/usr/lib/python3/dist-packages/ecdsa/ellipticcurve.py is in python3-ecdsa 0.10-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | #! /usr/bin/env python
#
# Implementation of elliptic curves, for cryptographic applications.
#
# This module doesn't provide any way to choose a random elliptic
# curve, nor to verify that an elliptic curve was chosen randomly,
# because one can simply use NIST's standard curves.
#
# Notes from X9.62-1998 (draft):
# Nomenclature:
# - Q is a public key.
# The "Elliptic Curve Domain Parameters" include:
# - q is the "field size", which in our case equals p.
# - p is a big prime.
# - G is a point of prime order (5.1.1.1).
# - n is the order of G (5.1.1.1).
# Public-key validation (5.2.2):
# - Verify that Q is not the point at infinity.
# - Verify that X_Q and Y_Q are in [0,p-1].
# - Verify that Q is on the curve.
# - Verify that nQ is the point at infinity.
# Signature generation (5.3):
# - Pick random k from [1,n-1].
# Signature checking (5.4.2):
# - Verify that r and s are in [1,n-1].
#
# Version of 2008.11.25.
#
# Revision history:
# 2005.12.31 - Initial version.
# 2008.11.25 - Change CurveFp.is_on to contains_point.
#
# Written in 2005 by Peter Pearson and placed in the public domain.
from __future__ import division
from six import print_
from . import numbertheory
class CurveFp( object ):
"""Elliptic Curve over the field of integers modulo a prime."""
def __init__( self, p, a, b ):
"""The curve of points satisfying y^2 = x^3 + a*x + b (mod p)."""
self.__p = p
self.__a = a
self.__b = b
def p( self ):
return self.__p
def a( self ):
return self.__a
def b( self ):
return self.__b
def contains_point( self, x, y ):
"""Is the point (x,y) on this curve?"""
return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
class Point( object ):
"""A point on an elliptic curve. Altering x and y is forbidding,
but they can be read by the x() and y() methods."""
def __init__( self, curve, x, y, order = None ):
"""curve, x, y, order; order (optional) is the order of this point."""
self.__curve = curve
self.__x = x
self.__y = y
self.__order = order
# self.curve is allowed to be None only for INFINITY:
if self.__curve: assert self.__curve.contains_point( x, y )
if order: assert self * order == INFINITY
def __eq__( self, other ):
"""Return True if the points are identical, False otherwise."""
if self.__curve == other.__curve \
and self.__x == other.__x \
and self.__y == other.__y:
return True
else:
return False
def __add__( self, other ):
"""Add one point to another point."""
# X9.62 B.3:
if other == INFINITY: return self
if self == INFINITY: return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if ( self.__y + other.__y ) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = ( ( other.__y - self.__y ) * \
numbertheory.inverse_mod( other.__x - self.__x, p ) ) % p
x3 = ( l * l - self.__x - other.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def __mul__( self, other ):
"""Multiply a point by an integer."""
def leftmost_bit( x ):
assert x > 0
result = 1
while result <= x: result = 2 * result
return result // 2
e = other
if self.__order: e = e % self.__order
if e == 0: return INFINITY
if self == INFINITY: return INFINITY
assert e > 0
# From X9.62 D.3.2:
e3 = 3 * e
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
i = leftmost_bit( e3 ) // 2
result = self
# print_("Multiplying %s by %d (e3 = %d):" % ( self, other, e3 ))
while i > 1:
result = result.double()
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
# print_(". . . i = %d, result = %s" % ( i, result ))
i = i // 2
return result
def __rmul__( self, other ):
"""Multiply a point by an integer."""
return self * other
def __str__( self ):
if self == INFINITY: return "infinity"
return "(%d,%d)" % ( self.__x, self.__y )
def double( self ):
"""Return a new point that is twice the old."""
if self == INFINITY:
return INFINITY
# X9.62 B.3:
p = self.__curve.p()
a = self.__curve.a()
l = ( ( 3 * self.__x * self.__x + a ) * \
numbertheory.inverse_mod( 2 * self.__y, p ) ) % p
x3 = ( l * l - 2 * self.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def x( self ):
return self.__x
def y( self ):
return self.__y
def curve( self ):
return self.__curve
def order( self ):
return self.__order
# This one point is the Point At Infinity for all purposes:
INFINITY = Point( None, None, None )
def __main__():
class FailedTest(Exception): pass
def test_add( c, x1, y1, x2, y2, x3, y3 ):
"""We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3)."""
p1 = Point( c, x1, y1 )
p2 = Point( c, x2, y2 )
p3 = p1 + p2
print_("%s + %s = %s" % ( p1, p2, p3 ), end=' ')
if p3.x() != x3 or p3.y() != y3:
raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
else:
print_(" Good.")
def test_double( c, x1, y1, x3, y3 ):
"""We expect that on curve c, 2*(x1,y1) = (x3, y3)."""
p1 = Point( c, x1, y1 )
p3 = p1.double()
print_("%s doubled = %s" % ( p1, p3 ), end=' ')
if p3.x() != x3 or p3.y() != y3:
raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
else:
print_(" Good.")
def test_double_infinity( c ):
"""We expect that on curve c, 2*INFINITY = INFINITY."""
p1 = INFINITY
p3 = p1.double()
print_("%s doubled = %s" % ( p1, p3 ), end=' ')
if p3.x() != INFINITY.x() or p3.y() != INFINITY.y():
raise FailedTest("Failure: should give (%d,%d)." % ( INFINITY.x(), INFINITY.y() ))
else:
print_(" Good.")
def test_multiply( c, x1, y1, m, x3, y3 ):
"""We expect that on curve c, m*(x1,y1) = (x3,y3)."""
p1 = Point( c, x1, y1 )
p3 = p1 * m
print_("%s * %d = %s" % ( p1, m, p3 ), end=' ')
if p3.x() != x3 or p3.y() != y3:
raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
else:
print_(" Good.")
# A few tests from X9.62 B.3:
c = CurveFp( 23, 1, 1 )
test_add( c, 3, 10, 9, 7, 17, 20 )
test_double( c, 3, 10, 7, 12 )
test_add( c, 3, 10, 3, 10, 7, 12 ) # (Should just invoke double.)
test_multiply( c, 3, 10, 2, 7, 12 )
test_double_infinity(c)
# From X9.62 I.1 (p. 96):
g = Point( c, 13, 7, 7 )
check = INFINITY
for i in range( 7 + 1 ):
p = ( i % 7 ) * g
print_("%s * %d = %s, expected %s . . ." % ( g, i, p, check ), end=' ')
if p == check:
print_(" Good.")
else:
raise FailedTest("Bad.")
check = check + g
# NIST Curve P-192:
p = 6277101735386680763835789423207666416083908700390324961279
r = 6277101735386680763835789423176059013767194773182842284081
#s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65
b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
c192 = CurveFp( p, -3, b )
p192 = Point( c192, Gx, Gy, r )
# Checking against some sample computations presented
# in X9.62:
d = 651056770906015076056810763456358567190100156695615665659
Q = d * p192
if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5:
raise FailedTest("p192 * d came out wrong.")
else:
print_("p192 * d came out right.")
k = 6140507067065001063065065565667405560006161556565665656654
R = k * p192
if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
raise FailedTest("k * p192 came out wrong.")
else:
print_("k * p192 came out right.")
u1 = 2563697409189434185194736134579731015366492496392189760599
u2 = 6266643813348617967186477710235785849136406323338782220568
temp = u1 * p192 + u2 * Q
if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
raise FailedTest("u1 * p192 + u2 * Q came out wrong.")
else:
print_("u1 * p192 + u2 * Q came out right.")
if __name__ == "__main__":
__main__()
|