This file is indexed.

/usr/lib/python3/dist-packages/csb/numeric/integrators.py is in python3-csb 1.2.2+dfsg-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""
provides various integration schemes and an abstract gradient class.
"""

import numpy

from abc import ABCMeta, abstractmethod
from csb.statistics.samplers.mc import State, TrajectoryBuilder
from csb.numeric import InvertibleMatrix


class AbstractIntegrator(object):
    """
    Abstract integrator class. Subclasses implement different integration
    schemes for solving deterministic equations of motion.

    @param timestep: Integration timestep
    @type timestep: float

    @param gradient: Gradient of potential energy
    @type gradient: L{AbstractGradient}
    """
    
    __metaclass__ = ABCMeta

    def __init__(self, timestep, gradient):

        self._timestep = timestep
        self._gradient = gradient

    def integrate(self, init_state, length, mass_matrix=None, return_trajectory=False):
        """
        Integrates equations of motion starting from an initial state a certain
        number of steps.

        @param init_state: Initial state from which to start integration
        @type init_state: L{State}
        
        @param length: Nubmer of integration steps to be performed
        @type length: int

        @param mass_matrix: Mass matrix
        @type mass_matrix:  n-dimensional L{InvertibleMatrix} with n being the dimension
                                    of the configuration space, that is, the dimension of
                                    the position / momentum vectors

        @param return_trajectory: Return complete L{Trajectory} instead of the initial
                                  and final states only (L{PropagationResult}). This reduces
                                  performance.
        @type return_trajectory: boolean

        @rtype: L{AbstractPropagationResult}
        """

        builder = TrajectoryBuilder.create(full=return_trajectory)
            
        builder.add_initial_state(init_state)
        state = init_state.clone()
        
        for i in range(length - 1):
            state = self.integrate_once(state, i, mass_matrix=mass_matrix)
            builder.add_intermediate_state(state)

        state = self.integrate_once(state, length - 1, mass_matrix=mass_matrix)
        builder.add_final_state(state)

        return builder.product

    @abstractmethod
    def integrate_once(self, state, current_step, mass_matrix=None):
        """
        Integrates one step starting from an initial state and an initial time
        given by the product of the timestep and the current_step parameter.
        The input C{state} is changed in place.

        @param state: State which to evolve one integration step
        @type state: L{State}
        
        @param current_step: Current integration step
        @type current_step: int

        @param mass_matrix: mass matrix
        @type mass_matrix:  n-dimensional numpy array with n being the dimension
                            of the configuration space, that is, the dimension of
                            the position / momentum vectors
        @return: the altered state
        @rtype: L{State}
        """
        pass

    def _get_inverse(self, mass_matrix):

        inverse_mass_matrix = None
        if mass_matrix is None:
            inverse_mass_matrix = 1.0
        else:
            if mass_matrix.is_unity_multiple:
                inverse_mass_matrix = mass_matrix.inverse[0][0]
            else:
                inverse_mass_matrix = mass_matrix.inverse

        return inverse_mass_matrix

class LeapFrog(AbstractIntegrator):
    """
    Leap Frog integration scheme implementation that calculates position and
    momenta at equal times. Slower than FastLeapFrog, but intermediate points
    in trajectories obtained using
    LeapFrog.integrate(init_state, length, return_trajectoy=True) are physical.
    """
    
    def integrate_once(self, state, current_step, mass_matrix=None):

        inverse_mass_matrix = self._get_inverse(mass_matrix)

        i = current_step
        
        if i == 0:
            self._oldgrad = self._gradient(state.position, 0.)
            
        momentumhalf = state.momentum - 0.5 * self._timestep * self._oldgrad
        state.position = state.position + self._timestep * numpy.dot(inverse_mass_matrix, momentumhalf)
        self._oldgrad = self._gradient(state.position, (i + 1) * self._timestep)
        state.momentum = momentumhalf - 0.5 * self._timestep * self._oldgrad

        return state

class FastLeapFrog(LeapFrog):
    """
    Leap Frog integration scheme implementation that calculates position and
    momenta at unequal times by concatenating the momentum updates of two
    successive integration steps.
    WARNING: intermediate points in trajectories obtained by
    FastLeapFrog.integrate(init_state, length, return_trajectories=True)
    are NOT to be interpreted as phase-space trajectories, because
    position and momenta are not given at equal times! In the initial and the
    final state, positions and momenta are given at equal times.
    """

    def integrate(self, init_state, length, mass_matrix=None, return_trajectory=False):

        inverse_mass_matrix = self._get_inverse(mass_matrix)

        builder = TrajectoryBuilder.create(full=return_trajectory)
            
        builder.add_initial_state(init_state)
        state = init_state.clone()
        
        state.momentum = state.momentum - 0.5 * self._timestep * self._gradient(state.position, 0.)
        
        for i in range(length-1):
            state.position = state.position + self._timestep * numpy.dot(inverse_mass_matrix, state.momentum)
            state.momentum = state.momentum - self._timestep * \
                             self._gradient(state.position, (i + 1) * self._timestep)
            builder.add_intermediate_state(state)

        state.position = state.position + self._timestep * numpy.dot(inverse_mass_matrix, state.momentum)
        state.momentum = state.momentum - 0.5 * self._timestep * \
                         self._gradient(state.position, length * self._timestep)
        builder.add_final_state(state)
        
        return builder.product

class VelocityVerlet(AbstractIntegrator):
    """
    Velocity Verlet integration scheme implementation.
    """

    def integrate_once(self, state, current_step, mass_matrix=None):

        inverse_mass_matrix = self._get_inverse(mass_matrix)

        i = current_step
        
        if i == 0:
            self._oldgrad = self._gradient(state.position, 0.)
            
        state.position = state.position + self._timestep * numpy.dot(inverse_mass_matrix, state.momentum) \
                         - 0.5 * self._timestep ** 2 * numpy.dot(inverse_mass_matrix, self._oldgrad)
        newgrad = self._gradient(state.position, (i + 1) * self._timestep)
        state.momentum = state.momentum - 0.5 * self._timestep * (self._oldgrad + newgrad)
        self._oldgrad = newgrad

        return state

class AbstractGradient(object):
    """
    Abstract gradient class. Implementations evaluate the gradient of an energy
    function.
    """

    __metaclass__ = ABCMeta

    @abstractmethod
    def evaluate(self, q, t):
        """
        Evaluates the gradient at position q and time t.

        @param q: Position array
        @type q:  One-dimensional numpy array
        
        @param t: Time
        @type t: float
        
        @rtype: numpy array
        """
        pass

    def __call__(self, q, t):
        """
        Evaluates the gradient at position q and time t.

        @param q: Position array
        @type q:  One-dimensional numpy array
        
        @param t: Time
        @type t: float
        
        @rtype: numpy array
        """
        State.check_flat_array(q)
        return self.evaluate(q, t)