This file is indexed.

/usr/share/RDKit/Contrib/LEF/DistancePredict.py is in rdkit-data 201309-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#
#  Copyright (c) 2009, Novartis Institutes for BioMedical Research Inc.
#  All rights reserved.
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: 
#
#     * Redistributions of source code must retain the above copyright 
#       notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above
#       copyright notice, this list of conditions and the following 
#       disclaimer in the documentation and/or other materials provided 
#       with the distribution.
#     * Neither the name of Novartis Institutes for BioMedical Research Inc. 
#       nor the names of its contributors may be used to endorse or promote 
#       products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Created by Greg Landrum and Anna Vulpetti, March 2009
from rdkit import Chem
from rdkit import DataStructs
from CreateFps import GetMolFingerprint
from rdkit.ML.KNN.KNNRegressionModel import KNNRegressionModel
from rdkit.RDLogger import logger
logger=logger()
import sys

# nameField is the name of the property (from the SD file) that has molecule
# names...If the molecules have names in the first row of the file, use "_Name"
nameField = 'Compound_orig'
#nameField = '_Name'

# propField is the name of the property (from the SD file) you want to generate
# predictions for
propField='chemical_shift_1'

weightedAverage=True
import types,copy
from optparse import OptionParser,Option,OptionValueError

def check_floatlist(option,opt,value):
    try:
        v = eval(value)
        if type(v) not in (types.ListType,types.TupleType):
            raise ValueError
        v = [float(x) for x in v]
    except ValueError:
        raise OptionValueError("option %s : invalid float list value: %r"%( opt,value))
    return v
class MyOption(Option):
    TYPES=Option.TYPES+("floatlist",)
    TYPE_CHECKER = copy.copy(Option.TYPE_CHECKER)
    TYPE_CHECKER["floatlist"] = check_floatlist
parser=OptionParser("distance predict",version='%prog',option_class=MyOption)
parser.add_option('--maxPathLength','--max',default=8,type=int,
                  help='maximum length path for the fingerprint')
parser.add_option('--similarityThreshold','--sim',default=[0.9],type='floatlist',
                  help='threshold for similarity')
parser.add_option('--numNeighbors','--num','-n','-k',default=50,type=int,
                  help='number of neighbors to consider')
parser.add_option('--neighborsFile','--nbrs',default='',
                  help='name of an output file to hold the neighbor lists')
parser.add_option('--scan',default=False,action="store_true")


if __name__=='__main__':
    options,args = parser.parse_args()
    outF = file(args[-1],'w+')

    logger.info('reading training molecules and generating fingerprints')
    suppl = Chem.SDMolSupplier(args[0])
    train=[]
    for i,mol in enumerate(suppl):
        if not mol:
            continue
        smi = Chem.MolToSmiles(mol,True)
        nm = mol.GetProp(nameField)
        property = float(mol.GetProp(propField))
        fp = GetMolFingerprint(mol,options.maxPathLength)
        train.append((nm,smi,fp,property))
    logger.info('  got %d molecules'%len(train))

    if len(args)>2:
        suppl = Chem.SDMolSupplier(args[1])
        haveTest=True
        logger.info('reading testing molecules and generating fingerprints')
        test=[]
        for i,mol in enumerate(suppl):
            if not mol:
                continue
            smi = Chem.MolToSmiles(mol,True)
            nm = mol.GetProp(nameField)
            if mol.HasProp(propField):
                property = float(mol.GetProp(propField))
            else:
                property=0
            fp = GetMolFingerprint(mol,options.maxPathLength)
            test.append((nm,smi,fp,property))
        logger.info('  got %d molecules'%len(test))
    else:
        haveTest=False
        test=train
        
    results=[None]*len(test)
    for i in range(len(test)):
        results[i] = [None]*len(options.similarityThreshold)
    if options.neighborsFile:
        nbrFile=file(options.neighborsFile,'w+')
        print >>nbrFile,'ID|CompoundName|CompoundSmiles|NeighborName|NeighborSmiles|NeighborShift|Similarity'
        id=1
    else:
        nbrFile=None
    for j,thresh in enumerate(options.similarityThreshold):
        if not haveTest:
            logger.info('Doing cross validation with threshold %.2f'%thresh)
        else:
            logger.info('Doing prediction with threshold %.2f'%thresh)
        for i in range(len(test)):
            if not haveTest:
                localTrain=[train[x] for x in range(len(train)) if x!=i]
            else:
                localTrain=train
            localTest=test[i]
            mdl = KNNRegressionModel(options.numNeighbors,[],
                                     lambda x,y,*args: 1-DataStructs.DiceSimilarity(x[-2],y[-2]),
                                     radius=1.-thresh)
            mdl.SetTrainingExamples(localTrain)
            nbrs=[]
            pred = mdl.PredictExample(localTest,weightedAverage=weightedAverage,
                                      neighborList=nbrs)
            nm,smi,fp,prop = test[i]

            if nbrFile:
                for dist,data in nbrs:
                    if data is None: continue
                    nnm,nsmi,nfp,nproperty = data
                    outRow=[str(id),nm,smi,nnm,nsmi,str(nproperty),str(dist-1.)]
                    id+=1
                    print >>nbrFile,'|'.join(outRow)
            nbrs = [x for x in nbrs if x[1] is not None]
            results[i][j]=(nm,smi,prop,pred,len(nbrs))
            if not (i+1)%100:
                logger.info('Done %d molecules'%(i+1))
        logger.info('  done')
    numNeighbors = options.numNeighbors
    maxPathLength = options.maxPathLength-1
    logger.info('creating output file')
    headers=['name','smiles','shift']
    for thresh in options.similarityThreshold:
        headers.append('predShift_%(maxPathLength)d_%(numNeighbors)d_%(thresh).2f'%locals())
        headers.append('dPred_%(maxPathLength)d_%(numNeighbors)d_%(thresh).2f'%locals())
        headers.append('nbrs_%(maxPathLength)d_%(numNeighbors)d_%(thresh).2f'%locals())
    print >>outF,'|'.join(headers)
    for i in range(len(test)):
        nm=results[i][0][0]
        smi=results[i][0][1]
        prop=results[i][0][2]
        row = [nm,smi,str(prop)]
        for j in range(len(options.similarityThreshold)):
            nbrs=results[i][j][4]
            pred=results[i][j][3]
            row.append(str(pred))
            row.append(str(abs(prop-pred)))
            row.append(str(nbrs))
        print >>outF,'|'.join(row)