/usr/share/doc/scheme48/html/manual-Z-H-5.html is in scheme48-doc 1.9-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 | <!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!--
Generated from manual.tex by tex2page, v 20100828
(running on MzScheme 4.2.4, :unix),
(c) Dorai Sitaram,
http://evalwhen.com/tex2page/index.html
-->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>
The Incomplete Scheme 48 Reference Manual for release 1.9
</title>
<link rel="stylesheet" type="text/css" href="manual-Z-S.css" title=default>
<meta name=robots content="index,follow">
</head>
<body>
<div id=slidecontent>
<div align=right class=navigation>[Go to <span><a href="manual.html">first</a>, <a href="manual-Z-H-4.html">previous</a></span><span>, <a href="manual-Z-H-6.html">next</a></span> page<span>; </span><span><a href="manual-Z-H-1.html#node_toc_start">contents</a></span><span><span>; </span><a href="manual-Z-H-11.html#node_index_start">index</a></span>]</div>
<p></p>
<a name="node_chap_4"></a>
<h1 class=chapter>
<div class=chapterheading><a href="manual-Z-H-1.html#node_toc_node_chap_4">Chapter 4</a></div><br>
<a href="manual-Z-H-1.html#node_toc_node_chap_4">Module system</a></h1>
<p></p>
<p>
This chapter describes Scheme 48's module system.
The module system is unique in the extent to which it
supports both static linking and rapid turnaround during program
development. The design was influenced by Standard ML
modules[<a href="manual-Z-H-11.html#node_bib_7">7</a>] and by the module system for Scheme
Xerox[<a href="manual-Z-H-11.html#node_bib_4">4</a>]. It has also been shaped by the
needs of Scheme 48, which is designed to run both on workstations and
on relatively small (less than 1 Mbyte) embedded controllers.</p>
<p>
Except where noted, everything described here is implemented in
Scheme 48, and exercised by the Scheme 48 implementation and some
application programs.</p>
<p>
Unlike the Common Lisp package system, the module system described
here controls the mapping of names to denotations, not the
mapping of strings to symbols.</p>
<p>
</p>
<a name="node_sec_4.1"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.1">4.1 Introduction</a></h2>
<p>The module system supports the structured division of a corpus of
Scheme software into a set of modules. Each module has its own
isolated namespace, with visibility of bindings controlled by module
descriptions written in a special <em>configuration language.</em></p>
<p>
A module may be instantiated multiple times, producing several <em>packages</em>, just as a lambda-expression can be instantiated multiple
times to produce several different procedures. Since single
instantiation is the normal case, we will defer discussion of multiple
instantiation until a later section. For now you can think of a
package as simply a module's internal environment mapping names to
denotations.</p>
<p>
A module exports bindings by providing views onto the underlying
package. Such a view is called a <em>structure</em> (terminology from
Standard ML). One module may provide several different views. A
structure is just a subset of the package's bindings. The particular
set of names whose bindings are exported is the structure's <em>interface</em>.</p>
<p>
A module imports bindings from other modules by either <em>opening</em>
or <em>accessing</em> some structures that are built on other packages.
When a structure is opened, all of its exported bindings are visible
in the client package.
</p>
<p>
For example:
</p>
<pre class=verbatim>(define-structure foo (export a c cons)
(open scheme)
(begin (define a 1)
(define (b x) (+ a x))
(define (c y) (* (b a) y))))
(define-structure bar (export d)
(open scheme foo)
(begin (define (d w) (+ a (c w)))))
</pre><p>
This configuration defines two structures, <tt>foo</tt> and <tt>bar</tt>.
<tt>foo</tt> is a view on a package in which the <tt>scheme</tt> structure's
bindings (including <tt>define</tt> and <tt>+</tt>) are visible, together
with bindings for <tt>a</tt>, <tt>b</tt>,
and <tt>c</tt>. <tt>foo</tt>'s interface is <tt>(export a c cons)</tt>, so of
the bindings in its underlying package, <tt>foo</tt> only exports those
three. Similarly, structure <tt>bar</tt> consists of the binding of <tt>d</tt> from a package in which both <tt>scheme</tt>'s and <tt>foo</tt>'s
bindings are visible. <tt>foo</tt>'s binding of <tt>cons</tt> is imported
from the Scheme structure and then re-exported.</p>
<p>
A module's body, the part following <tt>begin</tt> in the above example,
is evaluated in an isolated lexical scope completely specified by the
package definition's <tt>open</tt> and <tt>access</tt> clauses. In
particular, the binding of the syntactic operator <tt>define-structure</tt>
is not visible unless it comes from some opened structure. Similarly,
bindings from the <tt>scheme</tt> structure aren't visible unless they
become so by <tt>scheme</tt> (or an equivalent structure) being opened.</p>
<p>
</p>
<a name="node_sec_4.2"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.2">4.2 The configuration language</a></h2>
<p></p>
<p>
The configuration language consists of top-level defining forms for
modules and interfaces.
Its syntax is given in figure <a href="#node_fig_Temp_4">1</a>.</p>
<p>
</p>
<p>
</p>
<p></p>
<hr>
<p></p>
<a name="node_fig_Temp_4"></a>
<div class=:figure align=center><table width=100%><tr><td align=center><p>
</p>
<table border=0><tr><td valign=top >
<p class=noindent>⟨configuration⟩ <tt>–></tt> </p>
<p class=noindent>⟨definition⟩<sup>*</sup> </td></tr>
<tr><td valign=top ></p>
<p>
</p>
<table border=0><tr><td valign=top >
<p class=noindent>⟨definition⟩ <tt>–></tt> </p>
</td><td valign=top ><tt>(define-structure
<p class=noindent>⟨name⟩ </p>
<p class=noindent>⟨interface⟩
</p>
<p class=noindent>⟨clause⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(define-structures ((
<p class=noindent>⟨name⟩ </p>
<p class=noindent>⟨interface⟩)<sup>*</sup>)
</p>
<p class=noindent>⟨clause⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(define-interface
<p class=noindent>⟨name⟩ </p>
<p class=noindent>⟨interface⟩) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(define-syntax
<p class=noindent>⟨name⟩ </p>
<p class=noindent>⟨transformer-spec⟩)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>⟨clause⟩ <tt>–></tt> </p>
</td><td valign=top ><tt>(open
<p class=noindent>⟨structure⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(access
<p class=noindent>⟨name⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(begin
<p class=noindent>⟨program⟩) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(files
<p class=noindent>⟨filespec⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(optimize
<p class=noindent>⟨optimize-spec⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(for-syntax
<p class=noindent>⟨clause⟩<sup>*</sup>)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>⟨interface⟩ <tt>–></tt> </p>
</td><td valign=top ><tt>(export
<p class=noindent>⟨item⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top >
<p class=noindent>⟨name⟩ </td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(compound-interface
<p class=noindent>⟨interface⟩<sup>*</sup>)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>⟨item⟩ <tt>–></tt> </p>
<p class=noindent>⟨name⟩ </td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(
<p class=noindent>⟨name⟩ </p>
<p class=noindent>⟨type⟩) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>((
<p class=noindent>⟨name⟩<sup>*</sup>) </p>
<p class=noindent>⟨type⟩)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>⟨structure⟩ <tt>–></tt> </p>
</td><td valign=top >
<p class=noindent>⟨name⟩ </td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(modify
<p class=noindent>⟨structure⟩ </p>
<p class=noindent>⟨modifier⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(subset
<p class=noindent>⟨structure⟩ (</p>
<p class=noindent>⟨name⟩<sup>*</sup>)) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(with-prefix
<p class=noindent>⟨structure⟩ </p>
<p class=noindent>⟨name⟩)
</p>
</tt></td></tr></table>
</td></tr>
<tr><td valign=top ><table border=0><tr><td valign=top >
<p class=noindent>⟨modifier⟩ <tt>–></tt> </p>
</td><td valign=top ><tt>(expose
<p class=noindent>⟨name⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(hide
<p class=noindent>⟨name⟩<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(rename (
<p class=noindent>⟨name⟩<sub>0</sub> </p>
<p class=noindent>⟨name⟩<sub>1</sub>)<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(alias (
<p class=noindent>⟨name⟩<sub>0</sub> </p>
<p class=noindent>⟨name⟩<sub>1</sub>)<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(prefix
<p class=noindent>⟨name⟩)
</p>
</tt></td></tr></table>
</td></tr></table>
</td></tr>
<tr><td align=center><b>Figure 1:</b> The configuration language.</td></tr>
<tr><td>
</td></tr></table></div><p></p>
<hr>
<p></p>
<p></p>
<p>
A <a name="node_idx_2"></a><tt>define-structure</tt> form introduces a binding of a name to a
structure. A structure is a view on an underlying package which is
created according to the clauses of the <tt>define-structure</tt> form.
Each structure has an interface that specifies which bindings in the
structure's underlying package can be seen via that structure in other
packages.</p>
<p>
An <tt>open</tt> clause specifies which structures will be opened up for
use inside the new package.
At least one structure must be specified or else it will be impossible to
write any useful programs inside the package, since <tt>define</tt>,
<tt>lambda</tt>, <tt>cons</tt>, etc. will be unavailable.
Packages typically include <tt>scheme</tt>, which exports all bindings
appropriate to Revised<sup>5</sup> Scheme, in an <tt>open</tt> clause.
For building structures that export structures, there is a <tt>defpackage</tt>
package that exports the operators of the configuration language.
Many other structures, such as record and hash table facilities, are also
available in the Scheme 48 implementation.</p>
<p>
The <a name="node_idx_4"></a><tt>modify</tt>, <a name="node_idx_6"></a><tt>subset</tt>, and
<a name="node_idx_8"></a><tt>prefix</tt> forms produce new
views on existing structures by renaming or hiding exported names.
<tt>Subset</tt> returns a new structure that exports only the listed names
from its </p>
<p class=noindent>⟨structure⟩ argument.
<tt>With-prefix</tt> returns a new structure that adds </p>
<p class=noindent>⟨prefix⟩
to each of the names exported by the </p>
<p class=noindent>⟨structure⟩ argument.
For example, if structure <tt>s</tt> exports <tt>a</tt> and <tt>b</tt>,
then
</p>
<pre class=verbatim>(subset s (a))
</pre><p>
exports only <tt>a</tt> and
</p>
<pre class=verbatim>(with-prefix s p/)
</pre><p>
exports <tt>a</tt> as <tt>p/a</tt> and <tt>b</tt> as <tt>p/b</tt>.</p>
<p>
Both <tt>subset</tt> and <tt>with-prefix</tt> are simple macros that
expand into uses of <tt>modify</tt>, a more general renaming form.
In a <tt>modify</tt> structure specification the </p>
<p class=noindent>⟨command⟩s are applied to
the names exported
by </p>
<p class=noindent>⟨structure⟩ to produce a new set of names for the </p>
<p class=noindent>⟨structure⟩'s
bindings.
<tt>Expose</tt> makes only the listed names visible.
<tt>Hide</tt> makes all but the listed names visible.
<tt>Rename</tt> makes each </p>
<p class=noindent>⟨name⟩<sub>0</sub> visible as </p>
<p class=noindent>⟨name⟩<sub>1</sub>
name and not visible as </p>
<p class=noindent>⟨name⟩<sub>0</sub> , while
<tt>alias</tt> makes each </p>
<p class=noindent>⟨name⟩<sub>0</sub> visible as both </p>
<p class=noindent>⟨name⟩<sub>0</sub>
and </p>
<p class=noindent>⟨name⟩<sub>1</sub>.
<tt>Prefix</tt> adds </p>
<p class=noindent>⟨name⟩ to the beginning of each exported name.
The modifiers are applied from right to left. Thus
</p>
<pre class=verbatim>(modify scheme (prefix foo/) (rename (car bus))))
</pre><p>
makes <tt>car</tt> available as <tt>foo/bus</tt>.</p>
<p>
</p>
<p>
The package's body is specified by <tt>begin</tt> and/or <tt>files</tt>
clauses. <tt>begin</tt> and <tt>files</tt> have the same semantics, except
that for <tt>begin</tt> the text is given directly in the package
definition, while for <tt>files</tt> the text is stored somewhere in the
file system. The body consists of a Scheme program, that is, a
sequence of definitions and expressions to be evaluated in order. In
practice, we always use <tt>files</tt> in preference to <tt>begin</tt>; <tt>begin</tt> exists mainly for expository purposes.</p>
<p>
A name's imported binding may be lexically overridden or <em>shadowed</em>
by defining the name using a defining form such as <tt>define</tt>
or <tt>define-syntax</tt>. This will create a new binding without having
any effect on the binding in the opened package. For example, one can
do <tt>(define car 'chevy)</tt> without affecting the binding of the name
<tt>car</tt> in the <tt>scheme</tt> package.</p>
<p>
Assignments (using <tt>set!</tt>) to imported and undefined variables
are not allowed. In order to <tt>set!</tt> a top-level variable, the
package body must contain a <tt>define</tt> form defining that variable.
Applied to bindings from the <tt>scheme</tt> structure, this restriction
is compatible with the requirements of the Revised<sup>5</sup> Scheme report.</p>
<p>
It is an error for two of a package's opened structures to export two
different bindings for the same name. However, the current
implementation does not check for this situation; a name's binding is
always taken from the structure that is listed first within the <tt>open</tt> clause. This may be fixed in the future.</p>
<p>
File names in a <tt>files</tt> clause can be symbols, strings, or lists
(Maclisp-style “namelists”). A “<tt>.scm</tt>” file type suffix is
assumed. Symbols are converted to file names by converting to upper
or lower case as appropriate for the host operating system. A
namelist is an operating-system-independent way to specify a file
obtained from a subdirectory. For example, the namelist <tt>(rts
record)</tt> specifies the file <tt>record.scm</tt> in the <tt>rts</tt>
subdirectory.</p>
<p>
If the <tt>define-structure</tt> form was itself obtained from a file,
then file names in <tt>files</tt> clauses are interpreted relative to the
directory in which the file containing the <tt>define-structure</tt> form
was found. You can't at present put an absolute path name in the <tt>files</tt> list.</p>
<p>
</p>
<a name="node_sec_4.3"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.3">4.3 Interfaces</a></h2>
<p><a name="node_idx_10"></a><tt>define-interface</tt></p>
<p>
An interface can be thought of as the type of a structure. In its
basic form it is just a list of variable names, written <tt>(export
<i>name</i> <tt>...</tt>)</tt>. However, in place of
a name one may write <tt>(<i>name</i> <i>type</i>)</tt>, indicating the type
of <i>name</i>'s binding.
The type field is optional, except
that exported macros must be indicated with type <tt>:syntax</tt>.</p>
<p>
Interfaces may be either anonymous, as in the example in the
introduction, or they may be given names by a <tt>define-interface</tt>
form, for example
</p>
<pre class=verbatim>(define-interface foo-interface (export a c cons))
(define-structure foo foo-interface <tt>...</tt>)
</pre><p>
In principle, interfaces needn't ever be named. If an interface
had to be given at the point of a structure's use as well as at the
point of its definition, it would be important to name interfaces in
order to avoid having to write them out twice, with risk of mismatch
should the interface ever change. But they don't.</p>
<p>
Still, there are several reasons to use <tt>define-interface</tt>:
</p>
<ol>
<li><p>It is important to separate the interface definition from the
package definitions when there are multiple distinct structures that
have the same interface — that is, multiple implementations of the
same abstraction.</p>
<p>
</p>
<li><p>It is conceptually cleaner, and often useful for documentation
purposes, to separate a module's specification (interface) from its
implementation (package).</p>
<p>
</p>
<li><p>Our experience is that configurations that are separated into
interface definitions and package definitions are easier to read; the
long lists of exported bindings just get in the way most of the time.
</p>
</ol><p></p>
<p>
The <a name="node_idx_12"></a><tt>compound-interface</tt> operator forms an interface that is the
union of two or more component interfaces. For example,
</p>
<pre class=verbatim>(define-interface bar-interface
(compound-interface foo-interface (export mumble)))
</pre><p>
defines <tt>bar-interface</tt> to be <tt>foo-interface</tt> with the name
<tt>mumble</tt> added.</p>
<p>
</p>
<a name="node_sec_4.4"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.4">4.4 Macros</a></h2>
<p>Hygienic macros, as described in
[<a href="manual-Z-H-11.html#node_bib_2">2</a>, <a href="manual-Z-H-11.html#node_bib_3">3</a>], are implemented.
Structures may export macros; auxiliary names introduced into the
expansion are resolved in the environment of the macro's definition.</p>
<p>
For example, the <tt>scheme</tt> structure's <tt>delay</tt> macro
is defined by the rewrite rule
</p>
<pre class=verbatim>(delay <i>exp</i>) %
%
<tt>—></tt>%
(make-promise (lambda () <i>exp</i>)).
</pre><p>
The variable <tt>make-promise</tt> is defined in the <tt>scheme</tt>
structure's underlying package, but is not exported. A use of the
<tt>delay</tt> macro, however, always accesses the correct definition
of <tt>make-promise</tt>. Similarly, the <tt>case</tt> macro expands into
uses of <tt>cond</tt>, <tt>eqv?</tt>, and so on. These names are exported
by <tt>scheme</tt>, but their correct bindings will be found even if they
are shadowed by definitions in the client package.</p>
<p>
</p>
<a name="node_sec_4.5"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.5">4.5 Higher-order modules</a></h2>
<p>There are <tt>define-module</tt> and <tt>define</tt> forms for
defining modules that are intended to be instantiated multiple times.
But these are pretty kludgey — for example, compiled code isn't
shared between the instantiations — so we won't describe them yet.
If you must know, figure it out from the following grammar.
</p>
<div align=center><table><tr><td>
<table border=0><tr><td valign=top ><span style="margin-left: 2em">‌</span>
<p class=noindent>⟨definition⟩ <tt>–></tt> </p>
</td><td valign=top ><tt>(define-module (
<p class=noindent>⟨name⟩ (</p>
<p class=noindent>⟨name⟩ </p>
<p class=noindent>⟨interface⟩)<sup>*</sup>) </tt></td></tr>
<tr><td valign=top ></p>
</td><td valign=top ><span style="margin-left: 2em">‌</span>
<p class=noindent>⟨definition⟩<sup>*</sup> </td></tr>
<tr><td valign=top ></p>
</td><td valign=top ><span style="margin-left: 2em">‌</span>
<p class=noindent>⟨name⟩<tt>) </tt></td></tr>
<tr><td valign=top ><tt>–></tt> </p>
</td><td valign=top ><tt>(define
<p class=noindent>⟨name⟩ (</p>
<p class=noindent>⟨name⟩ </p>
<p class=noindent>⟨name⟩<sup>*</sup>))
</p>
</tt></td></tr></table>
</td></tr></table></div>
<p>
</p>
<a name="node_sec_4.6"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.6">4.6 Compiling and linking</a></h2>
<p>Scheme 48 has a static linker that produces stand-alone heap images
from module descriptions. The programmer specifies a particular procedure in a
particular structure to be the image's startup procedure (entry
point), and the linker traces dependency links as given by <tt>open</tt>
and <tt>access</tt> clauses to determine the composition of the heap
image.</p>
<p>
There is not currently any provision for separate compilation; the
only input to the static linker is source code. However, it will not
be difficult to implement separate compilation. The unit of
compilation is one module (not one file). Any opened or accessed
structures from which macros are obtained must be processed to the
extent of extracting its macro definitions. The compiler knows from
the interface of an opened or accessed structure which of its exports
are macros. Except for macros, a module may be compiled without any
knowledge of the implementation of its opened and accessed structures.
However, inter-module optimization may be available as an option.</p>
<p>
The main difficulty with separate compilation is resolution of
auxiliary bindings introduced into macro expansions. The module
compiler must transmit to the loader or linker the search path by
which such bindings are to be resolved. In the case of the <tt>delay</tt>
macro's auxiliary <tt>make-promise</tt> (see example above), the loader
or linker needs to know that the desired binding of <tt>make-promise</tt>
is the one apparent in <tt>delay</tt>'s defining package, not in the
package being loaded or linked.</p>
<p>
</p>
<p>
</p>
<a name="node_sec_4.7"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.7">4.7 Semantics of configuration mutation</a></h2>
<p>During program development it is often desirable to make changes to
packages and interfaces. In static languages it may be necessary to
recompile and re-link a program in order for such changes to be
reflected in a running system. Even in interactive Common Lisp
implementations, a change to a package's exports often requires
reloading clients that have already mentioned names whose bindings
change. Once <tt>read</tt> resolves a use of a name to a symbol, that
resolution is fixed, so a change in the way that a name resolves to a
symbol can only be reflected by re-<tt>read</tt>ing all such references.</p>
<p>
The Scheme 48 development environment supports rapid turnaround in
modular program development by allowing mutations to a program's
configuration, and giving a clear semantics to such mutations. The
rule is that variable bindings in a running program are always
resolved according to current structure and interface bindings, even
when these bindings change as a result of edits to the configuration.
For example, consider the following:
</p>
<pre class=verbatim>(define-interface foo-interface (export a c))
(define-structure foo foo-interface
(open scheme)
(begin (define a 1)
(define (b x) (+ a x))
(define (c y) (* (b a) y))))
(define-structure bar (export d)
(open scheme foo)
(begin (define (d w) (+ (b w) a))))
</pre><p>
This program has a bug. The variable <tt>b</tt>, which is free in the
definition of <tt>d</tt>, has no binding in <tt>bar</tt>'s package. Suppose
that <tt>b</tt> was supposed to be exported by <tt>foo</tt>, but was omitted
from <tt>foo-interface</tt> by mistake. It is not necessary to
re-process <tt>bar</tt> or any of <tt>foo</tt>'s other clients at this point.
One need only change <tt>foo-interface</tt> and inform the development
system of that change (using, say, an appropriate Emacs command),
and <tt>foo</tt>'s binding of <tt>b</tt> will be found when procedure <tt>d</tt> is called.</p>
<p>
Similarly, it is also possible to replace a structure; clients of the
old structure will be modified so that they see bindings from the new
one. Shadowing is also supported in the same way. Suppose that a
client package <em>C</em> opens a structure <tt>foo</tt> that exports a name
<tt>x</tt>, and <tt>foo</tt>'s implementation obtains the binding of <tt>x</tt>
as an import from some other structure <tt>bar</tt>. Then <em>C</em> will see
the binding from <tt>bar</tt>. If one then alters <tt>foo</tt> so that it
shadows <tt>bar</tt>'s binding of <tt>x</tt> with a definition of its own,
then procedures in <em>C</em> that reference <tt>x</tt> will automatically see
<tt>foo</tt>'s definition instead of the one from <tt>bar</tt> that they saw
earlier.</p>
<p>
This semantics might appear to require a large amount of computation
on every variable reference: The specified behavior requires scanning
the package's list of opened structures, examining their interfaces,
on every variable reference, not just at compile time. However, the
development environment uses caching with cache invalidation to make
variable references fast.</p>
<p>
</p>
<a name="node_sec_4.8"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.8">4.8 Command processor support</a></h2>
<p></p>
<p>
While it is possible to use the Scheme 48 static linker for program
development, it is far more convenient to use the development
environment, which supports rapid turnaround for program changes. The
programmer interacts with the development environment through a <em>command processor</em>. The command processor is like the usual Lisp
read-eval-print loop in that it accepts Scheme forms to evaluate.
However, all meta-level operations, such as exiting the Scheme system
or requests for trace output, are handled by <em>commands,</em> which are
lexically distinguished from Scheme forms. This arrangement is
borrowed from the Symbolics Lisp Machine system, and is reminiscent of
non-Lisp debuggers. Commands are a little easier to type than Scheme
forms (no parentheses, so you don't have to shift), but more
importantly, making them distinct from Scheme forms ensures that
programs' namespaces aren't cluttered with inappropriate bindings.
Equivalently, the command set is available for use regardless of what
bindings happen to be visible in the current program. This is
especially important in conjunction with the module system, which puts
strict controls on visibility of bindings.</p>
<p>
The Scheme 48 command processor supports the module system with a
variety of special commands. For commands that require structure
names, these names are resolved in a designated configuration package
that is distinct from the current package for evaluating Scheme forms
given to the command processor. The command processor interprets
Scheme forms in a particular current package, and there are commands
that move the command processor between different packages.</p>
<p>
Commands are introduced by a comma (<tt>,</tt>) and end at the end of
line. The command processor's prompt consists of the name of the
current package followed by a greater-than (<tt>></tt>).</p>
<p>
</p>
<dl><dt></dt><dd>
</dd><dt></dt><dd><tt>,open <i>structure</i><sup>*</sup></tt> <br>
The <tt>,open</tt> command opens new structures in the current
package, as if the package's definition's <tt>open</tt> clause
had listed <i>structure</i>.
As with <tt>open</tt> clauses the visible names can be modified,
as in
<pre class=verbatim>,open (subset foo (bar baz))
</pre><p>
which only makes the <tt>bar</tt> and <tt>baz</tt> bindings from
structure <tt>foo</tt> visible.</p>
<p>
</p>
</dd><dt></dt><dd><tt>,config</tt> <br>
The <tt>,config</tt> command sets the command processor's current
package to be the current configuration package. Forms entered at
this point are interpreted as being configuration language forms,
not Scheme forms.<p>
</p>
</dd><dt></dt><dd><tt>,config <i>command</i></tt> <br>
This form of the <tt>,config</tt> command executes another command in
the current configuration package. For example,
<pre class=verbatim>,config ,load foo.scm
</pre><p>
interprets configuration language forms from the file <tt>foo.scm</tt> in the current configuration package.</p>
<p>
</p>
</dd><dt></dt><dd><tt>,config-package-is <i>struct-name</i></tt> <br>
The <tt>,config-package-is</tt> command designates a new configuration
package for use by the <tt>,config</tt> command and resolution of
<i>struct-name</i>s for other commands such as <tt>,in</tt> and
<tt>,open</tt>. See
section <a href="#node_sec_4.9">4.9</a>
for information on making new configuration packages.<p>
</p>
</dd><dt></dt><dd><tt>,in <i>struct-name</i></tt> <br>
The <tt>,in</tt> command moves the command processor to a specified
structure's underlying package. For example:
<pre class=verbatim>user> ,config
config> (define-structure foo (export a)
(open scheme))
config> ,in foo
foo> (define a 13)
foo> a
13
</pre><p>
In this example the command processor starts in a package called
<tt>user</tt>, but the <tt>,config</tt> command moves it into the
configuration package, which has the name <tt>config</tt>. The <tt>define-structure</tt> form binds, in <tt>config</tt>, the name <tt>foo</tt> to
a structure that exports <tt>a</tt>. Finally, the command <tt>,in
foo</tt> moves the command processor into structure <tt>foo</tt>'s
underlying package.</p>
<p>
A package's body isn't executed (evaluated) until the package is
<em>loaded</em>, which is accomplished by the <tt>,load-package</tt>
command.</p>
<p>
</p>
</dd><dt></dt><dd><tt>,in <i>struct-name</i> <i>command</i></tt> <br>
This form of the <tt>,in</tt> command executes a single command in the
specified package without moving the command processor into that
package. Example:
<pre class=verbatim>,in mumble (cons 1 2)
,in mumble ,trace foo
</pre><p></p>
<p>
</p>
</dd><dt></dt><dd><tt>,user [<i>command</i>]</tt> <br>
This is similar to the <tt>,config</tt> and <tt>,in</tt> commands. It
moves to or executes a command in the user package (which is the
default package when the Scheme 48 command processor starts).<p>
</p>
</dd><dt></dt><dd><tt>,user-package-is <i>name</i></tt> <br>
The <tt>,user-package-is</tt> command designates a new user
package for use by the <tt>,user</tt> command.<p>
</p>
</dd><dt></dt><dd><tt>,load-package <i>struct-name</i></tt> <br>
The <tt>,load-package</tt> command ensures that the specified structure's
underlying package's program has been loaded. This
consists of (1) recursively ensuring that the packages of any
opened or accessed structures are loaded, followed by (2)
executing the package's body as specified by its definition's <tt>begin</tt> and <tt>files</tt> forms.
<p>
</p>
</dd><dt></dt><dd><tt>,reload-package <i>struct-name</i></tt> <br>
This command re-executes the structure's package's program. It
is most useful if the program comes from a file or files, when
it will update the package's bindings after mutations to its
source file.<p>
</p>
</dd><dt></dt><dd><tt>,load <i>filespec</i> <tt>...</tt></tt> <br>
The <tt>,load</tt> command executes forms from the specified file or
files in the current package. <tt>,load <i>filespec</i></tt> is similar
to <tt>(load "<i>filespec</i>")</tt>
except that the name <tt>load</tt> needn't be bound in the current
package to Scheme's <tt>load</tt> procedure.<p>
</p>
</dd><dt></dt><dd><tt>,for-syntax [<i>command</i>]</tt> <br>
This is similar to the <tt>,config</tt> and <tt>,in</tt> commands. It
moves to or executes a command in the current package's “package
for syntax,” which is the package in which the forms <em>f</em> in
<tt>(define-syntax <i>name</i> <i>f</i>)</tt> are evaluated.<p>
</p>
</dd><dt></dt><dd><tt>,new-package [<i>struct-name</i> <tt>...</tt>]</tt> <br>
The <tt>,new-package</tt> command creates a new package and moves the
command processor to it. With no arguments, only the standard
Scheme bindings are visible in the new package. Otherwise, the
structures specified as command arguments (and not the
<tt>scheme</tt> structure) are opened in the new package.<p>
</p>
</dd><dt></dt><dd><tt>,structure <i>name</i> <i>interface</i></tt> <br>
The <tt>,structure</tt> command defines <i>name</i> in the
configuration package to be a structure with interface
<i>interface</i> based on the current package.<p>
</p>
</dd></dl><p></p>
<p>
</p>
<a name="node_sec_4.9"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.9">4.9 Configuration packages</a></h2>
<p></p>
<p>
It is possible to set up multiple configuration packages. The default
configuration package opens the following structures:
</p>
<ul>
<li><p><tt>module-system</tt>, which exports <tt>define-structure</tt> and the
other configuration language keywords, as well as standard types
and type constructors (<tt>:syntax</tt>, <tt>:value</tt>, <tt>proc</tt>, etc.).
</p>
<li><p><tt>built-in-structures</tt>, which exports structures that are
built into the initial Scheme 48 image; these include
<tt>scheme</tt>, <tt>threads</tt>, <tt>tables</tt>, and <tt>records</tt>.
</p>
<li><p><tt>more-structures</tt>, which exports additional structures that
are available in the development environment.
A complete listing
can be found in the definition of <tt>more-structures-interface</tt>
at the end of the file <tt>scheme/packages.scm</tt>.
</p>
</ul><p>
Note that it does not open <tt>scheme</tt>.</p>
<p>
You can define additional configuration packages by making a package
that opens <tt>module-system</tt> and, optionally,
<tt>built-in-structures</tt>,
<tt>more-structures</tt>, or other structures that
export structures and interfaces.</p>
<p>
For example:
</p>
<pre class=verbatim>> ,config (define-structure foo (export)
(open module-system
built-in-structures
more-structures))
> ,in foo
foo> (define-structure x (export a b)
(open scheme)
(files x))
foo>
</pre><p></p>
<p>
Unfortunately, the above example does not work.
The problem is that every environment in which
<tt>define-structure</tt> is used must also have a way to
create “syntactic towers”.
A new syntactic tower is required whenever a new environment is created for
compiling the source code in the package associated with a new structure.
The environment's tower is used at compile time for
evaluating the <i>macro-source</i> in
</p>
<pre class=verbatim>(define-syntax <i>name</i> <i>macro-source</i>)
(let-syntax ((<i>name</i> <i>macro-source</i>) <tt>...</tt>) <i>body</i>)
</pre><p>
and so forth.
It is a “tower” because that environment, in turn, has to say what environment
to use if <tt>macro-source</tt> itself contains a use of <tt>let-syntax</tt>.</p>
<p>
The simplest way to provide a tower maker is to pass on the one used by
an existing configuration package.
The special form <tt>export-syntactic-tower-maker</tt> creates an interface
that exports a configuration package's tower.
The following example uses <tt>export-syntactic-tower-maker</tt> and
the <tt>,structure</tt> command to obtain a tower maker and create a new
configuration environment.</p>
<p>
</p>
<pre class=verbatim>> ,config ,structure t (export-syntactic-tower-maker)
> ,config (define-structure foo (export)
(open module-system
t
built-in-structures
more-structures))
</pre><p></p>
<p>
Before Scheme 48 1.9, <tt>export-syntactic-tower-maker</tt> was named
<tt>export-reflective-tower-maker</tt>; this name is still supported for
backwards compatibility.</p>
<p>
</p>
<p>
</p>
<a name="node_sec_4.10"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_4.10">4.10 Discussion</a></h2>
<p>This module system was not designed as the be-all and end-all of
Scheme module systems; it was only intended to help us
organize the Scheme 48 system. Not only does the module system
help avoid name clashes by keeping different subsystems in different
namespaces, it has also helped us to tighten up and generalize
Scheme 48's internal interfaces. Scheme 48 is unusual among Lisp
implementations in admitting many different possible modes of
operation. Examples of such multiple modes include the following:
</p>
<ul>
<li><p>Linking can be either static or dynamic.</p>
<p>
</p>
<li><p>The development environment (compiler, debugger, and command
processor) can run either in the same address space as the program
being developed or in a different address space. The environment and
user program may even run on different processors under different
operating systems[<a href="manual-Z-H-11.html#node_bib_8">8</a>].</p>
<p>
</p>
<li><p>The virtual machine can be supported by either
of two implementations of its implementation language, Prescheme.
</p>
</ul><p>
The module system has been helpful in organizing these multiple modes.
By forcing us to write down interfaces and module dependencies, the
module system helps us to keep the system clean, or at least to keep
us honest about how clean or not it is.</p>
<p>
The need to make structures and interfaces second-class instead of
first-class results from the requirements of static program analysis:
it must be possible for the compiler and linker to expand macros and
resolve variable bindings before the program is executed. Structures
could be made first-class (as in FX[<a href="manual-Z-H-11.html#node_bib_10">10</a>]) if a
type system were added to Scheme and the definitions of exported
macros were defined in interfaces instead of in module bodies, but
even in that case types and interfaces would remain second-class.</p>
<p>
The prohibition on assignment to imported bindings makes substitution
a valid optimization when a module is compiled as a block. The block
compiler first scans the entire module body, noting which variables
are assigned. Those that aren't assigned (only <tt>define</tt>d) may be
assumed never assigned, even if they are exported. The optimizer can
then perform a very simple-minded analysis to determine automatically
that some procedures can and should have their calls compiled in line.</p>
<p>
The programming style encouraged by the module system is consistent
with the unextended Scheme language. Because module system features
do not generally show up within module bodies, an individual module
may be understood by someone who is not familiar with the module
system. This is a great aid to code presentation and portability. If
a few simple conditions are met (no name conflicts between packages,
and use of <tt>files</tt> in preference to
<tt>begin</tt>), then a multi-module program can be loaded into a Scheme
implementation that does not support the module system. The Scheme 48
static linker satisfies these conditions, and can therefore run in
other Scheme implementations. Scheme 48's bootstrap process, which is
based on the static linker, is therefore nonincestuous. This
contrasts with most other integrated programming environments, such as
Smalltalk-80, where the system can only be built using an existing
version of the system itself.</p>
<p>
Like ML modules, but unlike Scheme Xerox modules, this module system
is compositional. That is, structures are constructed by single
syntactic units that compose existing structures with a body of code.
In Scheme Xerox, the set of modules that can contribute to an
interface is open-ended — any module can contribute bindings to any
interface whose name is in scope. The module system implementation is
a cross-bar that channels definitions from modules to interfaces. The
module system described here has simpler semantics and makes
dependencies easier to trace. It also allows for higher-order
modules, which Scheme Xerox considers unimportant.</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<p>
</p>
<div class=smallskip></div>
<p style="margin-top: 0pt; margin-bottom: 0pt">
<div align=right class=navigation>[Go to <span><a href="manual.html">first</a>, <a href="manual-Z-H-4.html">previous</a></span><span>, <a href="manual-Z-H-6.html">next</a></span> page<span>; </span><span><a href="manual-Z-H-1.html#node_toc_start">contents</a></span><span><span>; </span><a href="manual-Z-H-11.html#node_index_start">index</a></span>]</div>
</p>
<p></p>
</div>
</body>
</html>
|