This file is indexed.

/usr/share/doc/scheme48/html/manual-Z-H-5.html is in scheme48-doc 1.9-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!--

Generated from manual.tex by tex2page, v 20100828
(running on MzScheme 4.2.4, :unix), 
(c) Dorai Sitaram, 
http://evalwhen.com/tex2page/index.html

-->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>
The Incomplete Scheme 48 Reference Manual for release 1.9
</title>
<link rel="stylesheet" type="text/css" href="manual-Z-S.css" title=default>
<meta name=robots content="index,follow">
</head>
<body>
<div id=slidecontent>
<div align=right class=navigation>[Go to <span><a href="manual.html">first</a>, <a href="manual-Z-H-4.html">previous</a></span><span>, <a href="manual-Z-H-6.html">next</a></span> page<span>; &nbsp;&nbsp;</span><span><a href="manual-Z-H-1.html#node_toc_start">contents</a></span><span><span>; &nbsp;&nbsp;</span><a href="manual-Z-H-11.html#node_index_start">index</a></span>]</div>
<p></p>
<a name="node_chap_4"></a>
<h1 class=chapter>
<div class=chapterheading><a href="manual-Z-H-1.html#node_toc_node_chap_4">Chapter 4</a></div><br>
<a href="manual-Z-H-1.html#node_toc_node_chap_4">Module system</a></h1>
<p></p>
<p>
This chapter describes Scheme&nbsp;48's module system.
The module system is unique in the extent to which it
supports both static linking and rapid turnaround during program
development.  The design was influenced by Standard ML
modules[<a href="manual-Z-H-11.html#node_bib_7">7</a>] and by the module system for Scheme
Xerox[<a href="manual-Z-H-11.html#node_bib_4">4</a>].  It has also been shaped by the
needs of Scheme&nbsp;48, which is designed to run both on workstations and
on relatively small (less than 1 Mbyte) embedded controllers.</p>
<p>
Except where noted, everything described here is implemented in
Scheme&nbsp;48, and exercised by the Scheme&nbsp;48 implementation and some
application programs.</p>
<p>
Unlike the Common Lisp package system, the module system described
here controls the mapping of names to denotations, not the
mapping of strings to symbols.</p>
<p>
</p>
<a name="node_sec_4.1"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.1">4.1&nbsp;&nbsp;Introduction</a></h2>
<p>The module system supports the structured division of a corpus of
Scheme software into a set of modules.  Each module has its own
isolated namespace, with visibility of bindings controlled by module
descriptions written in a special <em>configuration language.</em></p>
<p>
A module may be instantiated multiple times, producing several <em>packages</em>, just as a lambda-expression can be instantiated multiple
times to produce several different procedures.  Since single
instantiation is the normal case, we will defer discussion of multiple
instantiation until a later section.  For now you can think of a
package as simply a module's internal environment mapping names to
denotations.</p>
<p>
A module exports bindings by providing views onto the underlying
package.  Such a view is called a <em>structure</em> (terminology from
Standard ML).  One module may provide several different views.  A
structure is just a subset of the package's bindings.  The particular
set of names whose bindings are exported is the structure's <em>interface</em>.</p>
<p>
A module imports bindings from other modules by either <em>opening</em>
or <em>accessing</em> some structures that are built on other packages.
When a structure is opened, all of its exported bindings are visible
in the client package.
</p>
<p>
For example:
</p>
<pre class=verbatim>(define-structure foo (export a c cons)
  (open scheme)
  (begin (define a 1)
         (define (b x) (+ a x))
         (define (c y) (* (b a) y))))

(define-structure bar (export d)
  (open scheme foo)
  (begin (define (d w) (+ a (c w)))))
</pre><p>
This configuration defines two structures, <tt>foo</tt> and <tt>bar</tt>.
<tt>foo</tt> is a view on a package in which the <tt>scheme</tt> structure's
bindings (including <tt>define</tt> and <tt>+</tt>) are visible, together
with bindings for <tt>a</tt>, <tt>b</tt>,
and <tt>c</tt>.  <tt>foo</tt>'s interface is <tt>(export a c cons)</tt>, so of
the bindings in its underlying package, <tt>foo</tt> only exports those
three.  Similarly, structure <tt>bar</tt> consists of the binding of <tt>d</tt> from a package in which both <tt>scheme</tt>'s and <tt>foo</tt>'s
bindings are visible.  <tt>foo</tt>'s binding of <tt>cons</tt> is imported
from the Scheme structure and then re-exported.</p>
<p>
A module's body, the part following <tt>begin</tt> in the above example,
is evaluated in an isolated lexical scope completely specified by the
package definition's <tt>open</tt> and <tt>access</tt> clauses.  In
particular, the binding of the syntactic operator <tt>define-structure</tt>
is not visible unless it comes from some opened structure.  Similarly,
bindings from the <tt>scheme</tt> structure aren't visible unless they
become so by <tt>scheme</tt> (or an equivalent structure) being opened.</p>
<p>
</p>
<a name="node_sec_4.2"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.2">4.2&nbsp;&nbsp;The configuration language</a></h2>
<p></p>
<p>
The configuration language consists of top-level defining forms for
modules and interfaces.
Its syntax is given in figure&nbsp;<a href="#node_fig_Temp_4">1</a>.</p>
<p>
</p>
<p>
</p>
<p></p>
<hr>
<p></p>
<a name="node_fig_Temp_4"></a>
<div class=:figure align=center><table width=100%><tr><td align=center><p>
</p>
<table border=0><tr><td valign=top >
<p class=noindent>&lang;configuration&rang; <tt>&ndash;&gt;</tt>&nbsp;</p>

<p class=noindent>&lang;definition&rang;<sup>*</sup> </td></tr>
<tr><td valign=top ></p>
<p>
</p>
<table border=0><tr><td valign=top >
<p class=noindent>&lang;definition&rang; <tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(define-structure 
<p class=noindent>&lang;name&rang; </p>

<p class=noindent>&lang;interface&rang;
</p>

<p class=noindent>&lang;clause&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(define-structures ((
<p class=noindent>&lang;name&rang; </p>

<p class=noindent>&lang;interface&rang;)<sup>*</sup>)
</p>

<p class=noindent>&lang;clause&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(define-interface 
<p class=noindent>&lang;name&rang; </p>

<p class=noindent>&lang;interface&rang;) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(define-syntax 
<p class=noindent>&lang;name&rang; </p>

<p class=noindent>&lang;transformer-spec&rang;)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>&lang;clause&rang; <tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(open 
<p class=noindent>&lang;structure&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(access 
<p class=noindent>&lang;name&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(begin 
<p class=noindent>&lang;program&rang;) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(files 
<p class=noindent>&lang;filespec&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(optimize 
<p class=noindent>&lang;optimize-spec&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(for-syntax 
<p class=noindent>&lang;clause&rang;<sup>*</sup>)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>&lang;interface&rang; <tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(export 
<p class=noindent>&lang;item&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top >
<p class=noindent>&lang;name&rang; </td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(compound-interface 
<p class=noindent>&lang;interface&rang;<sup>*</sup>)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>&lang;item&rang; <tt>&ndash;&gt;</tt>&nbsp; </p>

<p class=noindent>&lang;name&rang; </td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(
<p class=noindent>&lang;name&rang; </p>

<p class=noindent>&lang;type&rang;) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>((
<p class=noindent>&lang;name&rang;<sup>*</sup>) </p>

<p class=noindent>&lang;type&rang;)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>&lang;structure&rang; <tt>&ndash;&gt;</tt> </p>
</td><td valign=top >
<p class=noindent>&lang;name&rang; </td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(modify 
<p class=noindent>&lang;structure&rang; </p>

<p class=noindent>&lang;modifier&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(subset 
<p class=noindent>&lang;structure&rang; (</p>

<p class=noindent>&lang;name&rang;<sup>*</sup>)) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(with-prefix 
<p class=noindent>&lang;structure&rang; </p>

<p class=noindent>&lang;name&rang;)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>&lang;modifier&rang; <tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(expose 
<p class=noindent>&lang;name&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(hide 
<p class=noindent>&lang;name&rang;<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(rename (
<p class=noindent>&lang;name&rang;<sub>0</sub> </p>

<p class=noindent>&lang;name&rang;<sub>1</sub>)<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(alias (
<p class=noindent>&lang;name&rang;<sub>0</sub> </p>

<p class=noindent>&lang;name&rang;<sub>1</sub>)<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(prefix 
<p class=noindent>&lang;name&rang;)
</p>
</tt></td></tr></table>
</td></tr></table>
</td></tr>
<tr><td align=center><b>Figure 1:</b>&nbsp;&nbsp;The configuration language.</td></tr>
<tr><td>

</td></tr></table></div><p></p>
<hr>
<p></p>
<p></p>
<p>
A <a name="node_idx_2"></a><tt>define-structure</tt> form introduces a binding of a name to a
structure.  A structure is a view on an underlying package which is
created according to the clauses of the <tt>define-structure</tt> form.
Each structure has an interface that specifies which bindings in the
structure's underlying package can be seen via that structure in other
packages.</p>
<p>
An <tt>open</tt> clause specifies which structures will be opened up for
use inside the new package.
At least one structure must be specified or else it will be impossible to
write any useful programs inside the package, since <tt>define</tt>,
<tt>lambda</tt>, <tt>cons</tt>, etc. will be unavailable.
Packages typically include <tt>scheme</tt>, which exports all bindings
appropriate to Revised<sup>5</sup> Scheme, in an <tt>open</tt> clause.
For building structures that export structures, there is a <tt>defpackage</tt>
package that exports the operators of the configuration language.
Many other structures, such as record and hash table facilities, are also
available in the Scheme&nbsp;48 implementation.</p>
<p>
The <a name="node_idx_4"></a><tt>modify</tt>, <a name="node_idx_6"></a><tt>subset</tt>, and
<a name="node_idx_8"></a><tt>prefix</tt> forms produce new
views on existing structures by renaming or hiding exported names.
<tt>Subset</tt> returns a new structure that exports only the listed names
from its </p>

<p class=noindent>&lang;structure&rang; argument.
<tt>With-prefix</tt> returns a new structure that adds </p>

<p class=noindent>&lang;prefix&rang;
to each of the names exported by the </p>

<p class=noindent>&lang;structure&rang; argument.
For example, if structure <tt>s</tt> exports <tt>a</tt> and <tt>b</tt>,
then
</p>
<pre class=verbatim>(subset s (a))
</pre><p>
exports only <tt>a</tt> and
</p>
<pre class=verbatim>(with-prefix s p/)
</pre><p>
exports <tt>a</tt> as <tt>p/a</tt> and <tt>b</tt> as <tt>p/b</tt>.</p>
<p>
Both <tt>subset</tt> and <tt>with-prefix</tt> are simple macros that
expand into uses of <tt>modify</tt>, a more general renaming form.
In a <tt>modify</tt> structure specification the </p>

<p class=noindent>&lang;command&rang;s are applied to
the names exported
by </p>

<p class=noindent>&lang;structure&rang; to produce a new set of names for the </p>

<p class=noindent>&lang;structure&rang;'s
bindings.
<tt>Expose</tt> makes only the listed names visible.
<tt>Hide</tt> makes all but the listed names visible.
<tt>Rename</tt> makes each </p>

<p class=noindent>&lang;name&rang;<sub>0</sub> visible as </p>

<p class=noindent>&lang;name&rang;<sub>1</sub> 
name and not visible as </p>

<p class=noindent>&lang;name&rang;<sub>0</sub> , while
<tt>alias</tt> makes each </p>

<p class=noindent>&lang;name&rang;<sub>0</sub> visible as both </p>

<p class=noindent>&lang;name&rang;<sub>0</sub> 
and </p>

<p class=noindent>&lang;name&rang;<sub>1</sub>.
<tt>Prefix</tt> adds </p>

<p class=noindent>&lang;name&rang; to the beginning of each exported name.
The modifiers are applied from right to left.  Thus
</p>
<pre class=verbatim>(modify scheme (prefix foo/) (rename (car bus))))
</pre><p>
makes <tt>car</tt> available as <tt>foo/bus</tt>.</p>
<p>
</p>
<p>
The package's body is specified by <tt>begin</tt> and/or <tt>files</tt>
clauses.  <tt>begin</tt> and <tt>files</tt> have the same semantics, except
that for <tt>begin</tt> the text is given directly in the package
definition, while for <tt>files</tt> the text is stored somewhere in the
file system.  The body consists of a Scheme program, that is, a
sequence of definitions and expressions to be evaluated in order.  In
practice, we always use <tt>files</tt> in preference to <tt>begin</tt>; <tt>begin</tt> exists mainly for expository purposes.</p>
<p>
A name's imported binding may be lexically overridden or <em>shadowed</em>
by defining the name using a defining form such as <tt>define</tt>
or <tt>define-syntax</tt>.  This will create a new binding without having
any effect on the binding in the opened package.  For example, one can
do <tt>(define car 'chevy)</tt> without affecting the binding of the name
<tt>car</tt> in the <tt>scheme</tt> package.</p>
<p>
Assignments (using <tt>set!</tt>) to imported and undefined variables
are not allowed.  In order to <tt>set!</tt> a top-level variable, the
package body must contain a <tt>define</tt> form defining that variable.
Applied to bindings from the <tt>scheme</tt> structure, this restriction
is compatible with the requirements of the Revised<sup>5</sup> Scheme report.</p>
<p>
It is an error for two of a package's opened structures to export two
different bindings for the same name.  However, the current
implementation does not check for this situation; a name's binding is
always taken from the structure that is listed first within the <tt>open</tt> clause.  This may be fixed in the future.</p>
<p>
File names in a <tt>files</tt> clause can be symbols, strings, or lists
(Maclisp-style &ldquo;namelists&rdquo;).  A &ldquo;<tt>.scm</tt>&rdquo; file type suffix is
assumed.  Symbols are converted to file names by converting to upper
or lower case as appropriate for the host operating system.  A
namelist is an operating-system-independent way to specify a file
obtained from a subdirectory.  For example, the namelist <tt>(rts
record)</tt> specifies the file <tt>record.scm</tt> in the <tt>rts</tt>
subdirectory.</p>
<p>
If the <tt>define-structure</tt> form was itself obtained from a file,
then file names in <tt>files</tt> clauses are interpreted relative to the
directory in which the file containing the <tt>define-structure</tt> form
was found.  You can't at present put an absolute path name in the <tt>files</tt> list.</p>
<p>
</p>
<a name="node_sec_4.3"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.3">4.3&nbsp;&nbsp;Interfaces</a></h2>
<p><a name="node_idx_10"></a><tt>define-interface</tt></p>
<p>
An interface can be thought of as the type of a structure.  In its
basic form it is just a list of variable names, written <tt>(export
<i>name</i> <tt>...</tt>)</tt>.  However, in place of
a name one may write <tt>(<i>name</i> <i>type</i>)</tt>, indicating the type
of <i>name</i>'s binding.
The type field is optional, except
that exported macros must be indicated with type <tt>:syntax</tt>.</p>
<p>
Interfaces may be either anonymous, as in the example in the
introduction, or they may be given names by a <tt>define-interface</tt>
form, for example
</p>
<pre class=verbatim>(define-interface foo-interface (export a c cons))
(define-structure foo foo-interface <tt>...</tt>)
</pre><p>
In principle, interfaces needn't ever be named.  If an interface
had to be given at the point of a structure's use as well as at the
point of its definition, it would be important to name interfaces in
order to avoid having to write them out twice, with risk of mismatch
should the interface ever change.  But they don't.</p>
<p>
Still, there are several reasons to use <tt>define-interface</tt>:
</p>
<ol>
<li><p>It is important to separate the interface definition from the
package definitions when there are multiple distinct structures that
have the same interface &mdash; that is, multiple implementations of the
same abstraction.</p>
<p>
</p>
<li><p>It is conceptually cleaner, and often useful for documentation
purposes, to separate a module's specification (interface) from its
implementation (package).</p>
<p>
</p>
<li><p>Our experience is that configurations that are separated into
interface definitions and package definitions are easier to read; the
long lists of exported bindings just get in the way most of the time.
</p>
</ol><p></p>
<p>
The <a name="node_idx_12"></a><tt>compound-interface</tt> operator forms an interface that is the
union of two or more component interfaces.  For example,
</p>
<pre class=verbatim>(define-interface bar-interface
  (compound-interface foo-interface (export mumble)))
</pre><p>
defines <tt>bar-interface</tt> to be <tt>foo-interface</tt> with the name
<tt>mumble</tt> added.</p>
<p>
</p>
<a name="node_sec_4.4"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.4">4.4&nbsp;&nbsp;Macros</a></h2>
<p>Hygienic macros, as described in
[<a href="manual-Z-H-11.html#node_bib_2">2</a>,&nbsp;<a href="manual-Z-H-11.html#node_bib_3">3</a>], are implemented.
Structures may export macros; auxiliary names introduced into the
expansion are resolved in the environment of the macro's definition.</p>
<p>
For example, the <tt>scheme</tt> structure's <tt>delay</tt> macro 
is defined by the rewrite rule
</p>
<pre class=verbatim>(delay <i>exp</i>)  %
%
<tt>&mdash;&gt;</tt>%
(make-promise (lambda () <i>exp</i>)).
</pre><p>
The variable <tt>make-promise</tt> is defined in the <tt>scheme</tt>
structure's underlying package, but is not exported.  A use of the
<tt>delay</tt> macro, however, always accesses the correct definition
of <tt>make-promise</tt>.  Similarly, the <tt>case</tt> macro expands into
uses of <tt>cond</tt>, <tt>eqv?</tt>, and so on.  These names are exported
by <tt>scheme</tt>, but their correct bindings will be found even if they
are shadowed by definitions in the client package.</p>
<p>
</p>
<a name="node_sec_4.5"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.5">4.5&nbsp;&nbsp;Higher-order modules</a></h2>
<p>There are <tt>define-module</tt> and <tt>define</tt> forms for
defining modules that are intended to be instantiated multiple times.
But these are pretty kludgey &mdash; for example, compiled code isn't
shared between the instantiations &mdash; so we won't describe them yet.
If you must know, figure it out from the following grammar.
</p>
<div align=center><table><tr><td>

<table border=0><tr><td valign=top ><span style="margin-left: 2em">&zwnj;</span>
<p class=noindent>&lang;definition&rang; <tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(define-module (
<p class=noindent>&lang;name&rang; (</p>

<p class=noindent>&lang;name&rang; </p>

<p class=noindent>&lang;interface&rang;)<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ></p>
</td><td valign=top ><span style="margin-left: 2em">&zwnj;</span>
<p class=noindent>&lang;definition&rang;<sup>*</sup> </td></tr>
<tr><td valign=top ></p>
</td><td valign=top ><span style="margin-left: 2em">&zwnj;</span>
<p class=noindent>&lang;name&rang;<tt>) </tt></td></tr>
<tr><td valign=top ><tt>&ndash;&gt;</tt> </p>
</td><td valign=top ><tt>(define 
<p class=noindent>&lang;name&rang; (</p>

<p class=noindent>&lang;name&rang; </p>

<p class=noindent>&lang;name&rang;<sup>*</sup>))
</p>
</tt></td></tr></table>
</td></tr></table></div>

<p>
</p>
<a name="node_sec_4.6"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.6">4.6&nbsp;&nbsp;Compiling and linking</a></h2>
<p>Scheme&nbsp;48 has a static linker that produces stand-alone heap images
from module descriptions.  The programmer specifies a particular procedure in a
particular structure to be the image's startup procedure (entry
point), and the linker traces dependency links as given by <tt>open</tt>
and <tt>access</tt> clauses to determine the composition of the heap
image.</p>
<p>
There is not currently any provision for separate compilation; the
only input to the static linker is source code.  However, it will not
be difficult to implement separate compilation.  The unit of
compilation is one module (not one file).  Any opened or accessed
structures from which macros are obtained must be processed to the
extent of extracting its macro definitions.  The compiler knows from
the interface of an opened or accessed structure which of its exports
are macros.  Except for macros, a module may be compiled without any
knowledge of the implementation of its opened and accessed structures.
However, inter-module optimization may be available as an option.</p>
<p>
The main difficulty with separate compilation is resolution of
auxiliary bindings introduced into macro expansions.  The module
compiler must transmit to the loader or linker the search path by
which such bindings are to be resolved.  In the case of the <tt>delay</tt>
macro's auxiliary <tt>make-promise</tt> (see example above), the loader
or linker needs to know that the desired binding of <tt>make-promise</tt>
is the one apparent in <tt>delay</tt>'s defining package, not in the
package being loaded or linked.</p>
<p>
</p>
<p>
</p>
<a name="node_sec_4.7"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.7">4.7&nbsp;&nbsp;Semantics of configuration mutation</a></h2>
<p>During program development it is often desirable to make changes to
packages and interfaces.  In static languages it may be necessary to
recompile and re-link a program in order for such changes to be
reflected in a running system.  Even in interactive Common Lisp
implementations, a change to a package's exports often requires
reloading clients that have already mentioned names whose bindings
change.  Once <tt>read</tt> resolves a use of a name to a symbol, that
resolution is fixed, so a change in the way that a name resolves to a
symbol can only be reflected by re-<tt>read</tt>ing all such references.</p>
<p>
The Scheme&nbsp;48 development environment supports rapid turnaround in
modular program development by allowing mutations to a program's
configuration, and giving a clear semantics to such mutations.  The
rule is that variable bindings in a running program are always
resolved according to current structure and interface bindings, even
when these bindings change as a result of edits to the configuration.
For example, consider the following:
</p>
<pre class=verbatim>(define-interface foo-interface (export a c))
(define-structure foo foo-interface
  (open scheme)
  (begin (define a 1)
         (define (b x) (+ a x))
         (define (c y) (* (b a) y))))
(define-structure bar (export d)
  (open scheme foo)
  (begin (define (d w) (+ (b w) a))))
</pre><p>
This program has a bug.  The variable <tt>b</tt>, which is free in the
definition of <tt>d</tt>, has no binding in <tt>bar</tt>'s package.  Suppose
that <tt>b</tt> was supposed to be exported by <tt>foo</tt>, but was omitted
from <tt>foo-interface</tt> by mistake.  It is not necessary to
re-process <tt>bar</tt> or any of <tt>foo</tt>'s other clients at this point.
One need only change <tt>foo-interface</tt> and inform the development
system of that change (using, say, an appropriate Emacs command),
and <tt>foo</tt>'s binding of <tt>b</tt> will be found when procedure <tt>d</tt> is called.</p>
<p>
Similarly, it is also possible to replace a structure; clients of the
old structure will be modified so that they see bindings from the new
one.  Shadowing is also supported in the same way.  Suppose that a
client package <em>C</em> opens a structure <tt>foo</tt> that exports a name
<tt>x</tt>, and <tt>foo</tt>'s implementation obtains the binding of <tt>x</tt>
as an import from some other structure <tt>bar</tt>.  Then <em>C</em> will see
the binding from <tt>bar</tt>.  If one then alters <tt>foo</tt> so that it
shadows <tt>bar</tt>'s binding of <tt>x</tt> with a definition of its own,
then procedures in <em>C</em> that reference <tt>x</tt> will automatically see
<tt>foo</tt>'s definition instead of the one from <tt>bar</tt> that they saw
earlier.</p>
<p>
This semantics might appear to require a large amount of computation
on every variable reference: The specified behavior requires scanning
the package's list of opened structures, examining their interfaces,
on every variable reference, not just at compile time.  However, the
development environment uses caching with cache invalidation to make
variable references fast.</p>
<p>
</p>
<a name="node_sec_4.8"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.8">4.8&nbsp;&nbsp;Command processor support</a></h2>
<p></p>
<p>
While it is possible to use the Scheme&nbsp;48 static linker for program
development, it is far more convenient to use the development
environment, which supports rapid turnaround for program changes.  The
programmer interacts with the development environment through a <em>command processor</em>.  The command processor is like the usual Lisp
read-eval-print loop in that it accepts Scheme forms to evaluate.
However, all meta-level operations, such as exiting the Scheme system
or requests for trace output, are handled by <em>commands,</em> which are
lexically distinguished from Scheme forms.  This arrangement is
borrowed from the Symbolics Lisp Machine system, and is reminiscent of
non-Lisp debuggers.  Commands are a little easier to type than Scheme
forms (no parentheses, so you don't have to shift), but more
importantly, making them distinct from Scheme forms ensures that
programs' namespaces aren't cluttered with inappropriate bindings.
Equivalently, the command set is available for use regardless of what
bindings happen to be visible in the current program.  This is
especially important in conjunction with the module system, which puts
strict controls on visibility of bindings.</p>
<p>
The Scheme&nbsp;48 command processor supports the module system with a
variety of special commands.  For commands that require structure
names, these names are resolved in a designated configuration package
that is distinct from the current package for evaluating Scheme forms
given to the command processor.  The command processor interprets
Scheme forms in a particular current package, and there are commands
that move the command processor between different packages.</p>
<p>
Commands are introduced by a comma (<tt>,</tt>) and end at the end of
line.  The command processor's prompt consists of the name of the
current package followed by a greater-than (<tt>&gt;</tt>).</p>
<p>
</p>
<dl><dt></dt><dd>
</dd><dt></dt><dd><tt>,open <i>structure</i><sup>*</sup></tt> <br>
The <tt>,open</tt> command opens new structures in the current
package, as if the package's definition's <tt>open</tt> clause
had listed <i>structure</i>.
As with <tt>open</tt> clauses the visible names can be modified,
as in
<pre class=verbatim>,open (subset foo (bar baz))
</pre><p>
which only makes the <tt>bar</tt> and <tt>baz</tt> bindings from
structure <tt>foo</tt> visible.</p>
<p>
</p>
</dd><dt></dt><dd><tt>,config</tt> <br>
The <tt>,config</tt> command sets the command processor's current
package to be the current configuration package.  Forms entered at
this point are interpreted as being configuration language forms,
not Scheme forms.<p>
</p>
</dd><dt></dt><dd><tt>,config <i>command</i></tt> <br>
This form of the <tt>,config</tt> command executes another command in
the current configuration package.  For example,
<pre class=verbatim>,config ,load foo.scm
</pre><p>
interprets configuration language forms from the file <tt>foo.scm</tt> in the current configuration package.</p>
<p>
</p>
</dd><dt></dt><dd><tt>,config-package-is <i>struct-name</i></tt> <br>
The <tt>,config-package-is</tt> command designates a new configuration
package for use by the <tt>,config</tt> command and resolution of
<i>struct-name</i>s for other commands such as <tt>,in</tt> and
<tt>,open</tt>.  See
section&nbsp;<a href="#node_sec_4.9">4.9</a>
for information on making new configuration packages.<p>
</p>
</dd><dt></dt><dd><tt>,in <i>struct-name</i></tt> <br>
The <tt>,in</tt> command moves the command processor to a specified
structure's underlying package.  For example:
<pre class=verbatim>user&gt; ,config
config&gt; (define-structure foo (export a)
          (open scheme))
config&gt; ,in foo
foo&gt; (define a 13)
foo&gt; a
13
</pre><p>
In this example the command processor starts in a package called
<tt>user</tt>, but the <tt>,config</tt> command moves it into the
configuration package, which has the name <tt>config</tt>.  The <tt>define-structure</tt> form binds, in <tt>config</tt>, the name <tt>foo</tt> to
a structure that exports <tt>a</tt>.  Finally, the command <tt>,in
foo</tt> moves the command processor into structure <tt>foo</tt>'s
underlying package.</p>
<p>
A package's body isn't executed (evaluated) until the package is
<em>loaded</em>, which is accomplished by the <tt>,load-package</tt>
command.</p>
<p>
</p>
</dd><dt></dt><dd><tt>,in <i>struct-name</i> <i>command</i></tt> <br>
This form of the <tt>,in</tt> command executes a single command in the
specified package without moving the command processor into that
package.  Example:
<pre class=verbatim>,in mumble (cons 1 2)
,in mumble ,trace foo
</pre><p></p>
<p>
</p>
</dd><dt></dt><dd><tt>,user [<i>command</i>]</tt> <br>
This is similar to the <tt>,config</tt> and <tt>,in</tt> commands.  It
moves to or executes a command in the user package (which is the
default package when the Scheme&nbsp;48 command processor starts).<p>
</p>
</dd><dt></dt><dd><tt>,user-package-is <i>name</i></tt> <br>
The <tt>,user-package-is</tt> command designates a new user
package for use by the <tt>,user</tt> command.<p>
</p>
</dd><dt></dt><dd><tt>,load-package <i>struct-name</i></tt> <br>
The <tt>,load-package</tt> command ensures that the specified structure's
underlying package's program has been loaded.  This 
consists of (1) recursively ensuring that the packages of any
opened or accessed structures are loaded, followed by (2)
executing the package's body as specified by its definition's <tt>begin</tt> and <tt>files</tt> forms.
<p>
</p>
</dd><dt></dt><dd><tt>,reload-package <i>struct-name</i></tt> <br>
This command re-executes the structure's package's program.  It
is most useful if the program comes from a file or files, when
it will update the package's bindings after mutations to its
source file.<p>
</p>
</dd><dt></dt><dd><tt>,load <i>filespec</i> <tt>...</tt></tt> <br>
The <tt>,load</tt> command executes forms from the specified file or
files in the current package.  <tt>,load <i>filespec</i></tt> is similar
to <tt>(load &quot;<i>filespec</i>&quot;)</tt>
except that the name <tt>load</tt> needn't be bound in the current
package to Scheme's <tt>load</tt> procedure.<p>
</p>
</dd><dt></dt><dd><tt>,for-syntax [<i>command</i>]</tt> <br>
This is similar to the <tt>,config</tt> and <tt>,in</tt> commands.  It
moves to or executes a command in the current package's &ldquo;package
for syntax,&rdquo; which is the package in which the forms <em>f</em> in
<tt>(define-syntax <i>name</i> <i>f</i>)</tt> are evaluated.<p>
</p>
</dd><dt></dt><dd><tt>,new-package [<i>struct-name</i> <tt>...</tt>]</tt> <br>
The <tt>,new-package</tt> command creates a new package and moves the
command processor to it.  With no arguments, only the standard
Scheme bindings are visible in the new package.  Otherwise, the
structures specified as command arguments (and not the
<tt>scheme</tt> structure) are opened in the new package.<p>
</p>
</dd><dt></dt><dd><tt>,structure <i>name</i> <i>interface</i></tt> <br>
The <tt>,structure</tt> command defines <i>name</i> in the
configuration package to be a structure with interface
<i>interface</i> based on the current package.<p>
</p>
</dd></dl><p></p>
<p>
</p>
<a name="node_sec_4.9"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.9">4.9&nbsp;&nbsp;Configuration packages</a></h2>
<p></p>
<p>
It is possible to set up multiple configuration packages.  The default
configuration package opens the following structures:
</p>
<ul>
<li><p><tt>module-system</tt>, which exports <tt>define-structure</tt> and the
other configuration language keywords, as well as standard types
and type constructors (<tt>:syntax</tt>, <tt>:value</tt>, <tt>proc</tt>, etc.).
</p>
<li><p><tt>built-in-structures</tt>, which exports structures that are
built into the initial Scheme&nbsp;48 image; these include
<tt>scheme</tt>, <tt>threads</tt>, <tt>tables</tt>, and <tt>records</tt>.
</p>
<li><p><tt>more-structures</tt>, which exports additional structures that
are available in the development environment. 
A complete listing
can be found in the definition of <tt>more-structures-interface</tt>
at the end of the file <tt>scheme/packages.scm</tt>.
</p>
</ul><p>
Note that it does not open <tt>scheme</tt>.</p>
<p>
You can define additional configuration packages by making a package
that opens <tt>module-system</tt> and, optionally,
<tt>built-in-structures</tt>,
<tt>more-structures</tt>, or other structures that
export structures and interfaces.</p>
<p>
For example:
</p>
<pre class=verbatim>&gt; ,config (define-structure foo (export)
            (open module-system
                  built-in-structures
                  more-structures))
&gt; ,in foo
foo&gt; (define-structure x (export a b)
       (open scheme)
       (files x))
foo&gt; 
</pre><p></p>
<p>
Unfortunately, the above example does not work.
The problem is that every environment in which
<tt>define-structure</tt> is used must also have a way to
create &ldquo;syntactic towers&rdquo;.
A new syntactic tower is required whenever a new environment is created for
compiling the source code in the package associated with a new structure.
The environment's tower is used at compile time for
evaluating the <i>macro-source</i> in
</p>
<pre class=verbatim>(define-syntax <i>name</i> <i>macro-source</i>)
(let-syntax ((<i>name</i> <i>macro-source</i>) <tt>...</tt>) <i>body</i>)
</pre><p>
and so forth.
It is a &ldquo;tower&rdquo; because that environment, in turn, has to say what environment
to use if <tt>macro-source</tt> itself contains a use of <tt>let-syntax</tt>.</p>
<p>
The simplest way to provide a tower maker is to pass on the one used by
an existing configuration package.
The special form <tt>export-syntactic-tower-maker</tt> creates an interface
that exports a configuration package's tower.
The following example uses <tt>export-syntactic-tower-maker</tt> and
the <tt>,structure</tt> command to obtain a tower maker and create a new
configuration environment.</p>
<p>
</p>
<pre class=verbatim>&gt; ,config ,structure t (export-syntactic-tower-maker)
&gt; ,config (define-structure foo (export)
            (open module-system
                  t
                  built-in-structures
                  more-structures))
</pre><p></p>
<p>
Before Scheme&nbsp;48&nbsp;1.9, <tt>export-syntactic-tower-maker</tt> was named
<tt>export-reflective-tower-maker</tt>; this name is still supported for
backwards compatibility.</p>
<p>
</p>
<p>
</p>
<a name="node_sec_4.10"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.10">4.10&nbsp;&nbsp;Discussion</a></h2>
<p>This module system was not designed as the be-all and end-all of
Scheme module systems; it was only intended to help us
organize the Scheme&nbsp;48 system.  Not only does the module system
help avoid name clashes by keeping different subsystems in different
namespaces, it has also helped us to tighten up and generalize
Scheme&nbsp;48's internal interfaces.  Scheme&nbsp;48 is unusual among Lisp
implementations in admitting many different possible modes of
operation.  Examples of such multiple modes include the following:
</p>
<ul>
<li><p>Linking can be either static or dynamic.</p>
<p>
</p>
<li><p>The development environment (compiler, debugger, and command
processor) can run either in the same address space as the program
being developed or in a different address space.  The environment and
user program may even run on different processors under different
operating systems[<a href="manual-Z-H-11.html#node_bib_8">8</a>].</p>
<p>
</p>
<li><p>The virtual machine can be supported by either
of two implementations of its implementation language, Prescheme.
</p>
</ul><p>
The module system has been helpful in organizing these multiple modes.
By forcing us to write down interfaces and module dependencies, the
module system helps us to keep the system clean, or at least to keep
us honest about how clean or not it is.</p>
<p>
The need to make structures and interfaces second-class instead of
first-class results from the requirements of static program analysis:
it must be possible for the compiler and linker to expand macros and
resolve variable bindings before the program is executed.  Structures
could be made first-class (as in FX[<a href="manual-Z-H-11.html#node_bib_10">10</a>]) if a
type system were added to Scheme and the definitions of exported
macros were defined in interfaces instead of in module bodies, but
even in that case types and interfaces would remain second-class.</p>
<p>
The prohibition on assignment to imported bindings makes substitution
a valid optimization when a module is compiled as a block.  The block
compiler first scans the entire module body, noting which variables
are assigned.  Those that aren't assigned (only <tt>define</tt>d) may be
assumed never assigned, even if they are exported.  The optimizer can
then perform a very simple-minded analysis to determine automatically
that some procedures can and should have their calls compiled in line.</p>
<p>
The programming style encouraged by the module system is consistent
with the unextended Scheme language.  Because module system features
do not generally show up within module bodies, an individual module
may be understood by someone who is not familiar with the module
system.  This is a great aid to code presentation and portability.  If
a few simple conditions are met (no name conflicts between packages,
and use of <tt>files</tt> in preference to
<tt>begin</tt>), then a multi-module program can be loaded into a Scheme
implementation that does not support the module system.  The Scheme&nbsp;48
static linker satisfies these conditions, and can therefore run in
other Scheme implementations.  Scheme&nbsp;48's bootstrap process, which is
based on the static linker, is therefore nonincestuous.  This
contrasts with most other integrated programming environments, such as
Smalltalk-80, where the system can only be built using an existing
version of the system itself.</p>
<p>
Like ML modules, but unlike Scheme Xerox modules, this module system
is compositional.  That is, structures are constructed by single
syntactic units that compose existing structures with a body of code.
In Scheme Xerox, the set of modules that can contribute to an
interface is open-ended &mdash; any module can contribute bindings to any
interface whose name is in scope.  The module system implementation is
a cross-bar that channels definitions from modules to interfaces.  The
module system described here has simpler semantics and makes
dependencies easier to trace.  It also allows for higher-order
modules, which Scheme Xerox considers unimportant.</p>
<p>
</p>
<p>

</p>
<p>
</p>
<p>
</p>
<p>
</p>
<div class=smallskip></div>
<p style="margin-top: 0pt; margin-bottom: 0pt">
<div align=right class=navigation>[Go to <span><a href="manual.html">first</a>, <a href="manual-Z-H-4.html">previous</a></span><span>, <a href="manual-Z-H-6.html">next</a></span> page<span>; &nbsp;&nbsp;</span><span><a href="manual-Z-H-1.html#node_toc_start">contents</a></span><span><span>; &nbsp;&nbsp;</span><a href="manual-Z-H-11.html#node_index_start">index</a></span>]</div>
</p>
<p></p>
</div>
</body>
</html>