/usr/lib/python3/dist-packages/ecdsa/util.py is in python3-ecdsa 0.10-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | from __future__ import division
import os
import math
import binascii
from hashlib import sha256
from . import der
from .curves import orderlen
from six import PY3, int2byte, b, next
# RFC5480:
# The "unrestricted" algorithm identifier is:
# id-ecPublicKey OBJECT IDENTIFIER ::= {
# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
oid_ecPublicKey = (1, 2, 840, 10045, 2, 1)
encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey)
def randrange(order, entropy=None):
"""Return a random integer k such that 1 <= k < order, uniformly
distributed across that range. For simplicity, this only behaves well if
'order' is fairly close (but below) a power of 256. The try-try-again
algorithm we use takes longer and longer time (on average) to complete as
'order' falls, rising to a maximum of avg=512 loops for the worst-case
(256**k)+1 . All of the standard curves behave well. There is a cutoff at
10k loops (which raises RuntimeError) to prevent an infinite loop when
something is really broken like the entropy function not working.
Note that this function is not declared to be forwards-compatible: we may
change the behavior in future releases. The entropy= argument (which
should get a callable that behaves like os.entropy) can be used to
achieve stability within a given release (for repeatable unit tests), but
should not be used as a long-term-compatible key generation algorithm.
"""
# we could handle arbitrary orders (even 256**k+1) better if we created
# candidates bit-wise instead of byte-wise, which would reduce the
# worst-case behavior to avg=2 loops, but that would be more complex. The
# change would be to round the order up to a power of 256, subtract one
# (to get 0xffff..), use that to get a byte-long mask for the top byte,
# generate the len-1 entropy bytes, generate one extra byte and mask off
# the top bits, then combine it with the rest. Requires jumping back and
# forth between strings and integers a lot.
if entropy is None:
entropy = os.urandom
assert order > 1
bytes = orderlen(order)
dont_try_forever = 10000 # gives about 2**-60 failures for worst case
while dont_try_forever > 0:
dont_try_forever -= 1
candidate = string_to_number(entropy(bytes)) + 1
if 1 <= candidate < order:
return candidate
continue
raise RuntimeError("randrange() tried hard but gave up, either something"
" is very wrong or you got realllly unlucky. Order was"
" %x" % order)
class PRNG:
# this returns a callable which, when invoked with an integer N, will
# return N pseudorandom bytes. Note: this is a short-term PRNG, meant
# primarily for the needs of randrange_from_seed__trytryagain(), which
# only needs to run it a few times per seed. It does not provide
# protection against state compromise (forward security).
def __init__(self, seed):
self.generator = self.block_generator(seed)
def __call__(self, numbytes):
a = [next(self.generator) for i in range(numbytes)]
if PY3:
return bytes(a)
else:
return "".join(a)
def block_generator(self, seed):
counter = 0
while True:
for byte in sha256(("prng-%d-%s" % (counter, seed)).encode()).digest():
yield byte
counter += 1
def randrange_from_seed__overshoot_modulo(seed, order):
# hash the data, then turn the digest into a number in [1,order).
#
# We use David-Sarah Hopwood's suggestion: turn it into a number that's
# sufficiently larger than the group order, then modulo it down to fit.
# This should give adequate (but not perfect) uniformity, and simple
# code. There are other choices: try-try-again is the main one.
base = PRNG(seed)(2*orderlen(order))
number = (int(binascii.hexlify(base), 16) % (order-1)) + 1
assert 1 <= number < order, (1, number, order)
return number
def lsb_of_ones(numbits):
return (1 << numbits) - 1
def bits_and_bytes(order):
bits = int(math.log(order-1, 2)+1)
bytes = bits // 8
extrabits = bits % 8
return bits, bytes, extrabits
# the following randrange_from_seed__METHOD() functions take an
# arbitrarily-sized secret seed and turn it into a number that obeys the same
# range limits as randrange() above. They are meant for deriving consistent
# signing keys from a secret rather than generating them randomly, for
# example a protocol in which three signing keys are derived from a master
# secret. You should use a uniformly-distributed unguessable seed with about
# curve.baselen bytes of entropy. To use one, do this:
# seed = os.urandom(curve.baselen) # or other starting point
# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order)
# sk = SigningKey.from_secret_exponent(secexp, curve)
def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256):
# hash the seed, then turn the digest into a number in [1,order), but
# don't worry about trying to uniformly fill the range. This will lose,
# on average, four bits of entropy.
bits, bytes, extrabits = bits_and_bytes(order)
if extrabits:
bytes += 1
base = hashmod(seed).digest()[:bytes]
base = "\x00"*(bytes-len(base)) + base
number = 1+int(binascii.hexlify(base), 16)
assert 1 <= number < order
return number
def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256):
# like string_to_randrange_truncate_bytes, but only lose an average of
# half a bit
bits = int(math.log(order-1, 2)+1)
maxbytes = (bits+7) // 8
base = hashmod(seed).digest()[:maxbytes]
base = "\x00"*(maxbytes-len(base)) + base
topbits = 8*maxbytes - bits
if topbits:
base = int2byte(ord(base[0]) & lsb_of_ones(topbits)) + base[1:]
number = 1+int(binascii.hexlify(base), 16)
assert 1 <= number < order
return number
def randrange_from_seed__trytryagain(seed, order):
# figure out exactly how many bits we need (rounded up to the nearest
# bit), so we can reduce the chance of looping to less than 0.5 . This is
# specified to feed from a byte-oriented PRNG, and discards the
# high-order bits of the first byte as necessary to get the right number
# of bits. The average number of loops will range from 1.0 (when
# order=2**k-1) to 2.0 (when order=2**k+1).
assert order > 1
bits, bytes, extrabits = bits_and_bytes(order)
generate = PRNG(seed)
while True:
extrabyte = b("")
if extrabits:
extrabyte = int2byte(ord(generate(1)) & lsb_of_ones(extrabits))
guess = string_to_number(extrabyte + generate(bytes)) + 1
if 1 <= guess < order:
return guess
def number_to_string(num, order):
l = orderlen(order)
fmt_str = "%0" + str(2*l) + "x"
string = binascii.unhexlify((fmt_str % num).encode())
assert len(string) == l, (len(string), l)
return string
def number_to_string_crop(num, order):
l = orderlen(order)
fmt_str = "%0" + str(2*l) + "x"
string = binascii.unhexlify((fmt_str % num).encode())
return string[:l]
def string_to_number(string):
return int(binascii.hexlify(string), 16)
def string_to_number_fixedlen(string, order):
l = orderlen(order)
assert len(string) == l, (len(string), l)
return int(binascii.hexlify(string), 16)
# these methods are useful for the sigencode= argument to SK.sign() and the
# sigdecode= argument to VK.verify(), and control how the signature is packed
# or unpacked.
def sigencode_strings(r, s, order):
r_str = number_to_string(r, order)
s_str = number_to_string(s, order)
return (r_str, s_str)
def sigencode_string(r, s, order):
# for any given curve, the size of the signature numbers is
# fixed, so just use simple concatenation
r_str, s_str = sigencode_strings(r, s, order)
return r_str + s_str
def sigencode_der(r, s, order):
return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
def sigdecode_string(signature, order):
l = orderlen(order)
assert len(signature) == 2*l, (len(signature), 2*l)
r = string_to_number_fixedlen(signature[:l], order)
s = string_to_number_fixedlen(signature[l:], order)
return r, s
def sigdecode_strings(rs_strings, order):
(r_str, s_str) = rs_strings
l = orderlen(order)
assert len(r_str) == l, (len(r_str), l)
assert len(s_str) == l, (len(s_str), l)
r = string_to_number_fixedlen(r_str, order)
s = string_to_number_fixedlen(s_str, order)
return r, s
def sigdecode_der(sig_der, order):
#return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
rs_strings, empty = der.remove_sequence(sig_der)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER sig: %s" %
binascii.hexlify(empty))
r, rest = der.remove_integer(rs_strings)
s, empty = der.remove_integer(rest)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER numbers: %s" %
binascii.hexlify(empty))
return r, s
|