This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/geometry.py is in python-ufl 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
"Types for quantities computed from cell geometry."

# Copyright (C) 2008-2013 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2009.
# Modified by Kristian B. Oelgaard, 2009
# Modified by Marie E. Rognes 2012
#
# First added:  2008-03-14
# Last changed: 2013-04-29

from ufl.log import warning, error
from ufl.assertions import ufl_assert
from ufl.common import istr
from ufl.terminal import Terminal

# --- Expression node types

# Mapping from cell name to dimension
cellname2dim = {"cell1D": 1,
                "cell2D": 2,
                "cell3D": 3,
                "vertex": 0,
                "interval": 1,
                "triangle": 2,
                "tetrahedron": 3,
                "quadrilateral": 2,
                "hexahedron": 3}

# Mapping from cell name to facet name
cellname2facetname = {"cell1D": "vertex",
                      "cell2D": "cell1D",
                      "cell3D": "cell2D",
                      "interval": "vertex",
                      "triangle": "interval",
                      "tetrahedron": "triangle",
                      "quadrilateral": "interval",
                      "hexahedron": "quadrilateral"}

# Valid UFL cellnames
ufl_cellnames = tuple(sorted(cellname2dim.keys()))

# FIXME DOMAIN: Figure out which quantities to make available from Domain.
#               Need deprecation warnings for a while from the cell.

class GeometricQuantity(Terminal):
    __slots__ = ("_cell",)
    def __init__(self, cell):
        Terminal.__init__(self)
        self._cell = as_cell(cell)

    def cell(self):
        return self._cell

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        return True # NB! Assuming all geometric quantities in here are are cellwise constant by default!

    def __eq__(self, other):
        return isinstance(other, self._uflclass) and other._cell == self._cell

class SpatialCoordinate(GeometricQuantity):
    "Representation of a spatial coordinate."
    __slots__ = ("_repr",)
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)
        self._repr = "SpatialCoordinate(%r)" % self._cell

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        return False

    def shape(self):
        return (self._cell.geometric_dimension(),)

    def evaluate(self, x, mapping, component, index_values):
        if component == ():
            if isinstance(x, (tuple,list)):
                return float(x[0])
            else:
                return float(x)
        else:
            return float(x[component[0]])

    def __str__(self):
        return "x"

    def __repr__(self):
        return self._repr

class LocalCoordinate(GeometricQuantity):
    "(EXPERIMENTAL) Representation of a local coordinate on the reference cell."
    __slots__ = ("_repr",)
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)
        self._repr = "LocalCoordinate(%r)" % self._cell

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        return False

    def shape(self):
        return (self._cell.geometric_dimension(),)

    def evaluate(self, x, mapping, component, index_values):
        ufl_error("Symbolic evaluation of local coordinate not available.")

    def __str__(self):
        return "xi"

    def __repr__(self):
        return self._repr

class GeometryJacobi(GeometricQuantity):
    "(EXPERIMENTAL) Representation of the Jacobi of the mapping from local to global coordinates."
    __slots__ = ("_repr",)
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)
        self._repr = "GeometryJacobi(%r)" % self._cell

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        return True # False # FIXME: True for affine mappings, not for other mappings when we add support for them

    def shape(self):
        return (self._cell.geometric_dimension(), self._cell.topological_dimension())

    def evaluate(self, x, mapping, component, index_values):
        ufl_error("Symbolic evaluation of geometry jacobi not available.")

    def __str__(self):
        return "J"

    def __repr__(self):
        return self._repr

class GeometryJacobiDeterminant(GeometricQuantity):
    "(EXPERIMENTAL) Representation of the determinant of the Jacobi of the mapping from local to global coordinates."
    __slots__ = ("_repr",)
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)
        self._repr = "GeometryJacobiDeterminant(%r)" % self._cell

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        return True # False # FIXME: True for affine mappings, not for other mappings when we add support for them

    def shape(self):
        return ()

    def evaluate(self, x, mapping, component, index_values):
        ufl_error("Symbolic evaluation of geometry jacobi determinant not available.")

    def __str__(self):
        return "detJ"

    def __repr__(self):
        return self._repr

class InverseGeometryJacobi(GeometricQuantity):
    "(EXPERIMENTAL) Representation of the (pseudo-)inverse of the Jacobi of the mapping from local to global coordinates."
    __slots__ = ("_repr",)
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)
        self._repr = "InverseGeometryJacobi(%r)" % self._cell

    def is_cellwise_constant(self):
        "Return whether this expression is spatially constant over each cell."
        return True # False # FIXME: True for affine mappings, not for other mappings when we add support for them

    def shape(self):
        return (self._cell.topological_dimension(), self._cell.geometric_dimension())

    def evaluate(self, x, mapping, component, index_values):
        ufl_error("Symbolic evaluation of inverse geometry jacobi not available.")

    def __str__(self):
        return "K"

    def __repr__(self):
        return self._repr

class FacetNormal(GeometricQuantity):
    "Representation of a facet normal."
    __slots__ = ()
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)

    def shape(self):
        return (self._cell.geometric_dimension(),)

    def __str__(self):
        return "n"

    def __repr__(self):
        return "FacetNormal(%r)" % self._cell

class CellVolume(GeometricQuantity):
    "Representation of a cell volume."
    __slots__ = ()
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)

    def shape(self):
        return ()

    def __str__(self):
        return "volume"

    def __repr__(self):
        return "CellVolume(%r)" % self._cell

class Circumradius(GeometricQuantity):
    "Representation of the circumradius of a cell."
    __slots__ = ()
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)

    def shape(self):
        return ()

    def __str__(self):
        return "circumradius"

    def __repr__(self):
        return "Circumradius(%r)" % self._cell

class CellSurfaceArea(GeometricQuantity):
    "Representation of the total surface area of a cell."
    __slots__ = ()
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)

    def shape(self):
        return ()

    def __str__(self):
        return "surfacearea"

    def __repr__(self):
        return "CellSurfaceArea(%r)" % self._cell

class FacetArea(GeometricQuantity):
    "Representation of the area of a cell facet."
    __slots__ = ()
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)

    def shape(self):
        return ()

    def __str__(self):
        return "facetarea"

    def __repr__(self):
        return "FacetArea(%r)" % self._cell

class FacetDiameter(GeometricQuantity):
    """(EXPERIMENTAL) Representation of the diameter of a facet.

    This is not yet defined.
    """
    __slots__ = ()
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)

    def shape(self):
        return ()

    def __str__(self):
        return "facetdiameter"

    def __repr__(self):
        return "FacetDiameter(%r)" % self._cell

class MinFacetEdgeLength(GeometricQuantity):
    "Representation of the minimum edge length of a facet."
    __slots__ = ()
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)

    def shape(self):
        return ()

    def __str__(self):
        return "minfacetedgelength"

    def __repr__(self):
        return "MinFacetEdgeLength(%r)" % self._cell

class MaxFacetEdgeLength(GeometricQuantity):
    "Representation of the maximum edge length of a facet."
    __slots__ = ()
    def __init__(self, cell):
        GeometricQuantity.__init__(self, cell)

    def shape(self):
        return ()

    def __str__(self):
        return "maxfacetedgelength"

    def __repr__(self):
        return "MaxFacetEdgeLength(%r)" % self._cell


# TODO: If we include this here, we must define exactly what is meant by the mesh size, possibly adding multiple kinds of mesh sizes (hmin, hmax, havg, ?)
#class MeshSize(GeometricQuantity):
#    __slots__ = ()
#    def __init__(self, cell):
#        GeometricQuantity.__init__(self, cell)
#
#    def shape(self):
#        return ()
#
#    def __str__(self):
#        return "h"
#
#    def __repr__(self):
#        return "MeshSize(%r)" % self._cell

# --- Basic cell representation classes

class Cell(object):
    "Representation of a finite element cell."
    __slots__ = (# Strings
                 "_cellname",
                 "_repr",
                 # Dimensions
                 "_geometric_dimension",
                 "_topological_dimension",
                 # Global geometric quantities
                 "_x",
                 "_n",
                 # Cell and facet sizes
                 "_volume",
                 "_circumradius",
                 "_cellsurfacearea",
                 "_facetarea",
                 "_minfacetedgelength",
                 "_maxfacetedgelength",
                 "_facetdiameter",
                 # Cell local coordinates and mapping
                 "_xi",
                 "_J",
                 "_Jinv",
                 "_detJ",
                 )

    def __init__(self, cellname, geometric_dimension=None):
        "Initialize basic cell description."
        # The cellname must be one of the predefined names
        ufl_assert(cellname in cellname2dim, "Invalid cellname %s." % (cellname,))
        self._cellname = cellname

        # The topological dimension is defined by the cell type
        self._topological_dimension = cellname2dim[self._cellname]

        # The geometric dimension defaults to equal
        # the topological dimension if undefined
        ufl_assert(geometric_dimension is None or isinstance(geometric_dimension, int),
                   "Expecting an integer dimension, not '%r'" % (geometric_dimension,))
        self._geometric_dimension = geometric_dimension or self._topological_dimension

        # Check for consistency in dimensions.
        # NB! Note that the distinction between topological
        # and geometric dimensions has yet to be used in
        # practice, so don't trust it too much :)
        ufl_assert(self._topological_dimension <= self._geometric_dimension,
                   "Cannot embed a %sD cell in %sD" %\
                       (istr(self._topological_dimension), istr(self._geometric_dimension)))

        # Cache repr string
        self._repr = "Cell(%r, %r)" % (self._cellname, self._geometric_dimension)

        # Attach expression nodes derived from this cell TODO: Derive these from domain instead
        self._n = FacetNormal(self)
        self._x = SpatialCoordinate(self)

        self._xi = LocalCoordinate(self)
        self._J = GeometryJacobi(self)
        self._Jinv = InverseGeometryJacobi(self)
        self._detJ = GeometryJacobiDeterminant(self)

        self._volume = CellVolume(self)
        self._circumradius = Circumradius(self)
        self._cellsurfacearea = CellSurfaceArea(self)
        self._facetarea = FacetArea(self)
        self._minfacetedgelength = MinFacetEdgeLength(self)
        self._maxfacetedgelength = MaxFacetEdgeLength(self)
        self._facetdiameter = FacetDiameter(self)

        #self._h = MeshSize(self)
        #self._hmin = MeshSizeMin(self)
        #self._hmax = MeshSizeMax(self)

    @property
    def x(self):
        "UFL geometry value: The global spatial coordinates."
        return self._x

    @property
    def xi(self):
        "UFL geometry value: The local spatial coordinates."
        return self._xi

    @property
    def J(self):
        "UFL geometry value: The Jacobi of the local to global coordinate mapping."
        return self._J

    @property
    def detJ(self):
        "UFL geometry value: The determinant of the Jacobi of the local to global coordinate mapping."
        return self._detJ

    @property
    def Jinv(self):
        "UFL geometry value: The inverse of the Jacobi of the local to global coordinate mapping."
        return self._Jinv

    @property
    def n(self):
        "UFL geometry value: The facet normal on the cell boundary."
        return self._n

    @property
    def volume(self):
        "UFL geometry value: The volume of the cell."
        return self._volume

    @property
    def circumradius(self):
        "UFL geometry value: The circumradius of the cell."
        return self._circumradius

    @property
    def facet_diameter(self):
        "UFL geometry value: The diameter of a facet of the cell."
        return self._facetdiameter

    @property
    def min_facet_edge_length(self):
        "UFL geometry value: The minimum edge length of a facet of the cell."
        return self._minfacetedgelength

    @property
    def max_facet_edge_length(self):
        "UFL geometry value: The maximum edge length of a facet of the cell."
        return self._maxfacetedgelength

    @property
    def facet_area(self):
        "UFL geometry value: The area of a facet of the cell."
        return self._facetarea

    @property
    def surface_area(self):
        "UFL geometry value: The total surface area of the cell."
        return self._cellsurfacearea

    def is_undefined(self):
        """Return whether this cell is undefined,
        in which case no dimensions are available."""
        warning("cell.is_undefined() is deprecated, undefined cells are no longer allowed.")
        return False

    def domain(self):
        warning("Cell.domain() is deprecated, use cell.cellname() instead.")
        return self.cellname()

    def cellname(self):
        "Return the cellname of the cell."
        return self._cellname

    def facet_cellname(self):
        "Return the cellname of the facet of this cell."
        return cellname2facetname[self._cellname]

    def geometric_dimension(self):
        "Return the dimension of the space this cell is embedded in."
        return self._geometric_dimension

    def topological_dimension(self):
        "Return the dimension of the topology of this cell."
        return self._topological_dimension

    @property
    def d(self):
        """The dimension of the cell.

        Only valid if the geometric and topological dimensions are the same."""
        ufl_assert(self._topological_dimension == self._geometric_dimension,
                   "Cell.d is undefined when geometric and"+\
                   "topological dimensions are not the same.")
        return self._geometric_dimension

    def __eq__(self, other):
        return isinstance(other, Cell) and repr(self) == repr(other)

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        return repr(self) < repr(other)

    def __hash__(self):
        return hash(repr(self))

    def __str__(self):
        return "<%s cell in %sD>" % (istr(self._cellname),
                                     istr(self._geometric_dimension))

    def __repr__(self):
        return self._repr

    def _repr_svg_(self):
        n = self.cellname()
        svg = '<svg xmlns="http://www.w3.org/2000/svg" version="1.1">\n<polyline points="%s" style="fill:none;stroke:black;stroke-width:3" />\n</svg>'
        if n == "interval":
            svg = svg % '0,0, 200,0'
        elif n == "triangle":
            svg = svg % '0,200 200,200 0,0 0,200'
        elif n == "quadrilateral":
            svg = svg % '0,200 200,200 200,0 0,0 0,200'
        else:
            svg = None
        return svg

class ProductCell(Cell):
    """Representation of a cell formed by Cartesian products of other cells."""
    __slots__ = ("_cells",)

    def __init__(self, *cells):
        "Create a ProductCell from a given list of cells."

        self._cells = cells
        ufl_assert(len(self._cells) > 0, "Expecting at least one cell")

        self._cellname = self._cells[0].cellname()#" x ".join([c.cellname() for c in cells])
        self._topological_dimension = sum(c.topological_dimension() for c in cells)
        self._geometric_dimension = sum(c.geometric_dimension() for c in cells)

        self._repr = "ProductCell(*%r)" % list(self._cells)

        self._n = None
        self._x = SpatialCoordinate(self) # For now

        self._xi = None # ?
        self._J = None # ?
        self._Jinv = None # ?
        self._detJ = None # ?

        self._volume = None
        self._circumradius = None
        self._cellsurfacearea = None
        self._facetarea = None            # Not defined
        self._facetdiameter = None        # Not defined

    def sub_cells(self):
        "Return list of cell factors."
        return self._cells

# --- Utility conversion functions

def as_cell(cell):
    """Convert any valid object to a Cell (in particular, cellname string),
    or return cell if it is already a Cell."""
    if isinstance(cell, Cell):
        return cell
    elif isinstance(cell, str):
        # Create cell from string
        return Cell(cell)
    else:
        error("Invalid cell %s." % cell)