This file is indexed.

/usr/lib/python3/dist-packages/csb/bio/hmm/pseudocounts.py is in python3-csb 1.2.2+dfsg-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import sys
import csb.core
import csb.bio.sequence as sequence

from csb.bio.hmm import States, ScoreUnits, Transition, State


GONNET = [10227, 3430, 2875, 3869, 1625, 2393, 4590, 6500, 2352, 3225, 5819, 4172, 1435,
          1579, 3728, 4610, 6264, 418, 1824, 5709, 3430, 7780, 2209, 2589, 584, 2369,
          3368, 3080, 2173, 1493, 3093, 5701, 763, 859, 1893, 2287, 3487, 444, 1338, 2356,
          2875, 2209, 3868, 3601, 501, 1541, 2956, 3325, 1951, 1065, 2012, 2879, 532, 688,
          1480, 2304, 3204, 219, 1148, 1759, 3869, 2589, 3601, 8618, 488, 2172, 6021, 4176,
          2184, 1139, 2151, 3616, 595, 670, 2086, 2828, 3843, 204, 1119, 2015, 1625, 584,
          501, 488, 5034, 355, 566, 900, 516, 741, 1336, 591, 337, 549, 419, 901,
          1197, 187, 664, 1373, 2393, 2369, 1541, 2172, 355, 1987, 2891, 1959, 1587, 1066,
          2260, 2751, 570, 628, 1415, 1595, 2323, 219, 871, 1682, 4590, 3368, 2956, 6021,
          566, 2891, 8201, 3758, 2418, 1624, 3140, 4704, 830, 852, 2418, 2923, 4159, 278, 1268, 2809,
          6500, 3080, 3325, 4176, 900, 1959, 3758, 26066, 2016, 1354, 2741, 3496, 741, 797, 2369,
          3863, 4169, 375, 1186, 2569, 2352, 2173, 1951, 2184, 516, 1587, 2418, 2016, 5409,
          1123, 2380, 2524, 600, 1259, 1298, 1642, 2446, 383, 876, 1691, 3225, 1493, 1065,
          1139, 741, 1066, 1624, 1354, 1123, 6417, 9630, 1858, 1975, 2225, 1260, 1558, 3131,
          417, 1697, 7504, 5819, 3093, 2012, 2151, 1336, 2260, 3140, 2741, 2380, 9630, 25113,
          3677, 4187, 5540, 2670, 2876, 5272, 1063, 3945, 11005, 4172, 5701, 2879, 3616, 591,
          2751, 4704, 3496, 2524, 1858, 3677, 7430, 949, 975, 2355, 2847, 4340, 333, 1451, 2932,
          1435, 763, 532, 595, 337, 570, 830, 741, 600, 1975, 4187, 949, 1300, 1111, 573,
          743, 1361, 218, 828, 2310, 1579, 859, 688, 670, 549, 628, 852, 797, 1259, 2225,
          5540, 975, 1111, 6126, 661, 856, 1498, 1000, 4464, 2602, 3728, 1893, 1480, 2086, 419,
          1415, 2418, 2369, 1298, 1260, 2670, 2355, 573, 661, 11834, 2320, 3300, 179, 876, 2179,
          4610, 2287, 2304, 2828, 901, 1595, 2923, 3863, 1642, 1558, 2876, 2847, 743, 856, 2320,
          3611, 4686, 272, 1188, 2695, 6264, 3487, 3204, 3843, 1197, 2323, 4159, 4169, 2446, 3131,
          5272, 4340, 1361, 1498, 3300, 4686, 8995, 397, 1812, 5172, 418, 444, 219, 204, 187,
          219, 278, 375, 383, 417, 1063, 333, 218, 1000, 179, 272, 397, 4101, 1266, 499,
          1824, 1338, 1148, 1119, 664, 871, 1268, 1186, 876, 1697, 3945, 1451, 828, 4464, 876,
          1188, 1812, 1266, 9380, 2227, 5709, 2356, 1759, 2015, 1373, 1682, 2809, 2569, 1691, 7504,
          11005, 2932, 2310, 2602, 2179, 2695, 5172, 499, 2227.0, 11569.0]
"""
Gonnet matrix frequencies taken from HHpred
"""

        
class PseudocountBuilder(object):
    """
    Constructs profile HMMs with pseudocounts. 
    """
    
    def __init__(self, hmm):
        self._hmm = hmm
        
    @property
    def hmm(self):
        return self._hmm
    
    def add_emission_pseudocounts(self, tau=0.1, pca=2.5, pcb=0.5, pcc=1.0):
        """
        Port from HHpred, it uses the conditional background probabilities,
        inferred from the Gonnet matrix.

        @param tau: admission weight, i.e how much of the final score is
                    determined by the background probabilities.
                    0.0=no pseudocounts. 
        @type tau: float
        """
        from numpy import array, dot, transpose, clip

        if self.hmm.pseudocounts or self.hmm.emission_pseudocounts:
            return
        if abs(tau) < 1e-6:
            return
        
        # Assume probabilities
        if not self.hmm.score_units == ScoreUnits.Probability:
            self.hmm.convert_scores(units=ScoreUnits.Probability)

        alphabet = csb.core.Enum.values(sequence.StdProteinAlphabet)
        
        ## S = SubstitutionMatrix(substitution_matrix)
        s_mat = array(GONNET)
        #Normalize
        s_mat /= s_mat.sum()
        s_mat = s_mat.reshape((len(alphabet), len(alphabet)))
        # Marginalize matrix
        s_marginal = s_mat.sum(-1)
        s_conditional = s_mat / s_marginal
        # Get data and info from hmm 
        em = array([ [layer[States.Match].emission[aa] or 0.0 for aa in alphabet]
                    for layer in self.hmm.layers])

        em = clip(em, sys.float_info.min, 1.)
        
        neff_m = array([l.effective_matches for l in self.hmm.layers])

        g = dot(em, transpose(s_conditional))

        if neff_m is not None:
            tau = clip(pca / (1. + (neff_m / pcb) ** pcc), 0.0, pcc)
            e = transpose((1. - tau) * transpose(em) + tau * transpose(g))
        else:
            e = (1. - tau) * em + tau * g
            
        # Renormalize e
        e = transpose(transpose(e) / e.sum(-1))

        for i, layer in enumerate(self.hmm.layers):
            layer[States.Match].emission.set(dict(zip(alphabet, e[i])))

        self.hmm.emission_pseudocounts = True
        return 
        

        
    def add_transition_pseudocounts(self, gapb=1., gapd=0.15, gape=1.0, gapf=0.6, gapg=0.6, gapi=0.6):
        """
        Add pseudocounts to the transitions. A port from hhsearch
        -gapb 1.0 -gapd 0.15 -gape 1.0 -gapf 0.6 -gapg 0.6 -gapi 0.6
        """

        from numpy import array

        if not self.hmm._score_units == ScoreUnits.Probability:
            self.hmm.convert_scores(units=ScoreUnits.Probability) 

        if self.hmm.pseudocounts or self.hmm.transition_pseudocounts:
            return

        # We need a fully populated HMM so first add all missing states
        states = [States.Match, States.Insertion, States.Deletion] 
        background = self.hmm.layers[1][States.Match].background
        for layer in self.hmm.layers:
            rank = layer.rank
            for state in states:
                if state not in layer:

                    if state is States.Deletion:
                        # Add a new Deletion state
                        deletion = State(States.Deletion)
                        deletion.rank = rank 
                        layer.append(deletion)
                        
                    elif state is States.Insertion:
                        # Add a new Deletion state
                        insertion = State(States.Insertion,
                                          emit=csb.core.Enum.members(
                                          sequence.SequenceAlphabets.Protein))
                        insertion.background.set(background) 
                        insertion.emission.set(background)
                        insertion.rank = rank
                        layer.append(insertion)

        if not self.hmm.start_insertion:
            insertion = State(States.Insertion,
                                          emit=csb.core.Enum.members(
                                          sequence.SequenceAlphabets.Protein))
            insertion.background.set(background) 
            insertion.emission.set(background)
            insertion.rank = 0
            self.hmm.start_insertion = insertion

        # make hmm completly connected
        for i in range(1, self.hmm.layers.length):
            layer = self.hmm.layers[i]
            #Start with match state
            state = layer[States.Match]
            if not States.Insertion in state.transitions:
                state.transitions.append(Transition(state,
                                                    self.hmm.layers[i][States.Insertion],
                                                    0.0))
            if not States.Deletion in state.transitions:
                state.transitions.append(Transition(state,
                                                    self.hmm.layers[i + 1][States.Deletion],
                                                    0.0))
            state = layer[States.Insertion]
            if not States.Insertion in state.transitions:
                state.transitions.append(Transition(state,
                                                    self.hmm.layers[i][States.Insertion],
                                                    0.0))
            if not States.Match in state.transitions:
                state.transitions.append(Transition(state,
                                                    self.hmm.layers[i + 1][States.Match],
                                                    0.0))
            state = layer[States.Deletion]
            if not States.Deletion in state.transitions:
                state.transitions.append(Transition(state,
                                                    self.hmm.layers[i + 1][States.Deletion],
                                                    0.0))
            if not States.Match in state.transitions:
                state.transitions.append(Transition(state,
                                                    self.hmm.layers[i + 1][States.Match],
                                                    0.0))
        # start layer
        state = self.hmm.start
        if not States.Insertion in self.hmm.start.transitions:
            state.transitions.append(Transition(self.hmm.start,
                                                self.hmm.start_insertion,
                                                0.0))
        if not States.Deletion in self.hmm.start.transitions:
            state.transitions.append(Transition(self.hmm.start,
                                                self.hmm.layers[1][States.Deletion],
                                                0.0))

        state = self.hmm.start_insertion
        if not States.Insertion in self.hmm.start_insertion.transitions:
            state.transitions.append(Transition(self.hmm.start_insertion,
                                                self.hmm.start_insertion,
                                                0.0))
        if not States.Match in self.hmm.start_insertion.transitions:
            state.transitions.append(Transition(self.hmm.start_insertion,
                                                self.hmm.layers[1][States.Match],
                                                0.0))

        # last layer
        state = self.hmm.layers[-1][States.Match]
        if not States.Insertion in state.transitions:
            state.transitions.append(Transition(state,
                                                self.hmm.layers[-1][States.Insertion],
                                                0.0))
        state = self.hmm.layers[-1][States.Insertion]
        if not States.Insertion in state.transitions:
            state.transitions.append(Transition(state,
                                                self.hmm.layers[-1][States.Insertion],
                                                0.0))

        if not States.End in state.transitions:
            state.transitions.append(Transition(state,
                                                self.hmm.end,
                                                0.0))
        state = self.hmm.layers[-1][States.Deletion]
        if not States.End in state.transitions:
            state.transitions.append(Transition(state,
                                                self.hmm.end,
                                                0.0))
        

        
        # Now we have created a fully connected HMM
        # Lates add pseuod counts
        # Calculate pseudo counts

        # to be honest I really do not know how they came up with this
        pc_MD = pc_MI = 0.0286 * gapd
        pc_MM = 1. - 2 * pc_MD
        pc_DD = pc_II = gape / (gape - 1 + 1 / 0.75)
        pc_DM = pc_IM = 1. - pc_II

        
        # Get current transtion probabilities
        t_mm = self.hmm.start.transitions[States.Match].probability 
        t_mi = self.hmm.start.transitions[States.Insertion].probability 
        t_md = self.hmm.start.transitions[States.Deletion].probability 

        # Transitions from Match state
        n_eff = self.hmm.effective_matches
        
        t = array([(n_eff - 1) * t_mm + gapb * pc_MM,
                   (n_eff - 1) * t_mi + gapb * pc_MI,
                   (n_eff - 1) * t_md + gapb * pc_MD])
        # normalize to one
        t /= t.sum()
        # Set 
        self.hmm.start.transitions[States.Match].probability = t[0]
        self.hmm.start.transitions[States.Insertion].probability = t[1]
        self.hmm.start.transitions[States.Deletion].probability = t[2]
        
        # Rinse and repeat
        t_im = self.hmm.start_insertion.transitions[States.Match].probability 
        t_ii = self.hmm.start_insertion.transitions[States.Insertion].probability  
        
        t = array([t_im + gapb * pc_IM, t_ii + gapb * pc_II])
        t /= t.sum()

        self.hmm.start_insertion.transitions[States.Match].probability = t[0]
        t_ii = self.hmm.start_insertion.transitions[States.Insertion].probability = t[1]

        # And now for all layers
        for layer in self.hmm.layers[:-1]:
            # Get current transtion probabilities
            t_mm = layer[States.Match].transitions[States.Match].probability 
            t_mi = layer[States.Match].transitions[States.Insertion].probability 
            t_md = layer[States.Match].transitions[States.Deletion].probability 
            n_eff = layer.effective_matches
            t = array([(n_eff - 1) * t_mm + gapb * pc_MM,
                       (n_eff - 1) * t_mi + gapb * pc_MI,
                       (n_eff - 1) * t_md + gapb * pc_MD])
            # normalize to one
            t /= t.sum()
            layer[States.Match].transitions[States.Match].probability = t[0]
            layer[States.Match].transitions[States.Insertion].probability = t[1]
            layer[States.Match].transitions[States.Deletion].probability = t[2]
            
            # Transitions from insert state
            t_im = layer[States.Insertion].transitions[States.Match].probability 
            t_ii = layer[States.Insertion].transitions[States.Insertion].probability
            n_eff = layer.effective_insertions
            t = array([t_im * n_eff + gapb * pc_IM,
                       t_im * n_eff + gapb * pc_II])
            # normalize to one
            t /= t.sum()
            layer[States.Insertion].transitions[States.Match].probability = t[0]
            layer[States.Insertion].transitions[States.Insertion].probability = t[1]

            # Transitions form deletion state
            t_dm = layer[States.Deletion].transitions[States.Match].probability 
            t_dd = layer[States.Deletion].transitions[States.Deletion].probability
            n_eff = layer.effective_deletions
            t = array([t_dm * n_eff + gapb * pc_DM,
                       t_dd * n_eff + gapb * pc_DD])
            # normalize to one
            t /= t.sum()
            layer[States.Deletion].transitions[States.Match].probability = t[0]
            layer[States.Deletion].transitions[States.Deletion].probability = t[1]

        #Last layer

        layer = self.hmm.layers[-1]
        t_mm = layer[States.Match].transitions[States.End].probability 
        t_mi = layer[States.Match].transitions[States.Insertion].probability 
        n_eff = layer.effective_matches
        # No deletion
        t = array([(n_eff - 1) * t_mm + gapb * pc_MM,
                   (n_eff - 1) * t_mi + gapb * pc_MI])
        # normalize to one
        t /= t.sum()
        layer[States.Match].transitions[States.End].probability = t[0]
        layer[States.Match].transitions[States.Insertion].probability = t[1]
        
        # Transitions from insert state
        t_im = layer[States.Insertion].transitions[States.End].probability 
        t_ii = layer[States.Insertion].transitions[States.Insertion].probability
        n_eff = layer.effective_insertions
        t = array([t_im * n_eff + gapb * pc_IM,
                   t_im * n_eff + gapb * pc_II])
        # normalize to one
        t /= t.sum()
        layer[States.Insertion].transitions[States.End].probability = t[0]
        layer[States.Insertion].transitions[States.Insertion].probability = t[1]

        layer[States.Deletion].transitions[States.End].probability = 1.

        self.hmm.transition_pseudocounts = True
        return