/usr/lib/python2.7/dist-packages/tables/utils.py is in python-tables 3.1.1-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 | # -*- coding: utf-8 -*-
########################################################################
#
# License: BSD
# Created: March 4, 2003
# Author: Francesc Alted - faltet@pytables.com
#
# $Id$
#
########################################################################
"""Utility functions."""
from __future__ import print_function
import os
import sys
import warnings
import subprocess
from time import time
import numpy
from tables.flavor import array_of_flavor
from tables._past import previous_api
# The map between byteorders in NumPy and PyTables
byteorders = {
'>': 'big',
'<': 'little',
'=': sys.byteorder,
'|': 'irrelevant',
}
# The type used for size values: indexes, coordinates, dimension
# lengths, row numbers, shapes, chunk shapes, byte counts...
SizeType = numpy.int64
def correct_byteorder(ptype, byteorder):
"""Fix the byteorder depending on the PyTables types."""
if ptype in ['string', 'bool', 'int8', 'uint8']:
return "irrelevant"
else:
return byteorder
def is_idx(index):
"""Checks if an object can work as an index or not."""
if type(index) in (int, long):
return True
elif hasattr(index, "__index__"): # Only works on Python 2.5 (PEP 357)
# Exclude the array([idx]) as working as an index. Fixes #303.
if (hasattr(index, "shape") and index.shape != ()):
return False
try:
index.__index__()
if isinstance(index, bool):
warnings.warn(
'using a boolean instead of an integer will result in an '
'error in the future', DeprecationWarning, stacklevel=2)
return True
except TypeError:
return False
elif isinstance(index, numpy.integer):
return True
# For Python 2.4 one should test 0-dim and 1-dim, 1-elem arrays as well
elif (isinstance(index, numpy.ndarray) and (index.shape == ()) and
index.dtype.str[1] == 'i'):
return True
return False
def idx2long(index):
"""Convert a possible index into a long int."""
try:
return long(index)
except:
raise TypeError("not an integer type.")
# This is used in VLArray and EArray to produce NumPy object compliant
# with atom from a generic python type. If copy is stated as True, it
# is assured that it will return a copy of the object and never the same
# object or a new one sharing the same memory.
def convert_to_np_atom(arr, atom, copy=False):
"""Convert a generic object into a NumPy object compliant with atom."""
# First, convert the object into a NumPy array
nparr = array_of_flavor(arr, 'numpy')
# Copy of data if necessary for getting a contiguous buffer, or if
# dtype is not the correct one.
if atom.shape == ():
# Scalar atom case
nparr = numpy.array(nparr, dtype=atom.dtype, copy=copy)
else:
# Multidimensional atom case. Addresses #133.
# We need to use this strange way to obtain a dtype compliant
# array because NumPy doesn't honor the shape of the dtype when
# it is multidimensional. See:
# http://scipy.org/scipy/numpy/ticket/926
# for details.
# All of this is done just to taking advantage of the NumPy
# broadcasting rules.
newshape = nparr.shape[:-len(atom.dtype.shape)]
nparr2 = numpy.empty(newshape, dtype=[('', atom.dtype)])
nparr2['f0'][:] = nparr
# Return a view (i.e. get rid of the record type)
nparr = nparr2.view(atom.dtype)
return nparr
convertToNPAtom = previous_api(convert_to_np_atom)
# The next is used in Array, EArray and VLArray, and it is a bit more
# high level than convert_to_np_atom
def convert_to_np_atom2(object, atom):
"""Convert a generic object into a NumPy object compliant with atom."""
# Check whether the object needs to be copied to make the operation
# safe to in-place conversion.
copy = atom.type in ['time64']
nparr = convert_to_np_atom(object, atom, copy)
# Finally, check the byteorder and change it if needed
byteorder = byteorders[nparr.dtype.byteorder]
if (byteorder in ['little', 'big'] and byteorder != sys.byteorder):
# The byteorder needs to be fixed (a copy is made
# so that the original array is not modified)
nparr = nparr.byteswap()
return nparr
convertToNPAtom2 = previous_api(convert_to_np_atom2)
def check_file_access(filename, mode='r'):
"""Check for file access in the specified `mode`.
`mode` is one of the modes supported by `File` objects. If the file
indicated by `filename` can be accessed using that `mode`, the
function ends successfully. Else, an ``IOError`` is raised
explaining the reason of the failure.
All this paraphernalia is used to avoid the lengthy and scaring HDF5
messages produced when there are problems opening a file. No
changes are ever made to the file system.
"""
if mode == 'r':
# The file should be readable.
if not os.access(filename, os.F_OK):
raise IOError("``%s`` does not exist" % (filename,))
if not os.path.isfile(filename):
raise IOError("``%s`` is not a regular file" % (filename,))
if not os.access(filename, os.R_OK):
raise IOError("file ``%s`` exists but it can not be read"
% (filename,))
elif mode == 'w':
if os.access(filename, os.F_OK):
# Since the file is not removed but replaced,
# it must already be accessible to read and write operations.
check_file_access(filename, 'r+')
else:
# A new file is going to be created,
# so the directory should be writable.
parentname = os.path.dirname(filename)
if not parentname:
parentname = '.'
if not os.access(parentname, os.F_OK):
raise IOError("``%s`` does not exist" % (parentname,))
if not os.path.isdir(parentname):
raise IOError("``%s`` is not a directory" % (parentname,))
if not os.access(parentname, os.W_OK):
raise IOError("directory ``%s`` exists but it can not be "
"written" % (parentname,))
elif mode == 'a':
if os.access(filename, os.F_OK):
check_file_access(filename, 'r+')
else:
check_file_access(filename, 'w')
elif mode == 'r+':
check_file_access(filename, 'r')
if not os.access(filename, os.W_OK):
raise IOError("file ``%s`` exists but it can not be written"
% (filename,))
else:
raise ValueError("invalid mode: %r" % (mode,))
checkFileAccess = previous_api(check_file_access)
def lazyattr(fget):
"""Create a *lazy attribute* from the result of `fget`.
This function is intended to be used as a *method decorator*. It
returns a *property* which caches the result of calling the `fget`
instance method. The docstring of `fget` is used for the property
itself. For instance:
>>> class MyClass(object):
... @lazyattr
... def attribute(self):
... 'Attribute description.'
... print('creating value')
... return 10
...
>>> type(MyClass.attribute)
<type 'property'>
>>> MyClass.attribute.__doc__
'Attribute description.'
>>> obj = MyClass()
>>> obj.__dict__
{}
>>> obj.attribute
creating value
10
>>> obj.__dict__
{'attribute': 10}
>>> obj.attribute
10
>>> del obj.attribute
Traceback (most recent call last):
...
AttributeError: can't delete attribute
.. warning::
Please note that this decorator *changes the type of the
decorated object* from an instance method into a property.
"""
name = fget.__name__
def newfget(self):
mydict = self.__dict__
if name in mydict:
return mydict[name]
mydict[name] = value = fget(self)
return value
return property(newfget, None, None, fget.__doc__)
def show_stats(explain, tref, encoding=None):
"""Show the used memory (only works for Linux 2.6.x)."""
if encoding is None:
encoding = sys.getdefaultencoding()
# Build the command to obtain memory info
cmd = "cat /proc/%s/status" % os.getpid()
sout = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout
for line in sout:
line = line.decode(encoding)
if line.startswith("VmSize:"):
vmsize = int(line.split()[1])
elif line.startswith("VmRSS:"):
vmrss = int(line.split()[1])
elif line.startswith("VmData:"):
vmdata = int(line.split()[1])
elif line.startswith("VmStk:"):
vmstk = int(line.split()[1])
elif line.startswith("VmExe:"):
vmexe = int(line.split()[1])
elif line.startswith("VmLib:"):
vmlib = int(line.split()[1])
sout.close()
print("Memory usage: ******* %s *******" % explain)
print("VmSize: %7s kB\tVmRSS: %7s kB" % (vmsize, vmrss))
print("VmData: %7s kB\tVmStk: %7s kB" % (vmdata, vmstk))
print("VmExe: %7s kB\tVmLib: %7s kB" % (vmexe, vmlib))
tnow = time()
print("WallClock time:", round(tnow - tref, 3))
return tnow
# truncate data before calling __setitem__, to improve compression ratio
# this function is taken verbatim from netcdf4-python
def quantize(data, least_significant_digit):
"""quantize data to improve compression.
Data is quantized using around(scale*data)/scale, where scale is
2**bits, and bits is determined from the least_significant_digit.
For example, if least_significant_digit=1, bits will be 4.
"""
precision = pow(10., -least_significant_digit)
exp = numpy.log10(precision)
if exp < 0:
exp = int(numpy.floor(exp))
else:
exp = int(numpy.ceil(exp))
bits = numpy.ceil(numpy.log2(pow(10., -exp)))
scale = pow(2., bits)
datout = numpy.around(scale * data) / scale
return datout
# Utilities to detect leaked instances. See recipe 14.10 of the Python
# Cookbook by Martelli & Ascher.
tracked_classes = {}
import weakref
def log_instance_creation(instance, name=None):
if name is None:
name = instance.__class__.__name__
if name not in tracked_classes:
tracked_classes[name] = []
tracked_classes[name].append(weakref.ref(instance))
logInstanceCreation = previous_api(log_instance_creation)
def string_to_classes(s):
if s == '*':
c = sorted(tracked_classes.iterkeys())
return c
else:
return s.split()
def fetch_logged_instances(classes="*"):
classnames = string_to_classes(classes)
return [(cn, len(tracked_classes[cn])) for cn in classnames]
fetchLoggedInstances = previous_api(fetch_logged_instances)
def count_logged_instances(classes, file=sys.stdout):
for classname in string_to_classes(classes):
file.write("%s: %d\n" % (classname, len(tracked_classes[classname])))
countLoggedInstances = previous_api(count_logged_instances)
def list_logged_instances(classes, file=sys.stdout):
for classname in string_to_classes(classes):
file.write('\n%s:\n' % classname)
for ref in tracked_classes[classname]:
obj = ref()
if obj is not None:
file.write(' %s\n' % repr(obj))
listLoggedInstances = previous_api(list_logged_instances)
def dump_logged_instances(classes, file=sys.stdout):
for classname in string_to_classes(classes):
file.write('\n%s:\n' % classname)
for ref in tracked_classes[classname]:
obj = ref()
if obj is not None:
file.write(' %s:\n' % obj)
for key, value in obj.__dict__.iteritems():
file.write(' %20s : %s\n' % (key, value))
dumpLoggedInstances = previous_api(dump_logged_instances)
#
# A class useful for cache usage
#
class CacheDict(dict):
"""A dictionary that prevents itself from growing too much."""
def __init__(self, maxentries):
self.maxentries = maxentries
super(CacheDict, self).__init__(self)
def __setitem__(self, key, value):
# Protection against growing the cache too much
if len(self) > self.maxentries:
# Remove a 10% of (arbitrary) elements from the cache
entries_to_remove = self.maxentries / 10
for k in self.keys()[:entries_to_remove]:
super(CacheDict, self).__delitem__(k)
super(CacheDict, self).__setitem__(key, value)
class NailedDict(object):
"""A dictionary which ignores its items when it has nails on it."""
def __init__(self, maxentries):
self.maxentries = maxentries
self._cache = {}
self._nailcount = 0
# Only a restricted set of dictionary methods are supported. That
# is why we buy instead of inherit.
# The following are intended to be used by ``Table`` code changing
# the set of usable indexes.
def clear(self):
self._cache.clear()
def nail(self):
self._nailcount += 1
def unnail(self):
self._nailcount -= 1
# The following are intended to be used by ``Table`` code handling
# conditions.
def __contains__(self, key):
if self._nailcount > 0:
return False
return key in self._cache
def __getitem__(self, key):
if self._nailcount > 0:
raise KeyError(key)
return self._cache[key]
def get(self, key, default=None):
if self._nailcount > 0:
return default
return self._cache.get(key, default)
def __setitem__(self, key, value):
if self._nailcount > 0:
return
cache = self._cache
# Protection against growing the cache too much
if len(cache) > self.maxentries:
# Remove a 10% of (arbitrary) elements from the cache
entries_to_remove = self.maxentries // 10
for k in cache.keys()[:entries_to_remove]:
del cache[k]
cache[key] = value
def detect_number_of_cores():
"""Detects the number of cores on a system.
Cribbed from pp.
"""
# Linux, Unix and MacOS:
if hasattr(os, "sysconf"):
if "SC_NPROCESSORS_ONLN" in os.sysconf_names:
# Linux & Unix:
ncpus = os.sysconf("SC_NPROCESSORS_ONLN")
if isinstance(ncpus, int) and ncpus > 0:
return ncpus
else: # OSX:
return int(os.popen2("sysctl -n hw.ncpu")[1].read())
# Windows:
if "NUMBER_OF_PROCESSORS" in os.environ:
ncpus = int(os.environ["NUMBER_OF_PROCESSORS"])
if ncpus > 0:
return ncpus
return 1 # Default
detectNumberOfCores = previous_api(detect_number_of_cores)
# Main part
# =========
def _test():
"""Run ``doctest`` on this module."""
import doctest
doctest.testmod()
if __name__ == '__main__':
_test()
## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End:
|