This file is indexed.

/usr/lib/python3/dist-packages/csb/bio/sequence/__init__.py is in python3-csb 1.2.2+dfsg-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
"""
Sequence and sequence alignment APIs.

This module defines the base interfaces for biological sequences and alignments:
L{AbstractSequence} and L{AbstractAlignment}. These are the central abstractions
here. This module provides also a number of useful enumerations, like L{SequenceTypes}
and L{SequenceAlphabets}.

Sequences
=========
L{AbstractSequence} has a number of implementations. These are of course interchangeable,
but have different intents and may differ significantly in performance. The standard
L{Sequence} implementation is what you are after if all you need is high performance
and efficient storage (e.g. when you are parsing big files). L{Sequence} objects store
their underlying sequences as strings. L{RichSequence}s on the other hand will store
their residues as L{ResidueInfo} objects, which have the same basic interface as the 
L{csb.bio.structure.Residue} objects. This of course comes at the expense of degraded
performance. A L{ChainSequence} is a special case of a rich sequence, whose residue
objects are I{actually} real L{csb.bio.structure.Residue}s.

Basic usage:

    >>> seq = RichSequence('id', 'desc', 'sequence', SequenceTypes.Protein)
    >>> seq.residues[1]
    <ResidueInfo [1]: SER>
    >>> seq.dump(sys.stdout)
    >desc
    SEQUENCE

See L{AbstractSequence} for details.    

Alignments
==========
L{AbstractAlignment} defines a table-like interface to access the data in an
alignment:

    >>> ali = SequenceAlignment.parse(">a\\nABC\\n>b\\nA-C")
    >>> ali[0, 0]
    <SequenceAlignment>   # a new alignment, constructed from row #1, column #1
    >>> ali[0, 1:3]
    <SequenceAlignment>   # a new alignment, constructed from row #1, columns #2..#3

which is just a shorthand for using the standard 1-based interface:

    >>> ali.rows[1]
    <AlignedSequenceAdapter: a, 3>                        # row #1 (first sequence)
    >>> ali.columns[1]
    (<ColumnInfo a [1]: ALA>, <ColumnInfo b [1]: ALA>)    # residues at column #1

See L{AbstractAlignment} for all details and more examples.

There are a number of L{AbstractAlignment} implementations defined here.
L{SequenceAlignment} is the default one, nothing surprising. L{A3MAlignment}
is a more special one: the first sequence in the alignment is a master sequence.
This alignment is usually used in the context of HHpred. More important is the
L{StructureAlignment}, which is an alignment of L{csb.bio.structure.Chain} objects.
The residues in every aligned sequence are really the L{csb.bio.structure.Residue}
objects taken from those chains.
"""

import re
import csb.core
import csb.io

from abc import ABCMeta, abstractmethod, abstractproperty


class AlignmentFormats(csb.core.enum):
    """
    Enumeration of multiple sequence alignment formats
    """
    A3M='a3m'; FASTA='fa'; PIR='pir'

class SequenceTypes(csb.core.enum):
    """
    Enumeration of sequence types
    """
    NucleicAcid='NA'; DNA='DNA'; RNA='RNA'; Protein='Protein'; Unknown='Unknown'    

class AlignmentTypes(csb.core.enum):
    """
    Enumeration of alignment strategies
    """
    Global='global'; Local='local'

class NucleicAlphabet(csb.core.enum):
    """
    Nucleic sequence alphabet
    """
    Adenine='A'; Cytosine='C'; Guanine='G'; Thymine='T'; Uracil='U'; Purine='R'; Pyrimidine='Y'; Ketone='K';
    Amino='M'; Strong='S'; Weak='W'; NotA='B'; NotC='D'; NotG='H'; NotT='V'; Any='N'; Masked='X'; GAP='-'; INSERTION='.';
    
class ProteinAlphabet(csb.core.enum):
    """
    Protein sequence alphabet
    """
    ALA='A'; ASX='B'; CYS='C'; ASP='D'; GLU='E'; PHE='F'; GLY='G'; HIS='H'; ILE='I'; LYS='K'; LEU='L'; MET='M'; ASN='N';
    PYL='O'; PRO='P'; GLN='Q'; ARG='R'; SER='S'; THR='T'; SEC='U'; VAL='V'; TRP='W'; TYR='Y'; GLX='Z'; UNK='X'; GAP='-';
    INSERTION='.'; STOP='*'
                                    
class StdProteinAlphabet(csb.core.enum):
    """
    Standard protein sequence alphabet
    """      
    ALA='A'; CYS='C'; ASP='D'; GLU='E'; PHE='F'; GLY='G'; HIS='H'; ILE='I'; LYS='K'; LEU='L'; MET='M'; ASN='N';
    PRO='P'; GLN='Q'; ARG='R'; SER='S'; THR='T';  VAL='V'; TRP='W'; TYR='Y'
    
class UnknownAlphabet(csb.core.enum):
    """
    Unknown sequence alphabet
    """  
    UNK='X'; GAP='-'; INSERTION='.'
   
class SequenceAlphabets(object):
    """
    Sequence alphabet enumerations.

    @note: This class is kept for backwards compatibility. The individual
           alphabet classes must be defined in the top level namespace,
           otherwise the new enum types cannot be pickled properly. 
    """
    Nucleic = NucleicAlphabet
    Protein = ProteinAlphabet
    StdProtein = StdProteinAlphabet
    Unknown = UnknownAlphabet
    
    MAP = { SequenceTypes.Protein: ProteinAlphabet,
            SequenceTypes.NucleicAcid: NucleicAlphabet,
            SequenceTypes.DNA: NucleicAlphabet,
            SequenceTypes.RNA: NucleicAlphabet,
            SequenceTypes.Unknown: UnknownAlphabet }
    
    ALL_ALPHABETS = set([ProteinAlphabet, NucleicAlphabet, UnknownAlphabet])

    assert set(MAP) == csb.core.Enum.members(SequenceTypes)
    
    @staticmethod
    def get(type):
        """
        Get the alphabet corresponding to the specified sequence C{type}
        @param type: a member of L{SequenceTypes}
        @type type: L{csb.core.EnumItem}
        @rtype: L{csb.core.enum} 
        """
        return SequenceAlphabets.MAP[type]  
    
    @staticmethod
    def contains(alphabet):
        """
        Return True if C{alphabet} is a sequence alphabet
        @type alphabet: L{csb.core.enum}
        @rtype: bool
        """
        return alphabet in SequenceAlphabets.ALL_ALPHABETS        


class SequenceError(ValueError):
    pass

class PositionError(IndexError):
    
    def __init__(self, index=None, start=1, end=None):
        
        if end == 0:
            start = 0
            
        self.index = index
        self.start = start
        self.end = end
        
        super(PositionError, self).__init__(index, start, end)
        
    def __str__(self):
        
        if self.index is not None:
            s = 'Position {0.index} is out of range [{0.start}, {0.end}]'
        else:
            s = 'Out of range [{0.start}, {0.end}]'
            
        return s.format(self)            
        
class SequencePositionError(PositionError):
    pass

class ColumnPositionError(PositionError):
    pass
     
class SequenceNotFoundError(KeyError):
    pass

class DuplicateSequenceError(KeyError):
    pass           
                
class ResidueInfo(object):
        
    def __init__(self, rank, type):
        
        self._type = None    
        self._rank = rank
        
        self.type = type
                
    @property
    def type(self):
        """
        Residue type - a member of any sequence alphabet
        @rtype: enum item
        """
        return self._type
    @type.setter
    def type(self, type):
        if not SequenceAlphabets.contains(type.enum):
            raise TypeError(type)
        self._type = type
        
    @property
    def rank(self):
        """
        Residue position (1-based)
        @rtype: int
        """
        return self._rank
    
    def __repr__(self):
        return '<{1} [{0.rank}]: {0.type!r}>'.format(self, self.__class__.__name__)

    
class ColumnInfo(object):
    
    def __init__(self, column, id, rank, residue):
        
        self.column = column
        self.id = id
        self.rank = rank
        self.residue = residue

    def __repr__(self):
        return '<{0.__class__.__name__} {0.id} [{0.column}]: {0.residue.type!r}>'.format(self)                
    
class SequenceIndexer(object):
    
    def __init__(self, container):
        self._container = container

    def __getitem__(self, rank):
        
        if not 1 <= rank <= self._container.length:
            raise SequencePositionError(rank, 1, self._container.length)
              
        return self._container._get(rank)
    
    def __iter__(self):
        return iter(self._container)
            
class UngappedSequenceIndexer(SequenceIndexer):

    def __getitem__(self, rank):
        try: 
            return self._container._get_ungapped(rank)
        except SequencePositionError:
            raise SequencePositionError(rank, 1)
    
    def __iter__(self):
        for c in self._container:
            if c.residue.type not in (self._container.alphabet.GAP, self._container.alphabet.INSERTION):
                yield c.residue

class ColumnIndexer(SequenceIndexer):
    
    def __getitem__(self, column):
        
        if not 1 <= column <= self._container.length:
            raise ColumnPositionError(column, 1, self._container.length)
                
        return self._container._get_column(column)
    

class SequenceCollection(csb.core.ReadOnlyCollectionContainer):
    """
    Represents a list of L{AbstractSequence}s.
    """

    def __init__(self, sequences):
        super(SequenceCollection, self).__init__(items=sequences, type=AbstractSequence)

    def to_fasta(self, output_file):
        """
        Dump the whole collection in mFASTA format.
        
        @param output_file: write the output to this file or stream
        @type output_file: str or stream
        """
        from csb.bio.io.fasta import FASTAOutputBuilder
            
        with csb.io.EntryWriter(output_file, close=False) as out:
            builder = FASTAOutputBuilder(out.stream, headers=True)
            
            for s in self:
                builder.add_sequence(s)        

        
class AbstractSequence(object):
    """
    Base abstract class for all Sequence objects.
    
    Provides 1-based access to the residues in the sequence via the
    sequence.residues property. The sequence object itself also behaves like
    a collection and provides 0-based access to its elements (residues).   
        
    @param id: FASTA ID of this sequence (e.g. accession number)
    @type id: str
    @param header: FASTA sequence header
    @type header: str
    @param residues: sequence residues
    @type residues: str or collection of L{ResidueInfo}
    @param type: a L{SequenceTypes} member (defaults to protein)
    @type type: L{EnumItem}
    """
     
    __metaclass__ = ABCMeta
    
    DELIMITER = '>'

    def __init__(self, id, header, residues, type=SequenceTypes.Unknown):

        self._id = None
        self._header = None
        self._residues = []
        self._type = None
          
        self.id = id
        self.header = header
        self.type = type
        
        for residue in residues:
            self._add(residue)
    
    def __getitem__(self, spec):
        
        if isinstance(spec, slice):
            spec = SliceHelper(spec, 0, self.length)
            return self.subregion(spec.start + 1, spec.stop)
        else:
            if not 0 <= spec < self.length:
                raise IndexError(spec)            
            return self._get(spec + 1)
    
    def __iter__(self):
        for index in range(self.length):
            yield self[index]
        
    @abstractmethod
    def _add(self, residue):
        """
        Append a C{residue} to the sequence.
        
        This is a hook method invoked internally for each residue during object
        construction. By implementing this method, sub-classes define how
        residues are attached to the sequence object.   
        """
        pass

    @abstractmethod
    def _get(self, rank):
        """
        Retrieve the sequence residue at the specified position (1-based, positive).
        
        This is a hook method which defines the actual behavior of the sequence
        residue indexer.
          
        @rtype: L{ResidueInfo}
        @raise SequencePositionError: when the supplied rank is out of range
        """
        pass
    
    def _factory(self, *a, **k):
        """
        Return a new sequence of the current L{AbstractSequence} sub-class.
        """
        return self.__class__(*a, **k)    

    def strip(self):
        """
        Remove all gaps and insertions from the sequence.
        
        @return: a new sequence instance, containing no gaps
        @rtype: L{AbstractSequence}
        """
        residues = [r for r in self._residues 
                    if r.type not in (self.alphabet.GAP, self.alphabet.INSERTION)]
        
        return self._factory(self.id, self.header, residues, self.type)
            
    def subregion(self, start, end):
        """
        Extract a subsequence, defined by [start, end]. The start and end
        positions are 1-based, inclusive.
        
        @param start: start position
        @type start: int
        @param end: end position
        @type end: int
        
        @return: a new sequence
        @rtype: L{AbstractSequence}
        
        @raise SequencePositionError: if start/end positions are out of range
        """
        positions = range(start, end + 1)
        return self.extract(positions)
    
    def extract(self, positions):
        """
        Extract a subsequence, defined by a list of 1-based positions.
        
        @param positions: positions to extract
        @type positions: tuple of int
        
        @return: a new sequence
        @rtype: L{AbstractSequence}
        
        @raise SequencePositionError: if any position is out of range
        """

        end = self.length
        residues = []
        
        for rank in sorted(set(positions)):
            if 1 <= rank <= end:
                residues.append(self._get(rank))
            else:
                raise SequencePositionError(rank, 1, end)
            
        return self._factory(self.id, self.header, residues, self.type)
    
    def dump(self, output_file):
        """
        Dump the sequence in FASTA format.
        
        @param output_file: write the output to this file or stream
        @type output_file: str or stream
        """
        from csb.bio.io.fasta import FASTAOutputBuilder
            
        with csb.io.EntryWriter(output_file, close=False) as out:
            FASTAOutputBuilder(out.stream, headers=True).add_sequence(self)
        
    @property
    def length(self):
        """
        Number of residues
        @rtype: int
        """
        return len(self._residues)
    
    @property
    def id(self):
        """
        Sequence identifier
        @rtype: str
        """        
        return self._id
    @id.setter
    def id(self, value):
        if value is not None:
            value = str(value).strip()
        self._id = value
            
    @property
    def header(self):
        """
        Sequence description
        @rtype: str
        """        
        return self._header
    @header.setter
    def header(self, value):
        if not value:
            value = 'sequence'       
        else:
            value = value.strip().lstrip(AbstractSequence.DELIMITER)
        self._header = value
    
    @property  
    def type(self):
        """
        Sequence type - a member of L{SequenceTypes}
        @rtype: enum item
        """
        return self._type
    @type.setter
    def type(self, value):
        if isinstance(value, csb.core.string):
            value = csb.core.Enum.parse(SequenceTypes, value)
        if value.enum is not SequenceTypes:
            raise TypeError(value) 
        self._type = value 

    @property
    def sequence(self): 
        """
        The actual sequence
        @rtype: str
        """
        return ''.join([str(r.type) for r in self._residues])
    
    @property
    def alphabet(self):
        """
        The sequence alphabet corresponding to the current sequence type
        @rtype: L{csb.core.enum}
        """
        return SequenceAlphabets.get(self._type)
    
    @property
    def residues(self):
        """
        Rank-based access to the underlying L{residues<csb.bio.sequence.ResidueInfo>}
        @rtype: L{SequenceIndexer}
        """
        return SequenceIndexer(self)

    def __len__(self):
        return self.length
    
    def __repr__(self):
        return '<{0.__class__.__name__}: {0.id}, {0.length} residues>'.format(self)
    
    def __str__(self):
        return '{0}{1.header}\n{1.sequence}'.format(AbstractSequence.DELIMITER, self)
        
class Sequence(AbstractSequence):
    """
    High-performance sequence object. The actual sequence is stored internally
    as a string. The indexer acts as a residue factory, which creates a new
    L{ResidueInfo} instance each time. 
    
    @note: This class was created with parsing large volumes of data in mind. This
           comes at the expense of degraded performance of the sequence indexer.
    
    @param id: FASTA ID of this sequence (e.g. accession number)
    @type id: str
    @param header: FASTA sequence header
    @type header: str
    @param residues: sequence string
    @type residues: str
    @param type: a L{SequenceTypes} member (defaults to protein)
    @type type: L{EnumItem}
    """
    
    def __init__(self, id, header, residues, type=SequenceTypes.Unknown):

        self._id = None
        self._header = None
        self._residues = ''
        self._type = None
          
        self.id = id
        self.header = header
        self.type = type        

        self._append(residues)
    
    def _append(self, string):
        # this seems to be the fastest method for sanitization and storage        
        self._residues += re.sub('([^\w\-\.])+', '', string)
        
    def _add(self, char):
        self._append(char)
            
    def _get(self, rank):        
        
        type = csb.core.Enum.parse(self.alphabet, self._residues[rank - 1])
        return ResidueInfo(rank, type)
    
    def strip(self):
        residues = self._residues.replace(
                        str(self.alphabet.GAP), '').replace(
                                        str(self.alphabet.INSERTION), '')
        return self._factory(self.id, self.header, residues, self.type)        

    def subregion(self, start, end):

        if not 1 <= start <= end <= self.length:
            raise SequencePositionError(None, 1, self.length)
                       
        residues = self._residues[start - 1 : end]
        return self._factory(self.id, self.header, residues, self.type)                

    def extract(self, positions):

        end = self.length
        residues = []
        
        for rank in sorted(set(positions)):
            if 1 <= rank <= end:
                residues.append(self._residues[rank - 1])
            else:
                raise SequencePositionError(rank, 1, end)
            
        return self._factory(self.id, self.header, ''.join(residues), self.type)
            
    @property
    def sequence(self):
        return self._residues

class RichSequence(AbstractSequence):
    """
    Sequence implementation, which converts the sequence into a list of
    L{ResidueInfo} objects. See L{AbstractSequence} for details.
    """
        
    def _add(self, residue):
        
        if hasattr(residue, 'rank') and hasattr(residue, 'type'):            
            self._residues.append(residue)
            
        else:
            if residue.isalpha() or residue in (self.alphabet.GAP, self.alphabet.INSERTION):
                
                type = csb.core.Enum.parse(self.alphabet, residue)
                rank = len(self._residues) + 1
                self._residues.append(ResidueInfo(rank, type))
            
    def _get(self, rank):
        return self._residues[rank - 1]

    @staticmethod
    def create(sequence):
        """
        Create a new L{RichSequence} from existing L{AbstractSequence}.
        
        @type sequence: L{AbstractSequence}
        @rtype: L{RichSequence}
        """
        return RichSequence(
                sequence.id, sequence.header, sequence.sequence, sequence.type)    

class ChainSequence(AbstractSequence):
    """
    Sequence view for L{csb.bio.structure.Chain} objects.
    See L{AbstractSequence} for details.
    """
            
    def _add(self, residue):
        
        if not (hasattr(residue, 'rank') and hasattr(residue, 'type')):
            raise TypeError(residue)
        else:
            self._residues.append(residue)
            
    def _get(self, rank):
        return self._residues[rank - 1]
    
    @staticmethod
    def create(chain):
        """
        Create a new L{ChainSequence} from existing L{Chain} instance.
        
        @type chain: L{csb.bio.structure.Chain}
        @rtype: L{ChainSequence}
        """        
        return ChainSequence(
                chain.entry_id, chain.header, chain.residues, chain.type)

    
class SequenceAdapter(object):
    """
    Base wrapper class for L{AbstractSequence} objects.
    Needs to be sub-classed (does not do anything special on its own).
    
    @param sequence: adaptee
    @type sequence: L{AbstractSequence}
    """
    
    def __init__(self, sequence):
        
        if not isinstance(sequence, AbstractSequence):
            raise TypeError(sequence)
        
        self._subject = sequence

    def __getitem__(self, i):
        return self._subject[i]
    
    def __iter__(self):
        return iter(self._subject)
                
    def __repr__(self):
        return '<{0.__class__.__name__}: {0.id}, {0.length}>'.format(self)        
    
    def __str__(self):
        return str(self._subject)
    
    def _add(self):
        raise NotImplementedError()
    
    def _get(self, rank):
        return self._subject._get(rank)
    
    def _factory(self, *a, **k):        
        return self.__class__(self._subject._factory(*a, **k))
    
    def strip(self):
        return self._subject.strip()
            
    def subregion(self, start, end):
        return self._subject.subregion(start, end)
    
    def extract(self, positions):
        return self._subject.extract(positions)    

    @property
    def id(self):
        return self._subject.id

    @property
    def length(self):
        return self._subject.length

    @property
    def type(self):
        return self._subject.type

    @property
    def header(self):
        return self._subject.header
    
    @property
    def sequence(self):
        return self._subject.sequence
                    
    @property
    def alphabet(self):
        return self._subject.alphabet

class AlignedSequenceAdapter(SequenceAdapter):
    """
    Adapter, which wraps a gapped L{AbstractSequence} object and makes it
    compatible with the MSA row/entry interface, expected by L{AbstractAlignment}.
    
    The C{adapter.residues} property operates with an L{UngappedSequenceIndexer},
    which provides a gap-free view of the underlying sequence.
    
    The C{adapter.columns} property operates with a standard L{ColumnIndexer},
    the same indexer which is used to provide the column view in multiple 
    alignments. Adapted sequences therefore act as alignment rows and allow for
    MSA-column-oriented indexing.
    
    @param sequence: adaptee
    @type sequence: L{AbstractSequence}    
    """

    def __init__(self, sequence):

        super(AlignedSequenceAdapter, self).__init__(sequence)
        
        self._fmap = {}
        self._rmap = {}
        rank = 0
        
        for column, residue in enumerate(sequence, start=1):
            
            if residue.type not in (self.alphabet.GAP, self.alphabet.INSERTION):
                rank += 1
                self._fmap[column] = rank                
                self._rmap[rank] = column
            else:
                self._fmap[column] = None

    def __getitem__(self, index):
        if not 0 <= index < self.length:
            raise IndexError(index)
        return self._get_column(index + 1)
    
    def __iter__(self):
        for c in sorted(self._fmap):
            yield self._get_column(c)
                    
    @property
    def columns(self):
        """
        Provides 1-based access to the respective columns in the MSA.
        @rtype: L{ColumnIndexer}
        """        
        return ColumnIndexer(self)

    @property
    def residues(self):
        """
        Provides 1-based access to the residues of the unaligned (ungapped)
        sequence.
        @rtype: L{UngappedSequenceIndexer} 
        """
        return UngappedSequenceIndexer(self)

    def _get_column(self, column):
        return ColumnInfo(
                column, self.id, self._fmap[column], self._subject.residues[column])
            
    def _get_ungapped(self, rank):
        return self._subject.residues[self._rmap[rank]]
    
    def map_residue(self, rank):
        """
        Return the MSA column number corresponding to the specified ungapped
        sequence C{rank}.
        
        @param rank: 1-based residue rank
        @type rank: int
        @rtype: int
        """
        return self._rmap[rank]
    
    def map_column(self, column):
        """
        Return the ungapped sequence rank corresponding to the specified MSA
        C{column} number.
        
        @param column: 1-based alignment column number
        @type column: int
        @rtype: int
        """        
        return self._fmap[column]    
    
class SliceHelper(object):
    
    def __init__(self, slice, start=0, stop=0):
        
        s, e, t = slice.start, slice.stop, slice.step
        
        if s is None:
            s = start
        if e is None:
            e = stop
        if t is None:
            t = 1
            
        for value in [s, e, t]:
            if value < 0:
                raise IndexError(value)
            
        self.start = s
        self.stop = e
        self.step = t            

class AlignmentRowsTable(csb.core.BaseDictionaryContainer):
    
    def __init__(self, container):
        
        super(AlignmentRowsTable, self).__init__()
        
        self._container = container
        self._map = {}
        
    def __getitem__(self, item):
        
        try:
            if isinstance(item, int):
                key = self._map[item]
            else:
                key = item
                
            return super(AlignmentRowsTable, self).__getitem__(key)
        
        except KeyError:
            raise SequenceNotFoundError(item)

    def _append(self, sequence):

        n = 0
        sequence_id = sequence.id
        
        while sequence_id in self:
            n += 1
            sequence_id = '{0}:A{1}'.format(sequence.id, n)

        super(AlignmentRowsTable, self)._append_item(sequence_id, sequence)
        self._map[self.length] = sequence_id
    
    def __iter__(self):
        for id in super(AlignmentRowsTable, self).__iter__():
            yield self[id]
        
    
class AbstractAlignment(object):
    """
    Base class for all alignment objects.
    
    Provides 1-based access to the alignment.rows and alignment.columns.
    Alignment rows can also be accessed by sequence ID. In addition, all
    alignments support 0-based slicing:
    
        >>> alignment[rows, columns]
        AbstractAlignment (sub-alignment)
        
    where
        - C{rows} can be a slice, tuple of row indexes or tuple of sequence IDs
        - columns can be a slice or tuple of column indexes
        
    For example:
    
        >>> alignment[:, 2:]
        AbstractAlignment     # all rows, columns [3, alignment.length]
        >>> alignment[(0, 'seqx'), (3, 5)]
        AbstractAlignment     # rows #1 and 'seq3', columns #4 and #5
        
    @param sequences: alignment entries (must have equal length)
    @type sequences: list of L{AbstractSequence}s
    @param strict: if True, raise {DuplicateSequenceError} when a duplicate ID
                   is found (default=True)
    @type strict: bool
    
    @note: if C{strict} is False and there are C{sequences} with redundant identifiers,
           those sequences will be added to the C{rows} collection with :An suffix,
           where n is a serial number. Therefore, rows['ID'] will return only one sequence,
           the first sequence with id=ID. All remaining sequences can be retrieved
           with C{rows['ID:A1']}, {rows['ID:A2']}, etc. However, the sequence objects will
           remain intact, e.g. {rows['ID:A1'].id} still returns 'ID' and not 'ID:A1'. 
    """
    
    __metaclass__ = ABCMeta
    
    def __init__(self, sequences, strict=True):
        
        self._length = None
        self._msa = AlignmentRowsTable(self)
        self._colview = ColumnIndexer(self)
        self._map = {}
        self._strict = bool(strict)
        
        self._construct(sequences)
            
    def __getitem__(self, spec):
        
        # The following code can hardly get more readable than that, sorry.
        # Don't even think of modifying this before there is a 100% unit test coverage 
        
        # 0. expand the input tuple: (rows/, columns/) => (rows, columns)
        if not isinstance(spec, tuple) or len(spec) not in (1, 2):
            raise TypeError('Invalid alignment slice expression')
        
        if len(spec) == 2:
            rowspec, colspec = spec
        else:
            rowspec, colspec = [spec, slice(None)]

        # 1. interpret the row slice: int, iter(int), iter(str) or slice(int) => list(int, 1-based)
        if isinstance(rowspec, slice):
            if isinstance(rowspec.start, csb.core.string) or isinstance(rowspec.stop, csb.core.string):
                raise TypeError("Invalid row slice: only indexes are supported")
            rowspec = SliceHelper(rowspec, 0, self.size)
            rows = range(rowspec.start + 1, rowspec.stop + 1)
        elif isinstance(rowspec, int):
            rows = [rowspec + 1]     
        elif csb.core.iterable(rowspec):
            try:
                rows = []
                for r in rowspec:
                    if isinstance(r, int):
                        rows.append(r + 1)
                    else:
                        rows.append(self._map[r])
            except KeyError as ke:
                raise KeyError('No such Sequence ID: {0!s}'.format(ke))
        else:
                raise TypeError('Unsupported row expression')            

        # 2. interpret the column slice: int, iter(int) or slice(int) => list(int, 1-based)            
        if isinstance(colspec, slice):
            colspec = SliceHelper(colspec, 0, self._length or 0)
            cols = range(colspec.start + 1, colspec.stop + 1)
        elif isinstance(colspec, int):
            cols = [colspec + 1] 
        elif csb.core.iterable(colspec):
            try:
                cols = [ c + 1 for c in colspec ]
            except:            
                raise TypeError('Unsupported column expression')
        else:
            raise TypeError('Unsupported column expression')
        
        # 3. some more checks
        if len(rows) == 0:
            raise ValueError("The expression returns zero rows")
        if len(cols) == 0:
            raise ValueError("The expression returns zero columns")
                
        # 4. we are done
        return self._extract(rows, cols)
    
    def _range(self, slice, start, end):
        
        s, e, t = slice.start, slice.end, slice.step
        
        if s is None:
            s = start
        if e is None:
            e = end
        if t is None:
            t = 1
            
        return range(s, e, t)
    
    def __iter__(self):
        for cn in range(1, self.length + 1):
            yield self._get_column(cn)
            
    @abstractmethod
    def _construct(self, sequences):
        """
        Hook method, called internally upon object construction. Subclasses
        define how the source alignment sequences are handled during alignment
        construction.
        
        @param sequences: alignment entries
        @type sequences: list of L{AbstractSequence}s
        """
        pass
    
    def _initialize(self, rep_sequence):
        """
        Hook method, which is used to initialize various alignment properties
        (such as length) from the first alignned sequence.
        """
        if rep_sequence.length == 0:
            raise SequenceError("Sequence '{0}' is empty".format(rep_sequence.id))
                
        assert self._length is None
        self._length = rep_sequence.length 
        
    def _factory(self, *a, **k):
        """
        Return a new sequence of the current L{AbstractAlignment} sub-class.
        """ 
        return self.__class__(*a, **k)
      
    def add(self, sequence):
        """
        Append a new sequence to the alignment.
        
        @type sequence: L{AbstractSequence}
        @raise SequenceError: if the new sequence is too short/long
        @raise DuplicateSequenceError: if a sequence with same ID already exists  
        """
        
        if self._msa.length == 0:
            self._initialize(sequence)

        if sequence.length != self._length:
            raise SequenceError('{0!r} is not of the expected length'.format(sequence))
        
        if self._strict and sequence.id in self._msa:
            raise DuplicateSequenceError(sequence.id)
        
        self._msa._append(AlignedSequenceAdapter(sequence))
        self._map[sequence.id] = self._msa.length

    @property
    def length(self):
        """
        Number of columns in the alignment
        @rtype: int
        """
        return self._length or 0

    @property
    def size(self):
        """
        Number of rows (sequences) in the alignment
        @rtype: int
        """        
        return self._msa.length    
            
    @property
    def rows(self):
        """
        1-based access to the alignment entries (sequences)
        @rtype: L{AlignmentRowsTable}
        """
        return self._msa 
        
    @property
    def columns(self):
        """
        1-based access to the alignment columns
        @rtype: L{ColumnIndexer}
        """
        return self._colview
    
    def gap_at(self, column):
        """
        Return True of C{column} contains at least one gap.
        @param column: column number, 1-based
        @type column: int
        
        @rtype: bool
        """
        
        for row in self._msa:
            if row.columns[column].residue.type == row.alphabet.GAP:
                return True
            
        return False        
    
    def _get_column(self, column):
        return tuple(row._get_column(column) for row in self.rows)
    
    def _extract(self, rows, cols):
        
        rows = set(rows)
        cols = set(cols)
                
        if not 1 <= min(rows) <= max(rows) <= self.size:
            raise IndexError('Row specification out of range')
                
        if not 1 <= min(cols) <= max(cols) <= self.length:
            raise IndexError('Column specification out of range')
        
        sequences = []
        
        for rn, row in enumerate(self.rows, start=1):
            if rn in rows:
                sequences.append(row.extract(cols))
                
        return self._factory(sequences, strict=self._strict)
    
    def subregion(self, start, end):
        """
        Extract a sub-alignment, ranging from C{start} to C{end} columns.
        
        @param start: starting column, 1-based
        @type start: int
        @param end: ending column, 1-based
        @type end: int
        
        @return: a new alignment of the current type
        @rtype: L{AbstractAlignment}
        
        @raise ColumnPositionError: if start/end is out of range 
        """
        if not 1 <= start <= end <= self.length:
            raise ColumnPositionError(None, 1, self.length)
        
        sequences = []
        
        for row in self.rows:
            sequences.append(row.subregion(start, end))
                
        return self._factory(sequences, strict=self._strict)
    
    def format(self, format=AlignmentFormats.FASTA, headers=True):
        """
        Format the alignment as a string.
        
        @param format: alignment format type, member of L{AlignmentFormats}
        @type format: L{EnumItem}
        @param headers: if False, omit headers
        @type headers: bool
        
        @rtype: str 
        """
        from csb.bio.io.fasta import OutputBuilder

        temp = csb.io.MemoryStream()
                
        try:            
            builder = OutputBuilder.create(format, temp, headers=headers)
            builder.add_alignment(self)
            
            return temp.getvalue()
        
        finally:
            temp.close()          

class SequenceAlignment(AbstractAlignment):
    """
    Multiple sequence alignment. See L{AbstractAlignment} for details.
    """
        
    def _construct(self, sequences):
        
        for sequence in sequences:
            self.add(sequence)
            
    @staticmethod
    def parse(string, strict=True):
        """
        Create a new L{SequenceAlignment} from an mFASTA string.
        
        @param string: MSA-formatted string
        @type string: str
        @param strict: see L{AbstractAlignment}
        @type strict: bool        
        
        @rtype: L{SequenceAlignment}
        """
        from csb.bio.io.fasta import SequenceAlignmentReader
        return SequenceAlignmentReader(strict=strict).read_fasta(string)
        
class StructureAlignment(AbstractAlignment):
    """
    Multiple structure alignment. Similar to a L{SequenceAlignment}, but
    the alignment holds the actual L{csb.bio.structure.ProteinResidue} objects,
    taken from the corresponding source L{csb.bio.structure.Chain}s.
    
    See L{AbstractAlignment} for details.
    """
        
    def _construct(self, sequences):
        
        for sequence in sequences:
            self.add(sequence)
            
    @staticmethod
    def parse(string, provider, id_factory=None, strict=True):
        """
        Create a new L{StructureAlignment} from an mFASTA string. See 
        L{csb.bio.io.fasta.StructureAlignmentFactory} for details. 
        
        @param string: MSA-formatted string
        @type string: str
        @param provider: data source for all structures found in the alignment
        @type provider: L{csb.bio.io.wwpdb.StructureProvider}
        @param strict: see L{AbstractAlignment}
        @type strict: bool
        @param id_factory: callable factory, which transforms a sequence ID into
                           a L{csb.bio.io.wwpdb.EntryID} object. By default
                           this is L{csb.bio.io.wwpdb.EntryID.create}. 
        @type id_factory: callable        
        @rtype: L{StructureAlignment}
        """
        from csb.bio.io.fasta import StructureAlignmentFactory
        
        factory = StructureAlignmentFactory(
                        provider, id_factory=id_factory, strict=strict)
        return factory.make_alignment(string)
    
class A3MAlignment(AbstractAlignment):
    """
    A specific type of multiple alignment, which provides some operations
    relative to a master sequence (the first entry in the alignment). 
    """
    
    def __init__(self, sequences, strict=True):

        self._master = None
        self._matches = 0
        self._insertions = set()
                
        super(A3MAlignment, self).__init__(sequences, strict=strict)

    def _initialize(self, rep_sequence):
        
        super(A3MAlignment, self)._initialize(rep_sequence)
        self._alphabet = rep_sequence.alphabet        
            
    def _construct(self, sequences):
        
        for sequence in sequences:
            
            self.add(sequence)
                    
            for rank, residue in enumerate(sequence, start=1):
                if residue.type == self._alphabet.INSERTION:
                    self._insertions.add(rank)

        if self.size == 0:
            raise SequenceError("At least one sequence is required") 
        
        self._master = list(self._msa)[0]
        self._matches = self._master.strip().length
    
    @property
    def master(self):
        """
        The master sequence
        @rtype: L{AbstractSequence}
        """
        return self._master
    
    def insertion_at(self, column):
        """
        Return True of C{column} contains at least one insertion.
        
        @param column: column number, 1-based
        @type column: int
        @rtype: bool
        """        
        return column in self._insertions
    
    def hmm_subregion(self, match_start, match_end):
        """
        Same as L{AbstractAlignment.subregion}, but start/end positions are
        ranks in the ungapped master sequence.
        """

        if not 1 <= match_start <= match_end <= self.matches:
            raise ColumnPositionError(None, 1, self.matches)
                
        start = self._master.map_residue(match_start)
        end = self._master.map_residue(match_end)
        
        return self.subregion(start, end)

    def format(self, format=AlignmentFormats.A3M, headers=True):
        return super(A3MAlignment, self).format(format, headers) 
    
    @property
    def matches(self):
        """
        Number of match states (residues in the ungapped master).
        @rtype: int
        """
        return self._matches
    
    @staticmethod
    def parse(string, strict=True):
        """
        Create a new L{A3MAlignment} from an A3M string.
        
        @param string: MSA-formatted string
        @type string: str
        @param strict: see L{AbstractAlignment}
        @type strict: bool
        
        @rtype: L{A3MAlignment}
        """        
        from csb.bio.io.fasta import SequenceAlignmentReader
        return SequenceAlignmentReader(strict=strict).read_a3m(string)