This file is indexed.

/usr/lib/python3/dist-packages/voluptuous-0.8.2.egg-info/PKG-INFO is in python3-voluptuous 0.8.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
Metadata-Version: 1.1
Name: voluptuous
Version: 0.8.2
Summary: # Voluptuous is a Python data validation library
Home-page: http://github.com/alecthomas/voluptuous
Author: Alec Thomas
Author-email: alec@swapoff.org
License: BSD
Download-URL: http://pypi.python.org/pypi/voluptuous
Description: # Voluptuous is a Python data validation library
        
        [![Build Status](https://travis-ci.org/alecthomas/voluptuous.png)](https://travis-ci.org/alecthomas/voluptuous)
        
        Voluptuous, *despite* the name, is a Python data validation library. It
        is primarily intended for validating data coming into Python as JSON,
        YAML, etc.
        
        It has three goals:
        
        1.  Simplicity.
        2.  Support for complex data structures.
        3.  Provide useful error messages.
        
        ## Contact
        
        Voluptuous now has a mailing list! Send a mail to
        [<voluptuous@librelist.com>](mailto:voluptuous@librelist.com) to subscribe. Instructions
        will follow.
        
        You can also contact me directly via [email](mailto:alec@swapoff.org) or
        [Twitter](https://twitter.com/alecthomas).
        
        To file a bug, create a [new issue](https://github.com/alecthomas/voluptuous/issues/new) on GitHub with a short example of how to replicate the issue.
        
        ## Show me an example
        
        Twitter's [user search API](https://dev.twitter.com/docs/api/1/get/users/search) accepts
        query URLs like:
        
        ```
        $ curl 'http://api.twitter.com/1/users/search.json?q=python&per_page=20&page=1
        ```
        
        To validate this we might use a schema like:
        
        ```pycon
        >>> from voluptuous import Schema
        >>> schema = Schema({
        ...   'q': str,
        ...   'per_page': int,
        ...   'page': int,
        ... })
        
        ```
        
        This schema very succinctly and roughly describes the data required by
        the API, and will work fine. But it has a few problems. Firstly, it
        doesn't fully express the constraints of the API. According to the API,
        `per_page` should be restricted to at most 20, defaulting to 5, for
        example. To describe the semantics of the API more accurately, our
        schema will need to be more thoroughly defined:
        
        ```pycon
        >>> from voluptuous import Required, All, Length, Range
        >>> schema = Schema({
        ...   Required('q'): All(str, Length(min=1)),
        ...   Required('per_page', default=5): All(int, Range(min=1, max=20)),
        ...   'page': All(int, Range(min=0)),
        ... })
        
        ```
        
        This schema fully enforces the interface defined in Twitter's
        documentation, and goes a little further for completeness.
        
        "q" is required:
        
        ```pycon
        >>> from voluptuous import MultipleInvalid
        >>> try:
        ...   schema({})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "required key not provided @ data['q']"
        True
        
        ```
        
        ...must be a string:
        
        ```pycon
        >>> try:
        ...   schema({'q': 123})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "expected str for dictionary value @ data['q']"
        True
        
        ```
        
        ...and must be at least one character in length:
        
        ```pycon
        >>> try:
        ...   schema({'q': ''})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "length of value must be at least 1 for dictionary value @ data['q']"
        True
        >>> schema({'q': '#topic'}) == {'q': '#topic', 'per_page': 5}
        True
        
        ```
        
        "per\_page" is a positive integer no greater than 20:
        
        ```pycon
        >>> try:
        ...   schema({'q': '#topic', 'per_page': 900})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "value must be at most 20 for dictionary value @ data['per_page']"
        True
        >>> try:
        ...   schema({'q': '#topic', 'per_page': -10})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "value must be at least 1 for dictionary value @ data['per_page']"
        True
        
        ```
        
        "page" is an integer \>= 0:
        
        ```pycon
        >>> try:
        ...   schema({'q': '#topic', 'per_page': 'one'})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc)
        "expected int for dictionary value @ data['per_page']"
        >>> schema({'q': '#topic', 'page': 1}) == {'q': '#topic', 'page': 1, 'per_page': 5}
        True
        
        ```
        
        ## Defining schemas
        
        Schemas are nested data structures consisting of dictionaries, lists,
        scalars and *validators*. Each node in the input schema is pattern
        matched against corresponding nodes in the input data.
        
        ### Literals
        
        Literals in the schema are matched using normal equality checks:
        
        ```pycon
        >>> schema = Schema(1)
        >>> schema(1)
        1
        >>> schema = Schema('a string')
        >>> schema('a string')
        'a string'
        
        ```
        
        ### Types
        
        Types in the schema are matched by checking if the corresponding value
        is an instance of the type:
        
        ```pycon
        >>> schema = Schema(int)
        >>> schema(1)
        1
        >>> try:
        ...   schema('one')
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "expected int"
        True
        
        ```
        
        ### Lists
        
        Lists in the schema are treated as a set of valid values. Each element
        in the schema list is compared to each value in the input data:
        
        ```pycon
        >>> schema = Schema([1, 'a', 'string'])
        >>> schema([1])
        [1]
        >>> schema([1, 1, 1])
        [1, 1, 1]
        >>> schema(['a', 1, 'string', 1, 'string'])
        ['a', 1, 'string', 1, 'string']
        
        ```
        
        ### Validation functions
        
        Validators are simple callables that raise an `Invalid` exception when
        they encounter invalid data. The criteria for determining validity is
        entirely up to the implementation; it may check that a value is a valid
        username with `pwd.getpwnam()`, it may check that a value is of a
        specific type, and so on.
        
        The simplest kind of validator is a Python function that raises
        ValueError when its argument is invalid. Conveniently, many builtin
        Python functions have this property. Here's an example of a date
        validator:
        
        ```pycon
        >>> from datetime import datetime
        >>> def Date(fmt='%Y-%m-%d'):
        ...   return lambda v: datetime.strptime(v, fmt)
        
        ```
        
        ```pycon
        >>> schema = Schema(Date())
        >>> schema('2013-03-03')
        datetime.datetime(2013, 3, 3, 0, 0)
        >>> try:
        ...   schema('2013-03')
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "not a valid value"
        True
        
        ```
        
        In addition to simply determining if a value is valid, validators may
        mutate the value into a valid form. An example of this is the
        `Coerce(type)` function, which returns a function that coerces its
        argument to the given type:
        
        ```python
        def Coerce(type, msg=None):
            """Coerce a value to a type.
        
            If the type constructor throws a ValueError, the value will be marked as
            Invalid.
            """
            def f(v):
                try:
                    return type(v)
                except ValueError:
                    raise Invalid(msg or ('expected %s' % type.__name__))
            return f
        
        ```
        
        This example also shows a common idiom where an optional human-readable
        message can be provided. This can vastly improve the usefulness of the
        resulting error messages.
        
        ### Dictionaries
        
        Each key-value pair in a schema dictionary is validated against each
        key-value pair in the corresponding data dictionary:
        
        ```pycon
        >>> schema = Schema({1: 'one', 2: 'two'})
        >>> schema({1: 'one'})
        {1: 'one'}
        
        ```
        
        #### Extra dictionary keys
        
        By default any additional keys in the data, not in the schema will
        trigger exceptions:
        
        ```pycon
        >>> schema = Schema({2: 3})
        >>> try:
        ...   schema({1: 2, 2: 3})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "extra keys not allowed @ data[1]"
        True
        
        ```
        
        This behaviour can be altered on a per-schema basis with
        `Schema(..., extra=True)`:
        
        ```pycon
        >>> schema = Schema({2: 3}, extra=True)
        >>> schema({1: 2, 2: 3})
        {1: 2, 2: 3}
        
        ```
        
        It can also be overridden per-dictionary by using the catch-all marker
        token `extra` as a key:
        
        ```pycon
        >>> from voluptuous import Extra
        >>> schema = Schema({1: {Extra: object}})
        >>> schema({1: {'foo': 'bar'}})
        {1: {'foo': 'bar'}}
        
        ```
        
        #### Required dictionary keys
        
        By default, keys in the schema are not required to be in the data:
        
        ```pycon
        >>> schema = Schema({1: 2, 3: 4})
        >>> schema({3: 4})
        {3: 4}
        
        ```
        
        Similarly to how extra\_ keys work, this behaviour can be overridden
        per-schema:
        
        ```pycon
        >>> schema = Schema({1: 2, 3: 4}, required=True)
        >>> try:
        ...   schema({3: 4})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "required key not provided @ data[1]"
        True
        
        ```
        
        And per-key, with the marker token `Required(key)`:
        
        ```pycon
        >>> schema = Schema({Required(1): 2, 3: 4})
        >>> try:
        ...   schema({3: 4})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "required key not provided @ data[1]"
        True
        >>> schema({1: 2})
        {1: 2}
        
        ```
        
        #### Optional dictionary keys
        
        If a schema has `required=True`, keys may be individually marked as
        optional using the marker token `Optional(key)`:
        
        ```pycon
        >>> from voluptuous import Optional
        >>> schema = Schema({1: 2, Optional(3): 4}, required=True)
        >>> try:
        ...   schema({})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "required key not provided @ data[1]"
        True
        >>> schema({1: 2})
        {1: 2}
        >>> try:
        ...   schema({1: 2, 4: 5})
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "extra keys not allowed @ data[4]"
        True
        
        ```
        
        ```pycon
        >>> schema({1: 2, 3: 4})
        {1: 2, 3: 4}
        
        ```
        
        ### Objects
        
        Each key-value pair in a schema dictionary is validated against each
        attribute-value pair in the corresponding object:
        
        ```pycon
        >>> from voluptuous import Object
        >>> class Structure(object):
        ...     def __init__(self, q=None):
        ...         self.q = q
        ...     def __repr__(self):
        ...         return '<Structure(q={0.q!r})>'.format(self)
        ...
        >>> schema = Schema(Object({'q': 'one'}, cls=Structure))
        >>> schema(Structure(q='one'))
        <Structure(q='one')>
        
        ```
        
        ## Error reporting
        
        Validators must throw an `Invalid` exception if invalid data is passed
        to them. All other exceptions are treated as errors in the validator and
        will not be caught.
        
        Each `Invalid` exception has an associated `path` attribute representing
        the path in the data structure to our currently validating value. This
        is used during error reporting, but also during matching to determine
        whether an error should be reported to the user or if the next match
        should be attempted. This is determined by comparing the depth of the
        path where the check is, to the depth of the path where the error
        occurred. If the error is more than one level deeper, it is reported.
        
        The upshot of this is that *matching is depth-first and fail-fast*.
        
        To illustrate this, here is an example schema:
        
        ```pycon
        >>> schema = Schema([[2, 3], 6])
        
        ```
        
        Each value in the top-level list is matched depth-first in-order. Given
        input data of `[[6]]`, the inner list will match the first element of
        the schema, but the literal `6` will not match any of the elements of
        that list. This error will be reported back to the user immediately. No
        backtracking is attempted:
        
        ```pycon
        >>> try:
        ...   schema([[6]])
        ...   raise AssertionError('MultipleInvalid not raised')
        ... except MultipleInvalid as e:
        ...   exc = e
        >>> str(exc) == "invalid list value @ data[0][0]"
        True
        
        ```
        
        If we pass the data `[6]`, the `6` is not a list type and so will not
        recurse into the first element of the schema. Matching will continue on
        to the second element in the schema, and succeed:
        
        ```pycon
        >>> schema([6])
        [6]
        
        ```
        
        ## Why use Voluptuous over another validation library?
        
        **Validators are simple callables**
        :   No need to subclass anything, just use a function.
        
        **Errors are simple exceptions.**
        :   A validator can just `raise Invalid(msg)` and expect the user to get
        useful messages.
        
        **Schemas are basic Python data structures.**
        :   Should your data be a dictionary of integer keys to strings?
        `{int: str}` does what you expect. List of integers, floats or
        strings? `[int, float, str]`.
        
        **Designed from the ground up for validating more than just forms.**
        :   Nested data structures are treated in the same way as any other
        type. Need a list of dictionaries? `[{}]`
        
        **Consistency.**
        :   Types in the schema are checked as types. Values are compared as
        values. Callables are called to validate. Simple.
        
        ## Other libraries and inspirations
        
        Voluptuous is heavily inspired by
        [Validino](http://code.google.com/p/validino/), and to a lesser extent,
        [jsonvalidator](http://code.google.com/p/jsonvalidator/) and
        [json\_schema](http://blog.sendapatch.se/category/json_schema.html).
        
        I greatly prefer the light-weight style promoted by these libraries to
        the complexity of libraries like FormEncode.
        
Platform: any