexed:
self.indexed = True
if oldindexes: # this should only appear under 2.x Pro
warnings.warn(
"table ``%s`` has column indexes with PyTables 1.x format. "
"Unfortunately, this format is not supported in "
"PyTables 2.x series. Note that you can use the "
"``ptrepack`` utility in order to recreate the indexes. "
"The 1.x indexed columns found are: %s" %
(self._v_pathname, self._listoldindexes),
OldIndexWarning)
# It does not matter to which column 'indexobj' belongs,
# since their respective index objects share
# the same number of elements.
if self.indexed:
self._indexedrows = indexobj.nelements
self._unsaved_indexedrows = self.nrows - self._indexedrows
# Put the autoindex value in a cache variable
self._autoindex = self.autoindex
_g_postInitHook = previous_api(_g_post_init_hook)
def _getemptyarray(self, dtype):
# Acts as a cache for empty arrays
key = dtype
if key in self._empty_array_cache:
return self._empty_array_cache[key]
else:
self._empty_array_cache[
key] = arr = numpy.empty(shape=0, dtype=key)
return arr
def _get_container(self, shape):
"Get the appropriate buffer for data depending on table nestedness."
# This is *much* faster than the numpy.rec.array counterpart
return numpy.empty(shape=shape, dtype=self._v_dtype)
def _get_type_col_names(self, type_):
"""Returns a list containing 'type_' column names."""
return [colobj._v_pathname
for colobj in self.description._f_walk('Col')
if colobj.type == type_]
_getTypeColNames = previous_api(_get_type_col_names)
def _get_enum_map(self):
"""Return mapping from enumerated column names to `Enum` instances."""
enumMap = {}
for colobj in self.description._f_walk('Col'):
if colobj.kind == 'enum':
enumMap[colobj._v_pathname] = colobj.enum
return enumMap
_getEnumMap = previous_api(_get_enum_map)
def _g_create(self):
"""Create a new table on disk."""
# Warning against assigning too much columns...
# F. Alted 2005-06-05
maxColumns = self._v_file.params['MAX_COLUMNS']
if (len(self.description._v_names) > maxColumns):
warnings.warn(
"table ``%s`` is exceeding the recommended "
"maximum number of columns (%d); "
"be ready to see PyTables asking for *lots* of memory "
"and possibly slow I/O" % (self._v_pathname, maxColumns),
PerformanceWarning)
# 1. Create the HDF5 table (some parameters need to be computed).
# Fix the byteorder of the recarray and update the number of
# expected rows if necessary
if self._v_recarray is not None:
self._v_recarray = self._g_fix_byteorder_data(self._v_recarray,
self._rabyteorder)
if len(self._v_recarray) > self._v_expectedrows:
self._v_expectedrows = len(self._v_recarray)
# Compute a sensible chunkshape
if self._v_chunkshape is None:
self._v_chunkshape = self._calc_chunkshape(
self._v_expectedrows, self.rowsize, self.rowsize)
# Correct the byteorder, if still needed
if self.byteorder is None:
self.byteorder = sys.byteorder
# Cache some data which is already in the description.
# This is necessary to happen before creation time in order
# to be able to populate the self._v_wdflts
self._cache_description_data()
# After creating the table, ``self._v_objectid`` needs to be
# set because it is needed for setting attributes afterwards.
self._v_objectid = self._create_table(
self._v_new_title, self.filters.complib or '', obversion)
self._v_recarray = None # not useful anymore
self._rabyteorder = None # not useful anymore
# 2. Compute or get chunk shape and buffer size parameters.
self.nrowsinbuf = self._calc_nrowsinbuf()
# 3. Get field fill attributes from the table description and
# set them on disk.
if self._v_file.params['PYTABLES_SYS_ATTRS']:
set_attr = self._v_attrs._g__setattr
for i, colobj in enumerate(self.description._f_walk(type="Col")):
fieldname = "FIELD_%d_FILL" % i
set_attr(fieldname, colobj.dflt)
return self._v_objectid
def _g_open(self):
"""Opens a table from disk and read the metadata on it.
Creates an user description on the flight to easy the access to
the actual data.
"""
# 1. Open the HDF5 table and get some data from it.
self._v_objectid, description, chunksize = self._get_info()
self._v_expectedrows = self.nrows # the actual number of rows
# 2. Create an instance description to host the record fields.
validate = not self._v_file._isPTFile # only for non-PyTables files
self.description = Description(description, validate=validate)
# 3. Compute or get chunk shape and buffer size parameters.
if chunksize == 0:
self._v_chunkshape = self._calc_chunkshape(
self._v_expectedrows, self.rowsize, self.rowsize)
else:
self._v_chunkshape = (chunksize,)
self.nrowsinbuf = self._calc_nrowsinbuf()
# 4. If there are field fill attributes, get them from disk and
# set them in the table description.
if self._v_file.params['PYTABLES_SYS_ATTRS']:
if "FIELD_0_FILL" in self._v_attrs._f_list("sys"):
i = 0
get_attr = self._v_attrs.__getattr__
for objcol in self.description._f_walk(type="Col"):
colname = objcol._v_pathname
# Get the default values for each column
fieldname = "FIELD_%s_FILL" % i
defval = get_attr(fieldname)
if defval is not None:
objcol.dflt = defval
else:
warnings.warn("could not load default value "
"for the ``%s`` column of table ``%s``; "
"using ``%r`` instead"
% (colname, self._v_pathname,
objcol.dflt))
defval = objcol.dflt
i += 1
# Set also the correct value in the desc._v_dflts dictionary
for descr in self.description._f_walk(type="Description"):
names = descr._v_names
for i in range(len(names)):
objcol = descr._v_colobjects[names[i]]
if isinstance(objcol, Col):
descr._v_dflts[objcol._v_name] = objcol.dflt
# 5. Cache some data which is already in the description.
self._cache_description_data()
return self._v_objectid
def _cache_description_data(self):
"""Cache some data which is already in the description.
Some information is extracted from `self.description` to build
some useful (but redundant) structures:
* `self.colnames`
* `self.colpathnames`
* `self.coldescrs`
* `self.coltypes`
* `self.coldtypes`
* `self.coldflts`
* `self._v_dtype`
* `self._time64colnames`
* `self._strcolnames`
* `self._colenums`
"""
self.colnames = list(self.description._v_names)
self.colpathnames = [
col._v_pathname for col in self.description._f_walk()
if not hasattr(col, '_v_names')] # bottom-level
# Find ``time64`` column names.
self._time64colnames = self._get_type_col_names('time64')
# Find ``string`` column names.
self._strcolnames = self._get_type_col_names('string')
# Get a mapping of enumerated columns to their `Enum` instances.
self._colenums = self._get_enum_map()
# Get info about columns
for colobj in self.description._f_walk(type="Col"):
colname = colobj._v_pathname
# Get the column types, types and defaults
self.coldescrs[colname] = colobj
self.coltypes[colname] = colobj.type
self.coldtypes[colname] = colobj.dtype
self.coldflts[colname] = colobj.dflt
# Assign _v_dtype for this table
self._v_dtype = self.description._v_dtype
_cacheDescriptionData = previous_api(_cache_description_data)
def _get_column_instance(self, colpathname):
"""Get the instance of the column with the given `colpathname`.
If the column does not exist in the table, a `KeyError` is
raised.
"""
try:
return _reduce(getattr, colpathname.split('/'), self.description)
except AttributeError:
raise KeyError("table ``%s`` does not have a column named ``%s``"
% (self._v_pathname, colpathname))
_getColumnInstance = previous_api(_get_column_instance)
_check_column = _get_column_instance
def _disable_indexing_in_queries(self):
"""Force queries not to use indexing.
*Use only for testing.*
"""
if not self._enabled_indexing_in_queries:
return # already disabled
# The nail avoids setting/getting compiled conditions in/from
# the cache where indexing is used.
self._condition_cache.nail()
self._enabled_indexing_in_queries = False
_disableIndexingInQueries = previous_api(_disable_indexing_in_queries)
def _enable_indexing_in_queries(self):
"""Allow queries to use indexing.
*Use only for testing.*
"""
if self._enabled_indexing_in_queries:
return # already enabled
self._condition_cache.unnail()
self._enabled_indexing_in_queries = True
_enableIndexingInQueries = previous_api(_enable_indexing_in_queries)
def _required_expr_vars(self, expression, uservars, depth=1):
"""Get the variables required by the `expression`.
A new dictionary defining the variables used in the `expression`
is returned. Required variables are first looked up in the
`uservars` mapping, then in the set of top-level columns of the
table. Unknown variables cause a `NameError` to be raised.
When `uservars` is `None`, the local and global namespace where
the API callable which uses this method is called is sought
instead. This mechanism will not work as expected if this
method is not used *directly* from an API callable. To disable
this mechanism, just specify a mapping as `uservars`.
Nested columns and columns from other tables are not allowed
(`TypeError` and `ValueError` are raised, respectively). Also,
non-column variable values are converted to NumPy arrays.
`depth` specifies the depth of the frame in order to reach local
or global variables.
"""
# Get the names of variables used in the expression.
exprvarscache = self._exprvars_cache
if not expression in exprvarscache:
# Protection against growing the cache too much
if len(exprvarscache) > 256:
# Remove 10 (arbitrary) elements from the cache
for k in exprvarscache.keys()[:10]:
del exprvarscache[k]
cexpr = compile(expression, '<string>', 'eval')
exprvars = [var for var in cexpr.co_names
if var not in ['None', 'False', 'True']
and var not in numexpr_functions]
exprvarscache[expression] = exprvars
else:
exprvars = exprvarscache[expression]
# Get the local and global variable mappings of the user frame
# if no mapping has been explicitly given for user variables.
user_locals, user_globals = {}, {}
if uservars is None:
# We use specified depth to get the frame where the API
# callable using this method is called. For instance:
#
# * ``table._required_expr_vars()`` (depth 0) is called by
# * ``table._where()`` (depth 1) is called by
# * ``table.where()`` (depth 2) is called by
# * user-space functions (depth 3)
user_frame = sys._getframe(depth)
user_locals = user_frame.f_locals
user_globals = user_frame.f_globals
colinstances = self.colinstances
tblfile, tblpath = self._v_file, self._v_pathname
# Look for the required variables first among the ones
# explicitly provided by the user, then among implicit columns,
# then among external variables (only if no explicit variables).
reqvars = {}
for var in exprvars:
# Get the value.
if uservars is not None and var in uservars:
val = uservars[var]
elif var in colinstances:
val = colinstances[var]
elif uservars is None and var in user_locals:
val = user_locals[var]
elif uservars is None and var in user_globals:
val = user_globals[var]
else:
raise NameError("name ``%s`` is not defined" % var)
# Check the value.
if hasattr(val, 'pathname'): # non-nested column
if val.shape[1:] != ():
raise NotImplementedError(
"variable ``%s`` refers to "
"a multidimensional column, "
"not yet supported in conditions, sorry" % var)
if (val._table_file is not tblfile or
val._table_path != tblpath):
raise ValueError("variable ``%s`` refers to a column "
"which is not part of table ``%s``"
% (var, tblpath))
if val.dtype.str[1:] == 'u8':
raise NotImplementedError(
"variable ``%s`` refers to "
"a 64-bit unsigned integer column, "
"not yet supported in conditions, sorry; "
"please use regular Python selections" % var)
elif hasattr(val, '_v_colpathnames'): # nested column
raise TypeError(
"variable ``%s`` refers to a nested column, "
"not allowed in conditions" % var)
else: # only non-column values are converted to arrays
# XXX: not 100% sure about this
if isinstance(val, unicode):
val = numpy.asarray(val.encode('ascii'))
else:
val = numpy.asarray(val)
reqvars[var] = val
return reqvars
_requiredExprVars = previous_api(_required_expr_vars)
def _get_condition_key(self, condition, condvars):
"""Get the condition cache key for `condition` with `condvars`.
Currently, the key is a tuple of `condition`, column variables
names, normal variables names, column paths and variable paths
(all are tuples).
"""
# Variable names for column and normal variables.
colnames, varnames = [], []
# Column paths and types for each of the previous variable.
colpaths, vartypes = [], []
for (var, val) in condvars.iteritems():
if hasattr(val, 'pathname'): # column
colnames.append(var)
colpaths.append(val.pathname)
else: # array
try:
varnames.append(var)
vartypes.append(numexpr_getType(val)) # expensive
except ValueError:
# This is more clear than the error given by Numexpr.
raise TypeError("variable ``%s`` has data type ``%s``, "
"not allowed in conditions"
% (var, val.dtype.name))
colnames, varnames = tuple(colnames), tuple(varnames)
colpaths, vartypes = tuple(colpaths), tuple(vartypes)
condkey = (condition, colnames, varnames, colpaths, vartypes)
return condkey
_getConditionKey = previous_api(_get_condition_key)
def _compile_condition(self, condition, condvars):
"""Compile the `condition` and extract usable index conditions.
This method returns an instance of ``CompiledCondition``. See
the ``compile_condition()`` function in the ``conditions``
module for more information about the compilation process.
This method makes use of the condition cache when possible.
"""
# Look up the condition in the condition cache.
condcache = self._condition_cache
condkey = self._get_condition_key(condition, condvars)
compiled = condcache.get(condkey)
if compiled:
return compiled.with_replaced_vars(condvars) # bingo!
# Bad luck, the condition must be parsed and compiled.
# Fortunately, the key provides some valuable information. ;)
(condition, colnames, varnames, colpaths, vartypes) = condkey
# Extract more information from referenced columns.
typemap = dict(zip(varnames, vartypes)) # start with normal variables
indexedcols = []
for colname in colnames:
col = condvars[colname]
# Extract types from *all* the given variables.
coltype = col.dtype.type
typemap[colname] = _nxtype_from_nptype[coltype]
# Get the set of columns with usable indexes.
if (self._enabled_indexing_in_queries # not test in-kernel searches
and self.colindexed[col.pathname] and not col.index.dirty):
indexedcols.append(colname)
indexedcols = frozenset(indexedcols)
# Now let ``compile_condition()`` do the Numexpr-related job.
compiled = compile_condition(condition, typemap, indexedcols)
# Check that there actually are columns in the condition.
if not set(compiled.parameters).intersection(set(colnames)):
raise ValueError("there are no columns taking part "
"in condition ``%s``" % (condition,))
# Store the compiled condition in the cache and return it.
condcache[condkey] = compiled
return compiled.with_replaced_vars(condvars)
_compileCondition = previous_api(_compile_condition)
def will_query_use_indexing(self, condition, condvars=None):
"""Will a query for the condition use indexing?
The meaning of the condition and *condvars* arguments is the same as in
the :meth:`Table.where` method. If condition can use indexing, this
method returns a frozenset with the path names of the columns whose
index is usable. Otherwise, it returns an empty list.
This method is mainly intended for testing. Keep in mind that changing
the set of indexed columns or their dirtiness may make this method
return different values for the same arguments at different times.
"""
# Compile the condition and extract usable index conditions.
condvars = self._required_expr_vars(condition, condvars, depth=2)
compiled = self._compile_condition(condition, condvars)
# Return the columns in indexed expressions
idxcols = [condvars[var].pathname for var in compiled.index_variables]
return frozenset(idxcols)
willQueryUseIndexing = previous_api(will_query_use_indexing)
def where(self, condition, condvars=None,
start=None, stop=None, step=None):
"""Iterate over values fulfilling a condition.
This method returns a Row iterator (see :ref:`RowClassDescr`) which
only selects rows in the table that satisfy the given condition (an
expression-like string).
The condvars mapping may be used to define the variable names appearing
in the condition. condvars should consist of identifier-like strings
pointing to Column (see :ref:`ColumnClassDescr`) instances *of this
table*, or to other values (which will be converted to arrays). A
default set of condition variables is provided where each top-level,
non-nested column with an identifier-like name appears. Variables in
condvars override the default ones.
When condvars is not provided or None, the current local and global
namespace is sought instead of condvars. The previous mechanism is
mostly intended for interactive usage. To disable it, just specify a
(maybe empty) mapping as condvars.
If a range is supplied (by setting some of the start, stop or step
parameters), only the rows in that range and fulfilling the condition
are used. The meaning of the start, stop and step parameters is the
same as for Python slices.
When possible, indexed columns participating in the condition will be
used to speed up the search. It is recommended that you place the
indexed columns as left and out in the condition as possible. Anyway,
this method has always better performance than regular Python
selections on the table.
You can mix this method with regular Python selections in order to
support even more complex queries. It is strongly recommended that you
pass the most restrictive condition as the parameter to this method if
you want to achieve maximum performance.
.. warning::
When in the middle of a table row iterator, you should not
use methods that can change the number of rows in the table
(like :meth:`Table.append` or :meth:`Table.remove_rows`) or
unexpected errors will happen.
Examples
--------
::
>>> passvalues = [ row['col3'] for row in
... table.where('(col1 > 0) & (col2 <= 20)', step=5)
... if your_function(row['col2']) ]
>>> print("Values that pass the cuts:", passvalues)
Note that, from PyTables 1.1 on, you can nest several
iterators over the same table. For example::
for p in rout.where('pressure < 16'):
for q in rout.where('pressure < 9'):
for n in rout.where('energy < 10'):
print("pressure, energy:", p['pressure'], n['energy'])
In this example, iterators returned by :meth:`Table.where` have been
used, but you may as well use any of the other reading iterators that
Table objects offer. See the file :file:`examples/nested-iter.py` for
the full code.
.. note::
A special care should be taken when the query condition includes
string literals. Indeed Python 2 string literals are string of
bytes while Python 3 strings are unicode objects.
Let's assume that the table ``table`` has the following
structure::
class Record(IsDescription):
col1 = StringCol(4) # 4-character String of bytes
col2 = IntCol()
col3 = FloatCol()
The type of "col1" do not change depending on the Python version
used (of course) and it always corresponds to strings of bytes.
Any condition involving "col1" should be written using the
appropriate type for string literals in order to avoid
:exc:`TypeError`\ s.
The code below will work fine in Python 2 but will fail with a
:exc:`TypeError` in Python 3::
condition = 'col1 == "AAAA"'
for record in table.where(condition): # TypeError in Python3
# do something with "record"
The reason is that in Python 3 "condition" implies a comparison
between a string of bytes ("col1" contents) and an unicode literal
("AAAA").
The correct way to write the condition is::
condition = 'col1 == b"AAAA"'
.. versionchanged:: 3.0
The start, stop and step parameters now behave like in slice.
"""
return self._where(condition, condvars, start, stop, step)
def _where(self, condition, condvars, start=None, stop=None, step=None):
"""Low-level counterpart of `self.where()`."""
if profile:
tref = time()
if profile:
show_stats("Entering table._where", tref)
# Adjust the slice to be used.
(start, stop, step) = self._process_range_read(start, stop, step)
if start >= stop: # empty range, reset conditions
self._use_index = False
self._where_condition = None
return iter([])
# Compile the condition and extract usable index conditions.
condvars = self._required_expr_vars(condition, condvars, depth=3)
compiled = self._compile_condition(condition, condvars)
# Can we use indexes?
if compiled.index_expressions:
chunkmap = _table__where_indexed(
self, compiled, condition, condvars, start, stop, step)
if not isinstance(chunkmap, numpy.ndarray):
# If it is not a NumPy array it should be an iterator
# Reset conditions
self._use_index = False
self._where_condition = None
# ...and return the iterator
if chunkmap is not None:
return chunkmap
else:
chunkmap = None # default to an in-kernel query
args = [condvars[param] for param in compiled.parameters]
self._where_condition = (compiled.function, args)
row = tableextension.Row(self)
if profile:
show_stats("Exiting table._where", tref)
return row._iter(start, stop, step, chunkmap=chunkmap)
def read_where(self, condition, condvars=None, field=None,
start=None, stop=None, step=None):
"""Read table data fulfilling the given *condition*.
This method is similar to :meth:`Table.read`, having their common
arguments and return values the same meanings. However, only the rows
fulfilling the *condition* are included in the result.
The meaning of the other arguments is the same as in the
:meth:`Table.where` method.
"""
self._g_check_open()
coords = [p.nrow for p in
self._where(condition, condvars, start, stop, step)]
self._where_condition = None # reset the conditions
if len(coords) > 1:
cstart, cstop = coords[0], coords[-1] + 1
if cstop - cstart == len(coords):
# Chances for monotonically increasing row values. Refine.
inc_seq = numpy.alltrue(
numpy.arange(cstart, cstop) == numpy.array(coords))
if inc_seq:
return self.read(cstart, cstop, field=field)
return self.read_coordinates(coords, field)
readWhere = previous_api(read_where)
def append_where(self, dstTable, condition, condvars=None,
start=None, stop=None, step=None):
"""Append rows fulfilling the condition to the dstTable table.
dstTable must be capable of taking the rows resulting from the query,
i.e. it must have columns with the expected names and compatible
types. The meaning of the other arguments is the same as in the
:meth:`Table.where` method.
The number of rows appended to dstTable is returned as a result.
.. versionchanged:: 3.0
The *whereAppend* method has been renamed into *append_where*.
"""
self._g_check_open()
# Check that the destination file is not in read-only mode.
dstTable._v_file._check_writable()
# Row objects do not support nested columns, so we must iterate
# over the flat column paths. When rows support nesting,
# ``self.colnames`` can be directly iterated upon.
colNames = [colName for colName in self.colpathnames]
dstRow = dstTable.row
nrows = 0
for srcRow in self._where(condition, condvars, start, stop, step):
for colName in colNames:
dstRow[colName] = srcRow[colName]
dstRow.append()
nrows += 1
dstTable.flush()
return nrows
whereAppend = previous_api(append_where)
def get_where_list(self, condition, condvars=None, sort=False,
start=None, stop=None, step=None):
"""Get the row coordinates fulfilling the given condition.
The coordinates are returned as a list of the current flavor. sort
means that you want to retrieve the coordinates ordered. The default is
to not sort them.
The meaning of the other arguments is the same as in the
:meth:`Table.where` method.
"""
self._g_check_open()
coords = [p.nrow for p in
self._where(condition, condvars, start, stop, step)]
coords = numpy.array(coords, dtype=SizeType)
# Reset the conditions
self._where_condition = None
if sort:
coords = numpy.sort(coords)
return internal_to_flavor(coords, self.flavor)
getWhereList = previous_api(get_where_list)
def itersequence(self, sequence):
"""Iterate over a sequence of row coordinates.
Notes
-----
This iterator can be nested (see :meth:`Table.where` for an example).
"""
if not hasattr(sequence, '__getitem__'):
raise TypeError(("Wrong 'sequence' parameter type. Only sequences "
"are suported."))
# start, stop and step are necessary for the new iterator for
# coordinates, and perhaps it would be useful to add them as
# parameters in the future (not now, because I've just removed
# the `sort` argument for 2.1).
#
# *Important note*: Negative values for step are not supported
# for the general case, but only for the itersorted() and
# read_sorted() purposes! The self._process_range_read will raise
# an appropiate error.
# F. Alted 2008-09-18
# A.V. 20130513: _process_range_read --> _process_range
(start, stop, step) = self._process_range(None, None, None)
if (start > stop) or (len(sequence) == 0):
return iter([])
row = tableextension.Row(self)
return row._iter(start, stop, step, coords=sequence)
def _check_sortby_csi(self, sortby, checkCSI):
if isinstance(sortby, Column):
icol = sortby
elif isinstance(sortby, str):
icol = self.cols._f_col(sortby)
else:
raise TypeError(
"`sortby` can only be a `Column` or string object, "
"but you passed an object of type: %s" % type(sortby))
if icol.is_indexed and icol.index.kind == "full":
if checkCSI and not icol.index.is_csi:
# The index exists, but it is not a CSI one.
raise ValueError(
"Field `%s` must have associated a CSI index "
"in table `%s`, but the existing one is not. "
% (sortby, self))
return icol.index
else:
raise ValueError(
"Field `%s` must have associated a 'full' index "
"in table `%s`." % (sortby, self))
_check_sortby_CSI = previous_api(_check_sortby_csi)
def itersorted(self, sortby, checkCSI=False,
start=None, stop=None, step=None):
"""Iterate table data following the order of the index of sortby
column.
The sortby column must have associated a full index. If you want to
ensure a fully sorted order, the index must be a CSI one. You may want
to use the checkCSI argument in order to explicitly check for the
existence of a CSI index.
The meaning of the start, stop and step arguments is the same as in
:meth:`Table.read`.
.. versionchanged:: 3.0
If the *start* parameter is provided and *stop* is None then the
table is iterated from *start* to the last line.
In PyTables < 3.0 only one element was returned.
"""
index = self._check_sortby_csi(sortby, checkCSI)
# Adjust the slice to be used.
(start, stop, step) = self._process_range(start, stop, step,
warn_negstep=False)
if (start > stop and 0 < step) or (start < stop and 0 > step):
# Fall-back action is to return an empty iterator
return iter([])
row = tableextension.Row(self)
return row._iter(start, stop, step, coords=index)
def read_sorted(self, sortby, checkCSI=False, field=None,
start=None, stop=None, step=None):
"""Read table data following the order of the index of sortby column.
The sortby column must have associated a full index. If you want to
ensure a fully sorted order, the index must be a CSI one. You may want
to use the checkCSI argument in order to explicitly check for the
existence of a CSI index.
If field is supplied only the named column will be selected. If the
column is not nested, an *array* of the current flavor will be
returned; if it is, a *structured array* will be used instead. If no
field is specified, all the columns will be returned in a structured
array of the current flavor.
The meaning of the start, stop and step arguments is the same as in
:meth:`Table.read`.
.. versionchanged:: 3.0
The start, stop and step parameters now behave like in slice.
"""
self._g_check_open()
index = self._check_sortby_csi(sortby, checkCSI)
coords = index[start:stop:step]
return self.read_coordinates(coords, field)
readSorted = previous_api(read_sorted)
def iterrows(self, start=None, stop=None, step=None):
"""Iterate over the table using a Row instance.
If a range is not supplied, *all the rows* in the table are iterated
upon - you can also use the :meth:`Table.__iter__` special method for
that purpose. If you want to iterate over a given *range of rows* in
the table, you may use the start, stop and step parameters.
.. warning::
When in the middle of a table row iterator, you should not
use methods that can change the number of rows in the table
(like :meth:`Table.append` or :meth:`Table.remove_rows`) or
unexpected errors will happen.
See Also
--------
tableextension.Row : the table row iterator and field accessor
Examples
--------
::
result = [ row['var2'] for row in table.iterrows(step=5)
if row['var1'] <= 20 ]
Notes
-----
This iterator can be nested (see :meth:`Table.where` for an example).
.. versionchanged:: 3.0
If the *start* parameter is provided and *stop* is None then the
table is iterated from *start* to the last line.
In PyTables < 3.0 only one element was returned.
"""
(start, stop, step) = self._process_range(start, stop, step,
warn_negstep=False)
if (start > stop and 0 < step) or (start < stop and 0 > step):
# Fall-back action is to return an empty iterator
return iter([])
row = tableextension.Row(self)
return row._iter(start, stop, step)
def __iter__(self):
"""Iterate over the table using a Row instance.
This is equivalent to calling :meth:`Table.iterrows` with default
arguments, i.e. it iterates over *all the rows* in the table.
See Also
--------
tableextension.Row : the table row iterator and field accessor
Examples
--------
::
result = [ row['var2'] for row in table if row['var1'] <= 20 ]
Which is equivalent to::
result = [ row['var2'] for row in table.iterrows()
if row['var1'] <= 20 ]
Notes
-----
This iterator can be nested (see :meth:`Table.where` for an example).
"""
return self.iterrows()
def _read(self, start, stop, step, field=None, out=None):
"""Read a range of rows and return an in-memory object."""
select_field = None
if field:
if field not in self.coldtypes:
if field in self.description._v_names:
# Remember to select this field
select_field = field
field = None
else:
raise KeyError(("Field {0} not found in table "
"{1}").format(field, self))
else:
# The column hangs directly from the top
dtype_field = self.coldtypes[field]
# Return a rank-0 array if start > stop
if (start >= stop and 0 < step) or (start <= stop and 0 > step):
if field is None:
nra = self._get_container(0)
return nra
return numpy.empty(shape=0, dtype=dtype_field)
nrows = len(xrange(start, stop, step))
if out is None:
# Compute the shape of the resulting column object
if field:
# Create a container for the results
result = numpy.empty(shape=nrows, dtype=dtype_field)
else:
# Recarray case
result = self._get_container(nrows)
else:
# there is no fast way to byteswap, since different columns may
# have different byteorders
if not out.dtype.isnative:
raise ValueError(("output array must be in system's byteorder "
"or results will be incorrect"))
if field:
bytes_required = dtype_field.itemsize * nrows
else:
bytes_required = self.rowsize * nrows
if bytes_required != out.nbytes:
raise ValueError(('output array size invalid, got {0} bytes, '
'need {1} bytes').format(out.nbytes,
bytes_required))
if not out.flags['C_CONTIGUOUS']:
raise ValueError('output array not C contiguous')
result = out
# Call the routine to fill-up the resulting array
if step == 1 and not field:
# This optimization works three times faster than
# the row._fill_col method (up to 170 MB/s on a pentium IV @ 2GHz)
self._read_records(start, stop - start, result)
# Warning!: _read_field_name should not be used until
# H5TBread_fields_name in tableextension will be finished
# F. Alted 2005/05/26
# XYX Ho implementem per a PyTables 2.0??
elif field and step > 15 and 0:
# For step>15, this seems to work always faster than row._fill_col.
self._read_field_name(result, start, stop, step, field)
else:
self.row._fill_col(result, start, stop, step, field)
if select_field:
return result[select_field]
else:
return result
def read(self, start=None, stop=None, step=None, field=None, out=None):
"""Get data in the table as a (record) array.
The start, stop and step parameters can be used to select only
a *range of rows* in the table. Their meanings are the same as
in the built-in Python slices.
If field is supplied only the named column will be selected.
If the column is not nested, an *array* of the current flavor
will be returned; if it is, a *structured array* will be used
instead. If no field is specified, all the columns will be
returned in a structured array of the current flavor.
Columns under a nested column can be specified in the field
parameter by using a slash character (/) as a separator (e.g.
'position/x').
The out parameter may be used to specify a NumPy array to
receive the output data. Note that the array must have the
same size as the data selected with the other parameters.
Note that the array's datatype is not checked and no type
casting is performed, so if it does not match the datatype on
disk, the output will not be correct.
When specifying a single nested column with the field parameter,
and supplying an output buffer with the out parameter, the
output buffer must contain all columns in the table.
The data in all columns will be read into the output buffer.
However, only the specified nested column will be returned from
the method call.
When data is read from disk in NumPy format, the output will be
in the current system's byteorder, regardless of how it is
stored on disk. If the out parameter is specified, the output
array also must be in the current system's byteorder.
.. versionchanged:: 3.0
Added the *out* parameter. Also the start, stop and step
parameters now behave like in slice.
Examples
--------
Reading the entire table::
t.read()
Reading record n. 6::
t.read(6, 7)
Reading from record n. 6 to the end of the table::
t.read(6)
"""
self._g_check_open()
if field:
self._check_column(field)
if out is not None and self.flavor != 'numpy':
msg = ("Optional 'out' argument may only be supplied if array "
"flavor is 'numpy', currently is {0}").format(self.flavor)
raise TypeError(msg)
#(start, stop, step) = self._process_range_read(start, stop, step,
(start, stop, step) = self._process_range(start, stop, step,
warn_negstep=False)
arr = self._read(start, stop, step, field, out)
return internal_to_flavor(arr, self.flavor)
def _read_coordinates(self, coords, field=None):
"""Private part of `read_coordinates()` with no flavor conversion."""
coords = self._point_selection(coords)
ncoords = len(coords)
# Create a read buffer only if needed
if field is None or ncoords > 0:
# Doing a copy is faster when ncoords is small (<1000)
if ncoords < min(1000, self.nrowsinbuf):
result = self._v_iobuf[:ncoords].copy()
else:
result = self._get_container(ncoords)
# Do the real read
if ncoords > 0:
# Turn coords into an array of coordinate indexes, if necessary
if not (isinstance(coords, numpy.ndarray) and
coords.dtype.type is _npsizetype and
coords.flags.contiguous and
coords.flags.aligned):
# Get a contiguous and aligned coordinate array
coords = numpy.array(coords, dtype=SizeType)
self._read_elements(coords, result)
# Do the final conversions, if needed
if field:
if ncoords > 0:
result = get_nested_field(result, field)
else:
# Get an empty array from the cache
result = self._getemptyarray(self.coldtypes[field])
return result
_readCoordinates = previous_api(_read_coordinates)
def read_coordinates(self, coords, field=None):
"""Get a set of rows given their indexes as a (record) array.
This method works much like the :meth:`Table.read` method, but it uses
a sequence (coords) of row indexes to select the wanted columns,
instead of a column range.
The selected rows are returned in an array or structured array of the
current flavor.
"""
self._g_check_open()
result = self._read_coordinates(coords, field)
return internal_to_flavor(result, self.flavor)
readCoordinates = previous_api(read_coordinates)
def get_enum(self, colname):
"""Get the enumerated type associated with the named column.
If the column named colname (a string) exists and is of an enumerated
type, the corresponding Enum instance (see :ref:`EnumClassDescr`) is
returned. If it is not of an enumerated type, a TypeError is raised. If
the column does not exist, a KeyError is raised.
"""
self._check_column(colname)
try:
return self._colenums[colname]
except KeyError:
raise TypeError(
"column ``%s`` of table ``%s`` is not of an enumerated type"
% (colname, self._v_pathname))
getEnum = previous_api(get_enum)
def col(self, name):
"""Get a column from the table.
If a column called name exists in the table, it is read and returned as
a NumPy object. If it does not exist, a KeyError is raised.
Examples
--------
::
narray = table.col('var2')
That statement is equivalent to::
narray = table.read(field='var2')
Here you can see how this method can be used as a shorthand for the
:meth:`Table.read` method.
"""
return self.read(field=name)
def __getitem__(self, key):
"""Get a row or a range of rows from the table.
If key argument is an integer, the corresponding table row is returned
as a record of the current flavor. If key is a slice, the range of rows
determined by it is returned as a structured array of the current
flavor.
In addition, NumPy-style point selections are supported. In
particular, if key is a list of row coordinates, the set of rows
determined by it is returned. Furthermore, if key is an array of
boolean values, only the coordinates where key is True are returned.
Note that for the latter to work it is necessary that key list would
contain exactly as many rows as the table has.
Examples
--------
::
record = table[4]
recarray = table[4:1000:2]
recarray = table[[4,1000]] # only retrieves rows 4 and 1000
recarray = table[[True, False, ..., True]]
Those statements are equivalent to::
record = table.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)
recarray = table.read_coordinates([4,1000])
recarray = table.read_coordinates([True, False, ..., True])
Here, you can see how indexing can be used as a shorthand for the
:meth:`Table.read` and :meth:`Table.read_coordinates` methods.
"""
self._g_check_open()
if is_idx(key):
# Index out of range protection
if key >= self.nrows:
raise IndexError("Index out of range")
if key < 0:
# To support negative values
key += self.nrows
(start, stop, step) = self._process_range(key, key + 1, 1)
return self.read(start, stop, step)[0]
elif isinstance(key, slice):
(start, stop, step) = self._process_range(
key.start, key.stop, key.step)
return self.read(start, stop, step)
# Try with a boolean or point selection
elif type(key) in (list, tuple) or isinstance(key, numpy.ndarray):
return self._read_coordinates(key, None)
else:
raise IndexError("Invalid index or slice: %r" % (key,))
def __setitem__(self, key, value):
"""Set a row or a range of rows in the table.
It takes different actions depending on the type of the *key*
parameter: if it is an integer, the corresponding table row is
set to *value* (a record or sequence capable of being converted
to the table structure). If *key* is a slice, the row slice
determined by it is set to *value* (a record array or sequence
capable of being converted to the table structure).
In addition, NumPy-style point selections are supported. In
particular, if key is a list of row coordinates, the set of rows
determined by it is set to value. Furthermore, if key is an array of
boolean values, only the coordinates where key is True are set to
values from value. Note that for the latter to work it is necessary
that key list would contain exactly as many rows as the table has.
Examples
--------
::
# Modify just one existing row
table[2] = [456,'db2',1.2]
# Modify two existing rows
rows = numpy.rec.array([[457,'db1',1.2],[6,'de2',1.3]],
formats='i4,a3,f8')
table[1:30:2] = rows # modify a table slice
table[[1,3]] = rows # only modifies rows 1 and 3
table[[True,False,True]] = rows # only modifies rows 0 and 2
Which is equivalent to::
table.modify_rows(start=2, rows=[456,'db2',1.2])
rows = numpy.rec.array([[457,'db1',1.2],[6,'de2',1.3]],
formats='i4,a3,f8')
table.modify_rows(start=1, stop=3, step=2, rows=rows)
table.modify_coordinates([1,3,2], rows)
table.modify_coordinates([True, False, True], rows)
Here, you can see how indexing can be used as a shorthand for the
:meth:`Table.modify_rows` and :meth:`Table.modify_coordinates`
methods.
"""
self._g_check_open()
self._v_file._check_writable()
if is_idx(key):
# Index out of range protection
if key >= self.nrows:
raise IndexError("Index out of range")
if key < 0:
# To support negative values
key += self.nrows
return self.modify_rows(key, key + 1, 1, [value])
elif isinstance(key, slice):
(start, stop, step) = self._process_range(
key.start, key.stop, key.step)
return self.modify_rows(start, stop, step, value)
# Try with a boolean or point selection
elif type(key) in (list, tuple) or isinstance(key, numpy.ndarray):
return self.modify_coordinates(key, value)
else:
raise IndexError("Invalid index or slice: %r" % (key,))
def _save_buffered_rows(self, wbufRA, lenrows):
"""Update the indexes after a flushing of rows."""
self._open_append(wbufRA)
self._append_records(lenrows)
self._close_append()
if self.indexed:
self._unsaved_indexedrows += lenrows
# The table caches for indexed queries are dirty now
self._dirtycache = True
if self.autoindex:
# Flush the unindexed rows
self.flush_rows_to_index(_lastrow=False)
else:
# All the columns are dirty now
self._mark_columns_as_dirty(self.colpathnames)
_saveBufferedRows = previous_api(_save_buffered_rows)
def append(self, rows):
"""Append a sequence of rows to the end of the table.
The rows argument may be any object which can be converted to
a structured array compliant with the table structure
(otherwise, a ValueError is raised). This includes NumPy
structured arrays, lists of tuples or array records, and a
string or Python buffer.
Examples
--------
::
from tables import *
class Particle(IsDescription):
name = StringCol(16, pos=1) # 16-character String
lati = IntCol(pos=2) # integer
longi = IntCol(pos=3) # integer
pressure = Float32Col(pos=4) # float (single-precision)
temperature = FloatCol(pos=5) # double (double-precision)
fileh = open_file('test4.h5', mode='w')
table = fileh.create_table(fileh.root, 'table', Particle,
"A table")
# Append several rows in only one call
table.append([("Particle: 10", 10, 0, 10 * 10, 10**2),
("Particle: 11", 11, -1, 11 * 11, 11**2),
("Particle: 12", 12, -2, 12 * 12, 12**2)])
fileh.close()
"""
self._g_check_open()
self._v_file._check_writable()
if not self._chunked:
raise HDF5ExtError(
"You cannot append rows to a non-chunked table.", h5bt=False)
# Try to convert the object into a recarray compliant with table
try:
iflavor = flavor_of(rows)
if iflavor != 'python':
rows = array_as_internal(rows, iflavor)
# Works for Python structures and always copies the original,
# so the resulting object is safe for in-place conversion.
wbufRA = numpy.rec.array(rows, dtype=self._v_dtype)
except Exception as exc: # XXX
raise ValueError("rows parameter cannot be converted into a "
"recarray object compliant with table '%s'. "
"The error was: <%s>" % (str(self), exc))
lenrows = wbufRA.shape[0]
# If the number of rows to append is zero, don't do anything else
if lenrows > 0:
# Save write buffer to disk
self._save_buffered_rows(wbufRA, lenrows)
def _conv_to_recarr(self, obj):
"""Try to convert the object into a recarray."""
try:
iflavor = flavor_of(obj)
if iflavor != 'python':
obj = array_as_internal(obj, iflavor)
if hasattr(obj, "shape") and obj.shape == ():
# To allow conversion of scalars (void type) into arrays.
# See http://projects.scipy.org/scipy/numpy/ticket/315
# for discussion on how to pass buffers to constructors
# See also http://projects.scipy.org/scipy/numpy/ticket/348
recarr = numpy.array([obj], dtype=self._v_dtype)
else:
# Works for Python structures and always copies the original,
# so the resulting object is safe for in-place conversion.
recarr = numpy.rec.array(obj, dtype=self._v_dtype)
except Exception as exc: # XXX
raise ValueError("Object cannot be converted into a recarray "
"object compliant with table format '%s'. "
"The error was: <%s>" %
(self.description._v_nested_descr, exc))
return recarr
def modify_coordinates(self, coords, rows):
"""Modify a series of rows in positions specified in coords.
The values in the selected rows will be modified with the data given in
rows. This method returns the number of rows modified.
The possible values for the rows argument are the same as in
:meth:`Table.append`.
"""
if rows is None: # Nothing to be done
return SizeType(0)
# Convert the coordinates to something expected by HDF5
coords = self._point_selection(coords)
lcoords = len(coords)
if len(rows) < lcoords:
raise ValueError("The value has not enough elements to fill-in "
"the specified range")
# Convert rows into a recarray
recarr = self._conv_to_recarr(rows)
if len(coords) > 0:
# Do the actual update of rows
self._update_elements(lcoords, coords, recarr)
# Redo the index if needed
self._reindex(self.colpathnames)
return SizeType(lcoords)
modifyCoordinates = previous_api(modify_coordinates)
def modify_rows(self, start=None, stop=None, step=None, rows=None):
"""Modify a series of rows in the slice [start:stop:step].
The values in the selected rows will be modified with the data given in
rows. This method returns the number of rows modified. Should the
modification exceed the length of the table, an IndexError is raised
before changing data.
The possible values for the rows argument are the same as in
:meth:`Table.append`.
"""
if step is None:
step = 1
if rows is None: # Nothing to be done
return SizeType(0)
if start is None:
start = 0
if start < 0:
raise ValueError("'start' must have a positive value.")
if step < 1:
raise ValueError(
"'step' must have a value greater or equal than 1.")
if stop is None:
# compute the stop value. start + len(rows)*step does not work
stop = start + (len(rows) - 1) * step + 1
(start, stop, step) = self._process_range(start, stop, step)
if stop > self.nrows:
raise IndexError("This modification will exceed the length of "
"the table. Giving up.")
# Compute the number of rows to read.
nrows = len(xrange(start, stop, step))
if len(rows) != nrows:
raise ValueError("The value has different elements than the "
"specified range")
# Convert rows into a recarray
recarr = self._conv_to_recarr(rows)
lenrows = len(recarr)
if start + lenrows > self.nrows:
raise IndexError("This modification will exceed the length of the "
"table. Giving up.")
# Do the actual update
self._update_records(start, stop, step, recarr)
# Redo the index if needed
self._reindex(self.colpathnames)
return SizeType(lenrows)
modifyRows = previous_api(modify_rows)
def modify_column(self, start=None, stop=None, step=None,
column=None, colname=None):
"""Modify one single column in the row slice [start:stop:step].
The colname argument specifies the name of the column in the
table to be modified with the data given in column. This
method returns the number of rows modified. Should the
modification exceed the length of the table, an IndexError is
raised before changing data.
The *column* argument may be any object which can be converted
to a (record) array compliant with the structure of the column
to be modified (otherwise, a ValueError is raised). This
includes NumPy (record) arrays, lists of scalars, tuples or
array records, and a string or Python buffer.
"""
if step is None:
step = 1
if not isinstance(colname, str):
raise TypeError("The 'colname' parameter must be a string.")
self._v_file._check_writable()
if column is None: # Nothing to be done
return SizeType(0)
if start is None:
start = 0
if start < 0:
raise ValueError("'start' must have a positive value.")
if step < 1:
raise ValueError(
"'step' must have a value greater or equal than 1.")
# Get the column format to be modified:
objcol = self._get_column_instance(colname)
descr = [objcol._v_parent._v_nested_descr[objcol._v_pos]]
# Try to convert the column object into a NumPy ndarray
try:
# If the column is a recarray (or kind of), convert into ndarray
if hasattr(column, 'dtype') and column.dtype.kind == 'V':
column = numpy.rec.array(column, dtype=descr).field(0)
else:
# Make sure the result is always a *copy* of the original,
# so the resulting object is safe for in-place conversion.
iflavor = flavor_of(column)
column = array_as_internal(column, iflavor)
except Exception as exc: # XXX
raise ValueError("column parameter cannot be converted into a "
"ndarray object compliant with specified column "
"'%s'. The error was: <%s>" % (str(column), exc))
# Get rid of single-dimensional dimensions
column = column.squeeze()
if column.shape == ():
# Oops, stripped off to much dimensions
column.shape = (1,)
if stop is None:
# compute the stop value. start + len(rows)*step does not work
stop = start + (len(column) - 1) * step + 1
(start, stop, step) = self._process_range(start, stop, step)
if stop > self.nrows:
raise IndexError("This modification will exceed the length of "
"the table. Giving up.")
# Compute the number of rows to read.
nrows = len(xrange(start, stop, step))
if len(column) < nrows:
raise ValueError("The value has not enough elements to fill-in "
"the specified range")
# Now, read the original values:
mod_recarr = self._read(start, stop, step)
# Modify the appropriate column in the original recarray
mod_col = get_nested_field(mod_recarr, colname)
mod_col[:] = column
# save this modified rows in table
self._update_records(start, stop, step, mod_recarr)
# Redo the index if needed
self._reindex([colname])
return SizeType(nrows)
modifyColumn = previous_api(modify_column)
def modify_columns(self, start=None, stop=None, step=None,
columns=None, names=None):
"""Modify a series of columns in the row slice [start:stop:step].
The names argument specifies the names of the columns in the
table to be modified with the data given in columns. This
method returns the number of rows modified. Should the
modification exceed the length of the table, an IndexError
is raised before changing data.
The columns argument may be any object which can be converted
to a structured array compliant with the structure of the
columns to be modified (otherwise, a ValueError is raised).
This includes NumPy structured arrays, lists of tuples or array
records, and a string or Python buffer.
"""
if step is None:
step = 1
if type(names) not in (list, tuple):
raise TypeError("The 'names' parameter must be a list of strings.")
if columns is None: # Nothing to be done
return SizeType(0)
if start is None:
start = 0
if start < 0:
raise ValueError("'start' must have a positive value.")
if step < 1:
raise ValueError(("'step' must have a value greater or "
"equal than 1."))
descr = []
for colname in names:
objcol = self._get_column_instance(colname)
descr.append(objcol._v_parent._v_nested_descr[objcol._v_pos])
# descr.append(objcol._v_parent._v_dtype[objcol._v_pos])
# Try to convert the columns object into a recarray
try:
# Make sure the result is always a *copy* of the original,
# so the resulting object is safe for in-place conversion.
iflavor = flavor_of(columns)
if iflavor != 'python':
columns = array_as_internal(columns, iflavor)
recarray = numpy.rec.array(columns, dtype=descr)
else:
recarray = numpy.rec.fromarrays(columns, dtype=descr)
except Exception as exc: # XXX
raise ValueError("columns parameter cannot be converted into a "
"recarray object compliant with table '%s'. "
"The error was: <%s>" % (str(self), exc))
if stop is None:
# compute the stop value. start + len(rows)*step does not work
stop = start + (len(recarray) - 1) * step + 1
(start, stop, step) = self._process_range(start, stop, step)
if stop > self.nrows:
raise IndexError("This modification will exceed the length of "
"the table. Giving up.")
# Compute the number of rows to read.
nrows = len(xrange(start, stop, step))
if len(recarray) < nrows:
raise ValueError("The value has not enough elements to fill-in "
"the specified range")
# Now, read the original values:
mod_recarr = self._read(start, stop, step)
# Modify the appropriate columns in the original recarray
for i, name in enumerate(recarray.dtype.names):
mod_col = get_nested_field(mod_recarr, names[i])
mod_col[:] = recarray[name].squeeze()
# save this modified rows in table
self._update_records(start, stop, step, mod_recarr)
# Redo the index if needed
self._reindex(names)
return SizeType(nrows)
modifyColumns = previous_api(modify_columns)
def flush_rows_to_index(self, _lastrow=True):
"""Add remaining rows in buffers to non-dirty indexes.
This can be useful when you have chosen non-automatic indexing
for the table (see the :attr:`Table.autoindex` property in
:class:`Table`) and you want to update the indexes on it.
"""
rowsadded = 0
if self.indexed:
# Update the number of unsaved indexed rows
start = self._indexedrows
nrows = self._unsaved_indexedrows
for (colname, colindexed) in self.colindexed.iteritems():
if colindexed:
col = self.cols._g_col(colname)
if nrows > 0 and not col.index.dirty:
rowsadded = self._add_rows_to_index(
colname, start, nrows, _lastrow, update=True)
self._unsaved_indexedrows -= rowsadded
self._indexedrows += rowsadded
return rowsadded
flushRowsToIndex = previous_api(flush_rows_to_index)
def _add_rows_to_index(self, colname, start, nrows, lastrow, update):
"""Add more elements to the existing index."""
# This method really belongs to Column, but since it makes extensive
# use of the table, it gets dangerous when closing the file, since the
# column may be accessing a table which is being destroyed.
index = self.cols._g_col(colname).index
slicesize = index.slicesize
# The next loop does not rely on xrange so that it can
# deal with long ints (i.e. more than 32-bit integers)
# This allows to index columns with more than 2**31 rows
# F. Alted 2005-05-09
startLR = index.sorted.nrows * slicesize
indexedrows = startLR - start
stop = start + nrows - slicesize + 1
while startLR < stop:
index.append(
[self._read(startLR, startLR + slicesize, 1, colname)],
update=update)
indexedrows += slicesize
startLR += slicesize
# index the remaining rows in last row
if lastrow and startLR < self.nrows:
index.append_last_row(
[self._read(startLR, self.nrows, 1, colname)],
update=update)
indexedrows += self.nrows - startLR
return indexedrows
_addRowsToIndex = previous_api(_add_rows_to_index)
def remove_rows(self, start=None, stop=None, step=None):
"""Remove a range of rows in the table.
.. versionchanged:: 3.0
The start, stop and step parameters now behave like in slice.
.. seealso:: remove_row()
Parameters
----------
start : int
Sets the starting row to be removed. It accepts negative values
meaning that the count starts from the end. A value of 0 means the
first row.
stop : int
Sets the last row to be removed to stop-1, i.e. the end point is
omitted (in the Python range() tradition). Negative values are also
accepted.
step : int
The step size between rows to remove.
.. versionadded:: 3.0
Examples
--------
Removing rows from 5 to 10 (excluded)::
t.remove_rows(5, 10)
Removing all rows starting drom the 10th::
t.remove_rows(10)
Removing the 6th row::
t.remove_rows(6, 7)
.. note::
removing a single row can be done using the specific
:meth:`remove_row` method.
"""
(start, stop, step) = self._process_range(start, stop, step)
nrows = numpy.abs(stop - start)
if nrows >= self.nrows:
raise NotImplementedError('You are trying to delete all the rows '
'in table "%s". This is not supported '
'right now due to limitations on the '
'underlying HDF5 library. Sorry!' %
self._v_pathname)
nrows = self._remove_rows(start, stop, step)
# remove_rows is a invalidating index operation
self._reindex(self.colpathnames)
return SizeType(nrows)
removeRows = previous_api(remove_rows)
def remove_row(self, n):
"""Removes a row from the table.
If only start is supplied, only this row is to be deleted. If a range
is supplied, i.e. both the start and stop parameters are passed, all
the rows in the range are removed. A step parameter is not supported,
and it is not foreseen to be implemented anytime soon.
Parameters
----------
n : int
The index of the row to remove.
.. versionadded:: 3.0
"""
self.remove_rows(start=n, stop=n + 1)
def _g_update_dependent(self):
super(Table, self)._g_update_dependent()
# Update the new path in columns
self.cols._g_update_table_location(self)
# Update the new path in the Row instance, if cached. Fixes #224.
if 'row' in self.__dict__:
self.__dict__['row'] = tableextension.Row(self)
_g_updateDependent = previous_api(_g_update_dependent)
def _g_move(self, newparent, newname):
"""Move this node in the hierarchy.
This overloads the Node._g_move() method.
"""
itgpathname = _index_pathname_of(self)
# First, move the table to the new location.
super(Table, self)._g_move(newparent, newname)
# Then move the associated index group (if any).
try:
itgroup = self._v_file._get_node(itgpathname)
except NoSuchNodeError:
pass
else:
newigroup = self._v_parent
newiname = _index_name_of(self)
itgroup._g_move(newigroup, newiname)
def _g_remove(self, recursive=False, force=False):
# Remove the associated index group (if any).
itgpathname = _index_pathname_of(self)
try:
itgroup = self._v_file._get_node(itgpathname)
except NoSuchNodeError:
pass
else:
itgroup._f_remove(recursive=True)
self.indexed = False # there are indexes no more
# Remove the leaf itself from the hierarchy.
super(Table, self)._g_remove(recursive, force)
def _set_column_indexing(self, colpathname, indexed):
"""Mark the referred column as indexed or non-indexed."""
colindexed = self.colindexed
isindexed, wasindexed = bool(indexed), colindexed[colpathname]
if isindexed == wasindexed:
return # indexing state is unchanged
# Changing the set of indexed columns invalidates the condition cache
self._condition_cache.clear()
colindexed[colpathname] = isindexed
self.indexed = max(colindexed.values()) # this is an OR :)
_setColumnIndexing = previous_api(_set_column_indexing)
def _mark_columns_as_dirty(self, colnames):
"""Mark column indexes in `colnames` as dirty."""
assert len(colnames) > 0
if self.indexed:
colindexed, cols = self.colindexed, self.cols
# Mark the proper indexes as dirty
for colname in colnames:
if colindexed[colname]:
col = cols._g_col(colname)
col.index.dirty = True
_markColumnsAsDirty = previous_api(_mark_columns_as_dirty)
def _reindex(self, colnames):
"""Re-index columns in `colnames` if automatic indexing is true."""
if self.indexed:
colindexed, cols = self.colindexed, self.cols
colstoindex = []
# Mark the proper indexes as dirty
for colname in colnames:
if colindexed[colname]:
col = cols._g_col(colname)
col.index.dirty = True
colstoindex.append(colname)
# Now, re-index the dirty ones
if self.autoindex and colstoindex:
self._do_reindex(dirty=True)
# The table caches for indexed queries are dirty now
self._dirtycache = True
_reIndex = previous_api(_reindex)
def _do_reindex(self, dirty):
"""Common code for `reindex()` and `reindex_dirty()`."""
indexedrows = 0
for (colname, colindexed) in self.colindexed.iteritems():
if colindexed:
indexcol = self.cols._g_col(colname)
indexedrows = indexcol._do_reindex(dirty)
# Update counters in case some column has been updated
if indexedrows > 0:
self._indexedrows = indexedrows
self._unsaved_indexedrows = self.nrows - indexedrows
return SizeType(indexedrows)
_doReIndex = previous_api(_do_reindex)
def reindex(self):
"""Recompute all the existing indexes in the table.
This can be useful when you suspect that, for any reason, the
index information for columns is no longer valid and want to
rebuild the indexes on it.
"""
self._do_reindex(dirty=False)
reIndex = previous_api(reindex)
def reindex_dirty(self):
"""Recompute the existing indexes in table, *if* they are dirty.
This can be useful when you have set :attr:`Table.autoindex`
(see :class:`Table`) to false for the table and you want to
update the indexes after a invalidating index operation
(:meth:`Table.remove_rows`, for example).
"""
self._do_reindex(dirty=True)
reIndexDirty = previous_api(reindex_dirty)
def _g_copy_rows(self, object, start, stop, step, sortby, checkCSI):
"Copy rows from self to object"
if sortby is None:
self._g_copy_rows_optim(object, start, stop, step)
return
lenbuf = self.nrowsinbuf
absstep = abs(step)
if sortby is not None:
index = self._check_sortby_csi(sortby, checkCSI)
for start2 in xrange(start, stop, absstep * lenbuf):
stop2 = start2 + absstep * lenbuf
if stop2 > stop:
stop2 = stop
# The next 'if' is not needed, but it doesn't bother either
if sortby is None:
rows = self[start2:stop2:step]
else:
coords = index[start2:stop2:step]
rows = self.read_coordinates(coords)
# Save the records on disk
object.append(rows)
object.flush()
_g_copyRows = previous_api(_g_copy_rows)
def _g_copy_rows_optim(self, object, start, stop, step):
"""Copy rows from self to object (optimized version)"""
nrowsinbuf = self.nrowsinbuf
object._open_append(self._v_iobuf)
nrowsdest = object.nrows
for start2 in xrange(start, stop, step * nrowsinbuf):
# Save the records on disk
stop2 = start2 + step * nrowsinbuf
if stop2 > stop:
stop2 = stop
# Optimized version (it saves some conversions)
nrows = ((stop2 - start2 - 1) // step) + 1
self.row._fill_col(self._v_iobuf, start2, stop2, step, None)
# The output buffer is created anew,
# so the operation is safe to in-place conversion.
object._append_records(nrows)
nrowsdest += nrows
object._close_append()
_g_copyRows_optim = previous_api(_g_copy_rows_optim)
def _g_prop_indexes(self, other):
"""Generate index in `other` table for every indexed column here."""
oldcols, newcols = self.colinstances, other.colinstances
for colname in newcols:
if (isinstance(oldcols[colname], Column)):
oldcolindexed = oldcols[colname].is_indexed
if oldcolindexed:
oldcolindex = oldcols[colname].index
newcol = newcols[colname]
newcol.create_index(
kind=oldcolindex.kind, optlevel=oldcolindex.optlevel,
filters=oldcolindex.filters, tmp_dir=None)
_g_propIndexes = previous_api(_g_prop_indexes)
def _g_copy_with_stats(self, group, name, start, stop, step,
title, filters, chunkshape, _log, **kwargs):
"""Private part of Leaf.copy() for each kind of leaf."""
# Get the private args for the Table flavor of copy()
sortby = kwargs.pop('sortby', None)
propindexes = kwargs.pop('propindexes', False)
checkCSI = kwargs.pop('checkCSI', False)
# Compute the correct indices.
(start, stop, step) = self._process_range_read(
start, stop, step, warn_negstep=sortby is None)
# And the number of final rows
nrows = len(xrange(start, stop, step))
# Create the new table and copy the selected data.
newtable = Table(group, name, self.description, title=title,
filters=filters, expectedrows=nrows,
chunkshape=chunkshape,
_log=_log)
self._g_copy_rows(newtable, start, stop, step, sortby, checkCSI)
nbytes = newtable.nrows * newtable.rowsize
# Generate equivalent indexes in the new table, if required.
if propindexes and self.indexed:
self._g_prop_indexes(newtable)
return (newtable, nbytes)
_g_copyWithStats = previous_api(_g_copy_with_stats)
# This overloading of copy is needed here in order to document
# the additional keywords for the Table case.
def copy(self, newparent=None, newname=None, overwrite=False,
createparents=False, **kwargs):
"""Copy this table and return the new one.
This method has the behavior and keywords described in
:meth:`Leaf.copy`. Moreover, it recognises the following additional
keyword arguments.
Parameters
----------
sortby
If specified, and sortby corresponds to a column with an index,
then the copy will be sorted by this index. If you want to ensure
a fully sorted order, the index must be a CSI one. A reverse
sorted copy can be achieved by specifying a negative value for the
step keyword. If sortby is omitted or None, the original table
order is used.
checkCSI
If true and a CSI index does not exist for the sortby column, an
error will be raised. If false (the default), it does nothing.
You can use this flag in order to explicitly check for the
existence of a CSI index.
propindexes
If true, the existing indexes in the source table are propagated
(created) to the new one. If false (the default), the indexes are
not propagated.
"""
return super(Table, self).copy(
newparent, newname, overwrite, createparents, **kwargs)
def flush(self):
"""Flush the table buffers."""
# Flush rows that remains to be appended
if 'row' in self.__dict__:
self.row._flush_buffered_rows()
if self.indexed and self.autoindex:
# Flush any unindexed row
rowsadded = self.flush_rows_to_index(_lastrow=True)
assert rowsadded <= 0 or self._indexedrows == self.nrows, \
("internal error: the number of indexed rows (%d) "
"and rows in the table (%d) is not equal; "
"please report this to the authors."
% (self._indexedrows, self.nrows))
if self._dirtyindexes:
# Finally, re-index any dirty column
self.reindex_dirty()
super(Table, self).flush()
def _g_pre_kill_hook(self):
"""Code to be called before killing the node."""
# Flush the buffers before to clean-up them
# self.flush()
# It seems that flushing during the __del__ phase is a sure receipt for
# bringing all kind of problems:
# 1. Illegal Instruction
# 2. Malloc(): trying to call free() twice
# 3. Bus Error
# 4. Segmentation fault
# So, the best would be doing *nothing* at all in this __del__ phase.
# As a consequence, the I/O will not be cleaned until a call to
# Table.flush() would be done. This could lead to a potentially large
# memory consumption.
# NOTE: The user should make a call to Table.flush() whenever he has
# finished working with his table.
# I've added a Performance warning in order to compel the user to
# call self.flush() before the table is being preempted.
# F. Alted 2006-08-03
if (('row' in self.__dict__ and self.row._get_unsaved_nrows() > 0) or
(self.indexed and self.autoindex and
(self._unsaved_indexedrows > 0 or self._dirtyindexes))):
warnings.warn(("table ``%s`` is being preempted from alive nodes "
"without its buffers being flushed or with some "
"index being dirty. This may lead to very "
"ineficient use of resources and even to fatal "
"errors in certain situations. Please do a call "
"to the .flush() or .reindex_dirty() methods on "
"this table before start using other nodes.")
% (self._v_pathname), PerformanceWarning)
# Get rid of the IO buffers (if they have been created at all)
mydict = self.__dict__
if '_v_iobuf' in mydict:
del mydict['_v_iobuf']
if '_v_wdflts' in mydict:
del mydict['_v_wdflts']
_g_preKillHook = previous_api(_g_pre_kill_hook)
def _f_close(self, flush=True):
if not self._v_isopen:
return # the node is already closed
# .. note::
#
# As long as ``Table`` objects access their indices on closing,
# ``File.close()`` will need to make *two separate passes*
# to first close ``Table`` objects and then ``Index`` hierarchies.
#
# Flush right now so the row object does not get in the middle.
if flush:
self.flush()
# Some warnings can be issued after calling `self._g_set_location()`
# in `self.__init__()`. If warnings are turned into exceptions,
# `self._g_post_init_hook` may not be called and `self.cols` not set.
# One example of this is
# ``test_create.createTestCase.test05_maxFieldsExceeded()``.
cols = self.cols
if cols is not None:
cols._g_close()
# Close myself as a leaf.
super(Table, self)._f_close(False)
def __repr__(self):
"""This provides column metainfo in addition to standard __str__"""
if self.indexed:
format = """\
%s
description := %r
byteorder := %r
chunkshape := %r
autoindex := %r
colindexes := %r"""
return format % (str(self), self.description, self.byteorder,
self.chunkshape, self.autoindex,
_ColIndexes(self.colindexes))
else:
return """\
%s
description := %r
byteorder := %r
chunkshape := %r""" % \
(str(self), self.description, self.byteorder, self.chunkshape)
class Cols(object):
"""Container for columns in a table or nested column.
This class is used as an *accessor* to the columns in a table or nested
column. It supports the *natural naming* convention, so that you can
access the different columns as attributes which lead to Column instances
(for non-nested columns) or other Cols instances (for nested columns).
For instance, if table.cols is a Cols instance with a column named col1
under it, the later can be accessed as table.cols.col1. If col1 is nested
and contains a col2 column, this can be accessed as table.cols.col1.col2
and so on. Because of natural naming, the names of members start with
special prefixes, like in the Group class (see :ref:`GroupClassDescr`).
Like the Column class (see :ref:`ColumnClassDescr`), Cols supports item
access to read and write ranges of values in the table or nested column.
.. rubric:: Cols attributes
.. attribute:: _v_colnames
A list of the names of the columns hanging directly
from the associated table or nested column. The order of
the names matches the order of their respective columns in
the containing table.
.. attribute:: _v_colpathnames
A list of the pathnames of all the columns under the
associated table or nested column (in preorder). If it does
not contain nested columns, this is exactly the same as the
:attr:`Cols._v_colnames` attribute.
.. attribute:: _v_desc
The associated Description instance (see
:ref:`DescriptionClassDescr`).
"""
def _g_gettable(self):
return self._v__tableFile._get_node(self._v__tablePath)
_v_table = property(
_g_gettable, None, None,
"The parent Table instance (see :ref:`TableClassDescr`).")
def __init__(self, table, desc):
myDict = self.__dict__
myDict['_v__tableFile'] = table._v_file
myDict['_v__tablePath'] = table._v_pathname
myDict['_v_desc'] = desc
myDict['_v_colnames'] = desc._v_names
myDict['_v_colpathnames'] = table.description._v_pathnames
# Put the column in the local dictionary
for name in desc._v_names:
if name in desc._v_types:
myDict[name] = Column(table, name, desc)
else:
myDict[name] = Cols(table, desc._v_colobjects[name])
def _g_update_table_location(self, table):
"""Updates the location information about the associated `table`."""
myDict = self.__dict__
myDict['_v__tableFile'] = table._v_file
myDict['_v__tablePath'] = table._v_pathname
# Update the locations in individual columns.
for colname in self._v_colnames:
myDict[colname]._g_update_table_location(table)
_g_updateTableLocation = previous_api(_g_update_table_location)
def __len__(self):
"""Get the number of top level columns in table."""
return len(self._v_colnames)
def _f_col(self, colname):
"""Get an accessor to the column colname.
This method returns a Column instance (see :ref:`ColumnClassDescr`) if
the requested column is not nested, and a Cols instance (see
:ref:`ColsClassDescr`) if it is. You may use full column pathnames in
colname.
Calling cols._f_col('col1/col2') is equivalent to using cols.col1.col2.
However, the first syntax is more intended for programmatic use. It is
also better if you want to access columns with names that are not valid
Python identifiers.
"""
if not isinstance(colname, str):
raise TypeError("Parameter can only be an string. You passed "
"object: %s" % colname)
if ((colname.find('/') > -1 and
not colname in self._v_colpathnames) and
not colname in self._v_colnames):
raise KeyError(("Cols accessor ``%s.cols%s`` does not have a "
"column named ``%s``")
% (self._v__tablePath, self._v_desc._v_pathname,
colname))
return self._g_col(colname)
def _g_col(self, colname):
"""Like `self._f_col()` but it does not check arguments."""
# Get the Column or Description object
inames = colname.split('/')
cols = self
for iname in inames:
cols = cols.__dict__[iname]
return cols
def __getitem__(self, key):
"""Get a row or a range of rows from a table or nested column.
If key argument is an integer, the corresponding nested type row is
returned as a record of the current flavor. If key is a slice, the
range of rows determined by it is returned as a structured array of the
current flavor.
Examples
--------
::
record = table.cols[4] # equivalent to table[4]
recarray = table.cols.Info[4:1000:2]
Those statements are equivalent to::
nrecord = table.read(start=4)[0]
nrecarray = table.read(start=4, stop=1000, step=2).field('Info')
Here you can see how a mix of natural naming, indexing and slicing can
be used as shorthands for the :meth:`Table.read` method.
"""
table = self._v_table
nrows = table.nrows
if is_idx(key):
# Index out of range protection
if key >= nrows:
raise IndexError("Index out of range")
if key < 0:
# To support negative values
key += nrows
(start, stop, step) = table._process_range(key, key + 1, 1)
colgroup = self._v_desc._v_pathname
if colgroup == "": # The root group
return table.read(start, stop, step)[0]
else:
crecord = table.read(start, stop, step)[0]
return crecord[colgroup]
elif isinstance(key, slice):
(start, stop, step) = table._process_range(
key.start, key.stop, key.step)
colgroup = self._v_desc._v_pathname
if colgroup == "": # The root group
return table.read(start, stop, step)
else:
crecarray = table.read(start, stop, step)
if hasattr(crecarray, "field"):
return crecarray.field(colgroup) # RecArray case
else:
return get_nested_field(crecarray, colgroup) # numpy case
else:
raise TypeError("invalid index or slice: %r" % (key,))
def __setitem__(self, key, value):
"""Set a row or a range of rows in a table or nested column.
If key argument is an integer, the corresponding row is set to
value. If key is a slice, the range of rows determined by it is set to
value.
Examples
--------
::
table.cols[4] = record
table.cols.Info[4:1000:2] = recarray
Those statements are equivalent to::
table.modify_rows(4, rows=record)
table.modify_column(4, 1000, 2, colname='Info', column=recarray)
Here you can see how a mix of natural naming, indexing and slicing
can be used as shorthands for the :meth:`Table.modify_rows` and
:meth:`Table.modify_column` methods.
"""
table = self._v_table
nrows = table.nrows
if is_idx(key):
# Index out of range protection
if key >= nrows:
raise IndexError("Index out of range")
if key < 0:
# To support negative values
key += nrows
(start, stop, step) = table._process_range(key, key + 1, 1)
elif isinstance(key, slice):
(start, stop, step) = table._process_range(
key.start, key.stop, key.step)
else:
raise TypeError("invalid index or slice: %r" % (key,))
# Actually modify the correct columns
colgroup = self._v_desc._v_pathname
if colgroup == "": # The root group
table.modify_rows(start, stop, step, rows=value)
else:
table.modify_column(
start, stop, step, colname=colgroup, column=value)
def _g_close(self):
# First, close the columns (ie possible indices open)
for col in self._v_colnames:
colobj = self._g_col(col)
if isinstance(colobj, Column):
colobj.close()
# Delete the reference to column
del self.__dict__[col]
else:
colobj._g_close()
self.__dict__.clear()
def __str__(self):
"""The string representation for this object."""
# The pathname
tablepathname = self._v__tablePath
descpathname = self._v_desc._v_pathname
if descpathname:
descpathname = "." + descpathname
# Get this class name
classname = self.__class__.__name__
# The number of columns
ncols = len(self._v_colnames)
return "%s.cols%s (%s), %s columns" % \
(tablepathname, descpathname, classname, ncols)
def __repr__(self):
"""A detailed string representation for this object."""
out = str(self) + "\n"
for name in self._v_colnames:
# Get this class name
classname = getattr(self, name).__class__.__name__
# The type
if name in self._v_desc._v_dtypes:
tcol = self._v_desc._v_dtypes[name]
# The shape for this column
shape = (self._v_table.nrows,) + \
self._v_desc._v_dtypes[name].shape
else:
tcol = "Description"
# Description doesn't have a shape currently
shape = ()
out += " %s (%s%s, %s)" % (name, classname, shape, tcol) + "\n"
return out
class Column(object):
"""Accessor for a non-nested column in a table.
Each instance of this class is associated with one *non-nested* column of a
table. These instances are mainly used to read and write data from the
table columns using item access (like the Cols class - see
:ref:`ColsClassDescr`), but there are a few other associated methods to
deal with indexes.
.. rubric:: Column attributes
.. attribute:: descr
The Description (see :ref:`DescriptionClassDescr`) instance of the
parent table or nested column.
.. attribute:: name
The name of the associated column.
.. attribute:: pathname
The complete pathname of the associated column (the same as
Column.name if the column is not inside a nested column).
Parameters
----------
table
The parent table instance
name
The name of the column that is associated with this object
descr
The parent description object
"""
# Lazy read-only attributes
# `````````````````````````
@lazyattr
def dtype(self):
"""The NumPy dtype that most closely matches this column."""
return self.descr._v_dtypes[self.name].base # Get rid of shape info
@lazyattr
def type(self):
"""The PyTables type of the column (a string)."""
return self.descr._v_types[self.name]
# Properties
# ~~~~~~~~~~
def _gettable(self):
return self._table_file._get_node(self._table_path)
table = property(_gettable, None, None,
"""The parent Table instance (see
:ref:`TableClassDescr`).""")
def _getindex(self):
indexPath = _index_pathname_of_column_(self._table_path, self.pathname)
try:
index = self._table_file._get_node(indexPath)
except NodeError:
index = None # The column is not indexed
return index
index = property(_getindex, None, None,
"""The Index instance (see :ref:`IndexClassDescr`)
associated with this column (None if the column is not
indexed).""")
def _getshape(self):
return (self.table.nrows,) + self.descr._v_dtypes[self.name].shape
shape = property(_getshape, None, None, "The shape of this column.")
def _isindexed(self):
if self.index is None:
return False
else:
return True
is_indexed = property(_isindexed, None, None,
"True if the column is indexed, false otherwise.")
maindim = property(
lambda self: 0, None, None,
""""The dimension along which iterators work. Its value is 0 (i.e. the
first dimension).""")
def __init__(self, table, name, descr):
self._table_file = table._v_file
self._table_path = table._v_pathname
self.name = name
"""The name of the associated column."""
self.pathname = descr._v_colobjects[name]._v_pathname
"""The complete pathname of the associated column (the same as
Column.name if the column is not inside a nested column)."""
self.descr = descr
"""The Description (see :ref:`DescriptionClassDescr`) instance of the
parent table or nested column."""
def _g_update_table_location(self, table):
"""Updates the location information about the associated `table`."""
self._table_file = table._v_file
self._table_path = table._v_pathname
_g_updateTableLocation = previous_api(_g_update_table_location)
def __len__(self):
"""Get the number of elements in the column.
This matches the length in rows of the parent table.
"""
return self.table.nrows
def __getitem__(self, key):
"""Get a row or a range of rows from a column.
If key argument is an integer, the corresponding element in the column
is returned as an object of the current flavor. If key is a slice, the
range of elements determined by it is returned as an array of the
current flavor.
Examples
--------
::
print("Column handlers:")
for name in table.colnames:
print(table.cols._f_col(name))
print("Select table.cols.name[1]-->", table.cols.name[1])
print("Select table.cols.name[1:2]-->", table.cols.name[1:2])
print("Select table.cols.name[:]-->", table.cols.name[:])
print("Select table.cols._f_col('name')[:]-->",
table.cols._f_col('name')[:])
The output of this for a certain arbitrary table is::
Column handlers:
/table.cols.name (Column(), string, idx=None)
/table.cols.lati (Column(), int32, idx=None)
/table.cols.longi (Column(), int32, idx=None)
/table.cols.vector (Column(2,), int32, idx=None)
/table.cols.matrix2D (Column(2, 2), float64, idx=None)
Select table.cols.name[1]--> Particle: 11
Select table.cols.name[1:2]--> ['Particle: 11']
Select table.cols.name[:]--> ['Particle: 10'
'Particle: 11' 'Particle: 12'
'Particle: 13' 'Particle: 14']
Select table.cols._f_col('name')[:]--> ['Particle: 10'
'Particle: 11' 'Particle: 12'
'Particle: 13' 'Particle: 14']
See the :file:`examples/table2.py` file for a more complete example.
"""
table = self.table
# Generalized key support not there yet, but at least allow
# for a tuple with one single element (the main dimension).
# (key,) --> key
if isinstance(key, tuple) and len(key) == 1:
key = key[0]
if is_idx(key):
# Index out of range protection
if key >= table.nrows:
raise IndexError("Index out of range")
if key < 0:
# To support negative values
key += table.nrows
(start, stop, step) = table._process_range(key, key + 1, 1)
return table.read(start, stop, step, self.pathname)[0]
elif isinstance(key, slice):
(start, stop, step) = table._process_range(
key.start, key.stop, key.step)
return table.read(start, stop, step, self.pathname)
else:
raise TypeError(
"'%s' key type is not valid in this context" % key)
def __iter__(self):
"""Iterate through all items in the column."""
table = self.table
itemsize = self.dtype.itemsize
nrowsinbuf = table._v_file.params['IO_BUFFER_SIZE'] // itemsize
buf = numpy.empty((nrowsinbuf, ), self.dtype)
max_row = len(self)
for start_row in xrange(0, len(self), nrowsinbuf):
end_row = min(start_row + nrowsinbuf, max_row)
buf_slice = buf[0:end_row - start_row]
table.read(start_row, end_row, 1, field=self.pathname,
out=buf_slice)
for row in buf_slice:
yield row
def __setitem__(self, key, value):
"""Set a row or a range of rows in a column.
If key argument is an integer, the corresponding element is set to
value. If key is a slice, the range of elements determined by it is
set to value.
Examples
--------
::
# Modify row 1
table.cols.col1[1] = -1
# Modify rows 1 and 3
table.cols.col1[1::2] = [2,3]
Which is equivalent to::
# Modify row 1
table.modify_columns(start=1, columns=[[-1]], names=['col1'])
# Modify rows 1 and 3
columns = numpy.rec.fromarrays([[2,3]], formats='i4')
table.modify_columns(start=1, step=2, columns=columns,
names=['col1'])
"""
table = self.table
table._v_file._check_writable()
# Generalized key support not there yet, but at least allow
# for a tuple with one single element (the main dimension).
# (key,) --> key
if isinstance(key, tuple) and len(key) == 1:
key = key[0]
if is_idx(key):
# Index out of range protection
if key >= table.nrows:
raise IndexError("Index out of range")
if key < 0:
# To support negative values
key += table.nrows
return table.modify_column(key, key + 1, 1,
[[value]], self.pathname)
elif isinstance(key, slice):
(start, stop, step) = table._process_range(
key.start, key.stop, key.step)
return table.modify_column(start, stop, step,
value, self.pathname)
else:
raise ValueError("Non-valid index or slice: %s" % key)
def create_index(self, optlevel=6, kind="medium", filters=None,
tmp_dir=None, _blocksizes=None, _testmode=False,
_verbose=False):
"""Create an index for this column.
.. warning::
In some situations it is useful to get a completely sorted
index (CSI). For those cases, it is best to use the
:meth:`Column.create_csindex` method instead.
Parameters
----------
optlevel : int
The optimization level for building the index. The levels ranges
from 0 (no optimization) up to 9 (maximum optimization). Higher
levels of optimization mean better chances for reducing the entropy
of the index at the price of using more CPU, memory and I/O
resources for creating the index.
kind : str
The kind of the index to be built. It can take the 'ultralight',
'light', 'medium' or 'full' values. Lighter kinds ('ultralight'
and 'light') mean that the index takes less space on disk, but will
perform queries slower. Heavier kinds ('medium' and 'full') mean
better chances for reducing the entropy of the index (increasing
the query speed) at the price of using more disk space as well as
more CPU, memory and I/O resources for creating the index.
Note that selecting a full kind with an optlevel of 9 (the maximum)
guarantees the creation of an index with zero entropy, that is, a
completely sorted index (CSI) - provided that the number of rows in
the table does not exceed the 2**48 figure (that is more than 100
trillions of rows). See :meth:`Column.create_csindex` method for a
more direct way to create a CSI index.
filters : Filters
Specify the Filters instance used to compress the index. If None,
default index filters will be used (currently, zlib level 1 with
shuffling).
tmp_dir
When kind is other than 'ultralight', a temporary file is created
during the index build process. You can use the tmp_dir argument
to specify the directory for this temporary file. The default is
to create it in the same directory as the file containing the
original table.
"""
kinds = ['ultralight', 'light', 'medium', 'full']
if kind not in kinds:
raise ValueError("Kind must have any of these values: %s" % kinds)
if (not isinstance(optlevel, (int, long)) or
(optlevel < 0 or optlevel > 9)):
raise ValueError("Optimization level must be an integer in the "
"range 0-9")
if filters is None:
filters = default_index_filters
if tmp_dir is None:
tmp_dir = os.path.dirname(self._table_file.filename)
else:
if not os.path.isdir(tmp_dir):
raise ValueError("Temporary directory '%s' does not exist" %
tmp_dir)
if (_blocksizes is not None and
(not isinstance(_blocksizes, tuple) or len(_blocksizes) != 4)):
raise ValueError("_blocksizes must be a tuple with exactly 4 "
"elements")
idxrows = _column__create_index(self, optlevel, kind, filters,
tmp_dir, _blocksizes, _verbose)
return SizeType(idxrows)
createIndex = previous_api(create_index)
def create_csindex(self, filters=None, tmp_dir=None,
_blocksizes=None, _testmode=False, _verbose=False):
"""Create a completely sorted index (CSI) for this column.
This method guarantees the creation of an index with zero entropy, that
is, a completely sorted index (CSI) -- provided that the number of rows
in the table does not exceed the 2**48 figure (that is more than 100
trillions of rows). A CSI index is needed for some table methods (like
:meth:`Table.itersorted` or :meth:`Table.read_sorted`) in order to
ensure completely sorted results.
For the meaning of filters and tmp_dir arguments see
:meth:`Column.create_index`.
Notes
-----
This method is equivalent to
Column.create_index(optlevel=9, kind='full', ...).
"""
return self.create_index(
kind='full', optlevel=9, filters=filters, tmp_dir=tmp_dir,
_blocksizes=_blocksizes, _testmode=_testmode, _verbose=_verbose)
createCSIndex = previous_api(create_csindex)
def _do_reindex(self, dirty):
"""Common code for reindex() and reindex_dirty() codes."""
index = self.index
dodirty = True
if dirty and not index.dirty:
dodirty = False
if index is not None and dodirty:
self._table_file._check_writable()
# Get the old index parameters
kind = index.kind
optlevel = index.optlevel
filters = index.filters
# We *need* to tell the index that it is going to be undirty.
# This is needed here so as to unnail() the condition cache.
index.dirty = False
# Delete the existing Index
index._f_remove()
# Create a new Index with the previous parameters
return SizeType(self.create_index(
kind=kind, optlevel=optlevel, filters=filters))
else:
return SizeType(0) # The column is not intended for indexing
_doReIndex = previous_api(_do_reindex)
def reindex(self):
"""Recompute the index associated with this column.
This can be useful when you suspect that, for any reason,
the index information is no longer valid and you want to rebuild it.
This method does nothing if the column is not indexed.
"""
self._do_reindex(dirty=False)
reIndex = previous_api(reindex)
def reindex_dirty(self):
"""Recompute the associated index only if it is dirty.
This can be useful when you have set :attr:`Table.autoindex` to false
for the table and you want to update the column's index after an
invalidating index operation (like :meth:`Table.remove_rows`).
This method does nothing if the column is not indexed.
"""
self._do_reindex(dirty=True)
reIndexDirty = previous_api(reindex_dirty)
def remove_index(self):
"""Remove the index associated with this column.
This method does nothing if the column is not indexed. The removed
index can be created again by calling the :meth:`Column.create_index`
method.
"""
self._table_file._check_writable()
# Remove the index if existing.
if self.is_indexed:
index = self.index
index._f_remove()
self.table._set_column_indexing(self.pathname, False)
removeIndex = previous_api(remove_index)
def close(self):
"""Close this column."""
self.__dict__.clear()
def __str__(self):
"""The string representation for this object."""
# The pathname
tablepathname = self._table_path
pathname = self.pathname.replace('/', '.')
# Get this class name
classname = self.__class__.__name__
# The shape for this column
shape = self.shape
# The type
tcol = self.descr._v_types[self.name]
return "%s.cols.%s (%s%s, %s, idx=%s)" % \
(tablepathname, pathname, classname, shape, tcol, self.index)
def __repr__(self):
"""A detailed string representation for this object."""
return str(self)
## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End:
|