This file is indexed.

/usr/share/doc/scheme48/html/manual-Z-H-6.html is in scheme48-doc 1.9-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!--

Generated from manual.tex by tex2page, v 20100828
(running on MzScheme 4.2.4, :unix), 
(c) Dorai Sitaram, 
http://evalwhen.com/tex2page/index.html

-->
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>
The Incomplete Scheme 48 Reference Manual for release 1.9
</title>
<link rel="stylesheet" type="text/css" href="manual-Z-S.css" title=default>
<meta name=robots content="index,follow">
</head>
<body>
<div id=slidecontent>
<div align=right class=navigation>[Go to <span><a href="manual.html">first</a>, <a href="manual-Z-H-5.html">previous</a></span><span>, <a href="manual-Z-H-7.html">next</a></span> page<span>; &nbsp;&nbsp;</span><span><a href="manual-Z-H-1.html#node_toc_start">contents</a></span><span><span>; &nbsp;&nbsp;</span><a href="manual-Z-H-11.html#node_index_start">index</a></span>]</div>
<p></p>
<a name="node_chap_5"></a>
<h1 class=chapter>
<div class=chapterheading><a href="manual-Z-H-1.html#node_toc_node_chap_5">Chapter 5</a></div><br>
<a href="manual-Z-H-1.html#node_toc_node_chap_5">Libraries</a></h1>
<p>Use the
<tt>,open</tt> command (section&nbsp;<a href="manual-Z-H-4.html#node_sec_3.4">3.4</a>)
or
the module language (chapter&nbsp;<a href="manual-Z-H-3.html#node_sec_2.6">2.6</a>)
to open the structures described below.</p>
<p>
</p>
<a name="node_sec_5.1"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.1">5.1&nbsp;&nbsp;General utilities</a></h2>
<p></p>
<p>
</p>
<p>
These are in the <tt>big-util</tt> structure.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(atom?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_14"></a></p>
</ul><p>
<tt>(atom? <i>x</i>)</tt> is the same as <tt>(not (pair? <i>x</i>))</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(null-list?<i> list</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_16"></a></p>
</ul><p>
Returns true for the empty list, false for a pair, and signals an
error otherwise.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(neq?<i> value value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_18"></a></p>
</ul><p>
<tt>(neq? <i>x</i> <i>y</i>)</tt> is the same as <tt>(not (eq? <i>x</i>
<i>y</i>))</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(n=<i> number number</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_20"></a></p>
</ul><p>
<tt>(n= <i>x</i> <i>y</i>)</tt> is the same as <tt>(not (= <i>x</i>
<i>y</i>))</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(identity<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_22"></a></p>
<li><p></p>

<p class=noindent><tt>(no-op<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_24"></a></p>
</ul><p>
These both just return their argument.  <tt>No-op</tt> is guaranteed not to
be compiled in-line, <tt>identity</tt> may be.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(memq?<i> value list</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_26"></a></p>
</ul><p>
Returns true if <i>value</i> is in <i>list</i>, false otherwise.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(any?<i> predicate list</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_28"></a></p>
</ul><p>
Returns true if <i>predicate</i> is true for any element of <i>list</i>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(every?<i> predicate list</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_30"></a></p>
</ul><p>
Returns true if <i>predicate</i> is true for every element of <i>list</i>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(any<i> predicate list</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_32"></a></p>
<li><p></p>

<p class=noindent><tt>(first<i> predicate list</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_34"></a></p>
</ul><p>
<tt>Any</tt> returns some element of <i>list</i> for which <i>predicate</i> is true, or
false if there are none.  <tt>First</tt> does the same except that it returns
the first element for which <i>predicate</i> is true.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(filter<i> predicate list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_36"></a></p>
<li><p></p>

<p class=noindent><tt>(filter!<i> predicate list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_38"></a></p>
</ul><p>
Returns a list containing all of the elements of <i>list</i> for which
<i>predicate</i> is true.  The order of the elements is preserved.
<tt>Filter!</tt> may reuse the storage of <i>list</i>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(filter-map<i> procedure list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_40"></a></p>
</ul><p>
The same as <tt>filter</tt> except the returned list contains the results of
applying <i>procedure</i> instead of elements of <i>list</i>.  <tt>(filter-map <i>p</i>
<i>l</i>)</tt> is the same as <tt>(filter identity (map <i>p</i> <i>l</i>))</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(partition-list<i> predicate list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list list</i></tt><a name="node_idx_42"></a></p>
<li><p></p>

<p class=noindent><tt>(partition-list!<i> predicate list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list list</i></tt><a name="node_idx_44"></a></p>
</ul><p>
The first return value contains those elements <i>list</i> for which
<i>predicate</i> is true, the second contains the remaining elements.
The order of the elements is preserved.  <tt>Partition-list!</tt> may
reuse the storage of the <i>list</i>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(remove-duplicates<i> list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_46"></a></p>
</ul><p>
Returns its argument with all duplicate elements removed.  The first
instance of each element is preserved.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(delq<i> value list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_48"></a></p>
<li><p></p>

<p class=noindent><tt>(delq!<i> value list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_50"></a></p>
<li><p></p>

<p class=noindent><tt>(delete<i> predicate list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_52"></a></p>
</ul><p>
All three of these return <i>list</i> with some elements removed.
<tt>Delq</tt> removes all elements <tt>eq?</tt> to <i>value</i>.  <tt>Delq!</tt>
does the same and may modify the list argument.  <tt>Delete</tt> removes
all elements for which <i>predicate</i> is true.  Both <tt>delq</tt> and
<tt>delete</tt> may reuse some of the storage in the list argument, but
won't modify it.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(reverse!<i> list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_54"></a></p>
</ul><p>
Destructively reverses <i>list</i>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(concatenate-symbol<i> value <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>symbol</i></tt><a name="node_idx_56"></a></p>
</ul><p>
Returns the symbol whose name is produced by concatenating the
<tt>display</tt>ed
representations of <i>value</i>&nbsp;<tt>...</tt>.</p>
<p>
</p>
<pre class=verbatim>(concatenate-symbol 'abc &quot;-&quot; 4) ===&rArr; 'abc-4
</pre><p></p>
<p>
</p>
<a name="node_sec_5.2"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.2">5.2&nbsp;&nbsp;Pretty-printing</a></h2>
<p>These are in the <tt>pp</tt> structure.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(p<i> value</i>)</tt><a name="node_idx_58"></a></p>
<li><p></p>

<p class=noindent><tt>(p<i> value output-port</i>)</tt><a name="node_idx_60"></a></p>
<li><p></p>

<p class=noindent><tt>(pretty-print<i> value output-port position</i>)</tt><a name="node_idx_62"></a></p>
</ul><p>
Pretty-print <i>value</i> The current output port is used if no port is
specified.  <i>Position</i> is the starting offset.  <i>Value</i> will be
pretty-printed to the right of this column.</p>
<p>
</p>
<a name="node_sec_5.3"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.3">5.3&nbsp;&nbsp;Bitwise integer operations</a></h2>
<p>These functions use the two's-complement representation for integers.
There is no limit to the number of bits in an integer.
They are in the structures <tt>bitwise</tt> and <tt>big-scheme</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(bitwise-and<i> integer integer <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_64"></a></p>
<li><p></p>

<p class=noindent><tt>(bitwise-ior<i> integer integer <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_66"></a></p>
<li><p></p>

<p class=noindent><tt>(bitwise-xor<i> integer integer <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_68"></a></p>
<li><p></p>

<p class=noindent><tt>(bitwise-not<i> integer</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_70"></a></p>
</ul><p>
</p>

<p class=noindent>These perform various logical operations on integers on a bit-by-bit
basis. `<tt>ior</tt>' is inclusive OR and `<tt>xor</tt>' is exclusive OR.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(arithmetic-shift<i> integer bit-count</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_72"></a></p>
</ul><p>
</p>

<p class=noindent>Shifts the integer by the given bit count, which must be an integer,
shifting left for positive counts and right for negative ones.
Shifting preserves the integer's sign.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(bit-count<i> integer</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_74"></a></p>
</ul><p>
</p>

<p class=noindent>Counts the number of bits set in the integer.
If the argument is negative a bitwise NOT operation is performed
before counting.</p>
<p>
</p>
<a name="node_sec_5.4"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.4">5.4&nbsp;&nbsp;Byte vectors</a></h2>
<p>These are homogeneous vectors of small integers (0 &le; <em>i</em> &le; 255).
The functions that operate on them are analogous to those for vectors.
They are in the structure <tt>byte-vectors</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(byte-vector?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_76"></a></p>
<li><p></p>

<p class=noindent><tt>(make-byte-vector<i> k fill</i>)&nbsp;&ndash;&gt;&nbsp;<i>byte-vector</i></tt><a name="node_idx_78"></a></p>
<li><p></p>

<p class=noindent><tt>(byte-vector<i> b <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>byte-vector</i></tt><a name="node_idx_80"></a></p>
<li><p></p>

<p class=noindent><tt>(byte-vector-length<i> byte-vector</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_82"></a></p>
<li><p></p>

<p class=noindent><tt>(byte-vector-ref<i> byte-vector k</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_84"></a></p>
<li><p></p>

<p class=noindent><tt>(byte-vector-set!<i> byte-vector k b</i>)</tt><a name="node_idx_86"></a></p>
<li><p></p>

<p class=noindent><tt>(byte-vector=?<i> byte-vector byte-vector</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_88"></a></p>
</ul><p></p>
<p>
</p>
<a name="node_sec_5.5"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.5">5.5&nbsp;&nbsp;Sparse vectors</a></h2>
<p>These are vectors that grow as large as they need to.  That is, they
can be indexed by arbitrarily large nonnegative integers.  The
implementation allows for arbitrarily large gaps by arranging the
entries in a tree.  They are in the structure <tt>sparse-vectors</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-sparse-vector<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>sparse-vector</i></tt><a name="node_idx_90"></a></p>
<li><p></p>

<p class=noindent><tt>(sparse-vector-ref<i> sparse-vector k</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_92"></a></p>
<li><p></p>

<p class=noindent><tt>(sparse-vector-set!<i> sparse-vector k value</i>)</tt><a name="node_idx_94"></a></p>
<li><p></p>

<p class=noindent><tt>(sparse-vector-&gt;list<i> sparse-vector</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_96"></a></p>
</ul><p>
<tt>Make-sparse-vector</tt>, <tt>sparse-vector-ref</tt>, and
<tt>sparse-vector-set!</tt> are analogous to <tt>make-vector</tt>,
<tt>vector-ref</tt>, and <tt>vector-set!</tt>, except that the indices
passed to <tt>sparse-vector-ref</tt> and <tt>sparse-vector-set!</tt> can
be arbitrarily large.  For indices whose elements have not been set in
a sparse vector, <tt>sparse-vector-ref</tt> returns <tt>#f</tt>.</p>
<p>
<tt>Sparse-vector-&gt;list</tt> is for debugging: It returns a list of the
consecutive elements in a sparse vector from 0 to the highest element
that has been set.  Note that the list will also include all the
<tt>#f</tt> elements for the unset elements.</p>
<p>
</p>
<a name="node_sec_5.6"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.6">5.6&nbsp;&nbsp;Cells</a></h2>
<p></p>
<p>
These hold a single value and are useful when a simple indirection is
required.
The system uses these to hold the values of lexical variables that
may be <tt>set!</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(cell?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_98"></a></p>
<li><p></p>

<p class=noindent><tt>(make-cell<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>cell</i></tt><a name="node_idx_100"></a></p>
<li><p></p>

<p class=noindent><tt>(cell-ref<i> cell</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_102"></a></p>
<li><p></p>

<p class=noindent><tt>(cell-set!<i> cell value</i>)</tt><a name="node_idx_104"></a></p>
</ul><p></p>
<p>
</p>
<a name="node_sec_5.7"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.7">5.7&nbsp;&nbsp;Queues</a></h2>
<p>These are ordinary first-in, first-out queues.
The procedures are in structure <tt>queues</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-queue<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>queue</i></tt><a name="node_idx_106"></a></p>
<li><p></p>

<p class=noindent><tt>(queue?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_108"></a></p>
<li><p></p>

<p class=noindent><tt>(queue-empty?<i> queue</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_110"></a></p>
<li><p></p>

<p class=noindent><tt>(list-&gt;queue<i> values</i>)&nbsp;&ndash;&gt;&nbsp;<i>queue</i></tt><a name="node_idx_112"></a></p>
<li><p></p>

<p class=noindent><tt>(enqueue!<i> queue value</i>)</tt><a name="node_idx_114"></a></p>
<li><p></p>

<p class=noindent><tt>(enqueue-many!<i> queue list</i>)</tt><a name="node_idx_116"></a></p>
<li><p></p>

<p class=noindent><tt>(queue-head-or-value<i> queue value</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_118"></a></p>
<li><p></p>

<p class=noindent><tt>(queue-head-or-thunk<i> queue thunk</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_120"></a></p>
<li><p></p>

<p class=noindent><tt>(queue-head<i> queue</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_122"></a></p>
<li><p></p>

<p class=noindent><tt>(maybe-queue-head<i> queue</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_124"></a></p>
<li><p></p>

<p class=noindent><tt>(dequeue-or-value!<i> queue value</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_126"></a></p>
<li><p></p>

<p class=noindent><tt>(dequeue-or-thunk!<i> queue thunk</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_128"></a></p>
<li><p></p>

<p class=noindent><tt>(dequeue!<i> queue</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_130"></a></p>
<li><p></p>

<p class=noindent><tt>(maybe-dequeue!<i> queue</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_132"></a></p>
<li><p></p>

<p class=noindent><tt>(empty-queue!<i> queue</i>)</tt><a name="node_idx_134"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Make-queue</tt> creates an empty queue, <tt>queue?</tt> is a predicate for
identifying queues, and <tt>queue-empty?</tt> tells you if a queue is empty.
<tt>List-&gt;queue</tt> returns a queue containing <i>values</i>, preserving
their order.
<tt>Enqueue!</tt> adds one value to the queue; <tt>enqueue-many!</tt> adds a
list of values to the queue.
<tt>Queue-head-or-value</tt>, <tt>queue-head-or-thunk</tt>, <tt>queue-head</tt>,
and <tt>maybe-queue-head</tt> return the first value in <i>queue</i> if it is
not empty; if the queue is empty, <tt>queue-head-or-value</tt> returns
<i>value</i>, <tt>queue-head-or-thunk</tt> tail-calls <i>thunk</i>,
<tt>queue-head</tt> raises an error, and <tt>maybe-queue-head</tt> returns
<tt>#f</tt>.
<tt>Dequeue-or-value!</tt>, <tt>dequeue-or-thunk!</tt>, <tt>dequeue!</tt>, and
<tt>maybe-dequeue!</tt> remove a value from the queue if one is available; if
the queue is empty, <tt>dequeue-or-value!</tt> returns <i>value</i>,
<tt>dequeue-or-thunk!</tt> tail-calls <i>thunk</i>, <tt>dequeue!</tt> raises an
error, and <tt>maybe-dequeue!</tt> returns <tt>#f</tt>.
<tt>Empty-queue!</tt> removes all values from <i>queue</i>.</p>
<p>
<tt>(Dequeue-or-value! q value)</tt> is more efficient than, but otherwise
equivalent to:
</p>
<pre class=verbatim>(ensure-atomicity
 (if (queue-empty? q)
     value
     (dequeue! q)))
</pre><p></p>
<p>
Because <tt>queue-head</tt> and <tt>dequeue!</tt> raise exceptions if they are
called on an empty queue, they <em>must not</em> be called with a proposal
already active unless <tt>queue-empty?</tt> has returned <tt>#f</tt> with the
same proposal active.</p>
<p>
The following procedures are not used in the Scheme&nbsp;48 system, and are <em>very</em> slow.  These operations may be removed from the <tt>queues</tt>
structure in a future revision.
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(queue-length<i> queue</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_136"></a></p>
<li><p></p>

<p class=noindent><tt>(queue-&gt;list<i> queue</i>)&nbsp;&ndash;&gt;&nbsp;<i>values</i></tt><a name="node_idx_138"></a></p>
<li><p></p>

<p class=noindent><tt>(delete-from-queue!<i> queue value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_140"></a></p>
<li><p></p>

<p class=noindent><tt>(on-queue?<i> queue value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_142"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Queue-length</tt> returns the number of values in <i>queue</i>.
<tt>Queue-&gt;list</tt> returns the values in <i>queue</i> as a list, in the
order in which the values were added.
<tt>Delete-from-queue!</tt> removes the first instance of <i>value</i> from
<i>queue</i>, using <tt>eqv?</tt> for comparisons.
<tt>Delete-from-queue!</tt> returns <tt>#t</tt> if it removes an element and
<tt>#f</tt> if it does not.
<tt>On-queue?</tt> returns <tt>#t</tt> if <i>value</i> is in the <i>queue</i>
(using <tt>eqv?</tt> for comparisons) and <tt>#f</tt> if it is not.</p>
<p>
</p>
<a name="node_sec_5.8"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.8">5.8&nbsp;&nbsp;Arrays</a></h2>
<p>These provide N-dimensional, zero-based arrays and
are in the structure <tt>arrays</tt>.
The array interface is derived from one invented by Alan Bawden.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-array<i> value dimension<sub>0</sub> <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>array</i></tt><a name="node_idx_144"></a></p>
<li><p></p>

<p class=noindent><tt>(array<i> dimensions element<sub>0</sub> <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>array</i></tt><a name="node_idx_146"></a></p>
<li><p></p>

<p class=noindent><tt>(copy-array<i> array</i>)&nbsp;&ndash;&gt;&nbsp;<i>array</i></tt><a name="node_idx_148"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Make-array</tt> makes a new array with the given dimensions, each of which
must be a non-negative integer.
Every element is initially set to <i>value</i>.
<tt>Array</tt> Returns a new array with the given dimensions and elements.
<i>Dimensions</i> must be a list of positive integers, 
The number of elements should be the equal to the product of the
dimensions.
The elements are stored in row-major order.
</p>
<pre class=verbatim>(make-array 'a 2 3) <code class=verbatim>=&gt; </code>{Array 2 3}

(array '(2 3) 'a 'b 'c 'd 'e 'f)
    <code class=verbatim>=&gt; </code>{Array 2 3}
</pre><p></p>
<p>
<tt>Copy-array</tt> returns a copy of <i>array</i>.
The copy is identical to the <i>array</i> but does not share storage with it.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(array?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_150"></a></p>
</ul><p>
</p>

<p class=noindent>Returns <tt>#t</tt> if <i>value</i> is an array.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(array-ref<i> array index<sub>0</sub> <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_152"></a></p>
<li><p></p>

<p class=noindent><tt>(array-set!<i> array value index<sub>0</sub> <tt>...</tt></i>)</tt><a name="node_idx_154"></a></p>
<li><p></p>

<p class=noindent><tt>(array-&gt;vector<i> array</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_156"></a></p>
<li><p></p>

<p class=noindent><tt>(array-shape<i> array</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_158"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Array-ref</tt> returns the specified array element and <tt>array-set!</tt>
replaces the element with <i>value</i>.
</p>
<pre class=verbatim>(let ((a (array '(2 3) 'a 'b 'c 'd 'e 'f)))
  (let ((x (array-ref a 0 1)))
    (array-set! a 'g 0 1)
    (list x (array-ref a 0 1))))
    <code class=verbatim>=&gt; </code>'(b g)
</pre><p></p>
<p>
<tt>Array-&gt;vector</tt> returns a vector containing the elements of <i>array</i>
in row-major order.
<tt>Array-shape</tt> returns the dimensions of
the array as a list.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-shared-array<i> array linear-map dimension<sub>0</sub> <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>array</i></tt><a name="node_idx_160"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Make-shared-array</tt> makes a new array that shares storage with <i>array</i>
and uses <i>linear-map</i> to map indexes to elements.
<i>Linear-map</i> must accept as many arguments as the number of
<i>dimension</i>s given and must return a list of non-negative integers
that are valid indexes into <i>array</i>.
</p>
<pre class=verbatim>(array-ref (make-shared-array a f i0 i1 ...)
           j0 j1 ...)
</pre><p>
is equivalent to
</p>
<pre class=verbatim>(apply array-ref a (f j0 j1 ...))
</pre><p></p>
<p>
As an example, the following function makes the transpose of a two-dimensional
array:
</p>
<pre class=verbatim>(define (transpose array)
  (let ((shape (array-shape array)))
    (make-shared-array array
                       (lambda (x y)
                         (list y x))
                       (cadr shape)
                       (car shape))))

(array-&gt;vector
  (transpose
    (array '(2 3) 'a 'b 'c 'd 'e 'f)))
      <code class=verbatim>=&gt; </code>'(a d b e c f)
</pre><p></p>
<p>
</p>
<a name="node_sec_5.9"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.9">5.9&nbsp;&nbsp;Records</a></h2>
<p></p>
<p>
New types can be constructed using the <tt>define-record-type</tt> macro
from the <tt>define-record-types</tt> structure
The general syntax is:
</p>
<pre class=verbatim>(define-record-type [<i>tag</i>] <i>type-name</i>
  (<i>constructor-name</i> <i>field-tag</i> <tt>...</tt>)
  <i>predicate-name</i>
  (<i>field-tag</i> <i>accessor-name</i> [<i>modifier-name</i>])
  <tt>...</tt>)
</pre><p>
This makes the following definitions:
</p>
<ul>
<li><p></p>

<p class=noindent><tt><i>type-name</i></tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(type)
</p>
<li><p></p>

<p class=noindent><tt>(<i>constructor-name</i><i> field-init <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>type-name</i></tt>
</p>
<li><p></p>

<p class=noindent><tt>(<i>predicate-name</i><i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt>
</p>
<li><p></p>

<p class=noindent><tt>(<i>accessor-name</i><i> type-name</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt>
</p>
<li><p></p>

<p class=noindent><tt>(<i>modifier-name</i><i> type-name value</i>)</tt>
</p>
</ul><p>
</p>

<p class=noindent><i>Type-name</i> is the record type itself, and can be used to
specify a print method (see below).
<i>Constructor-name</i> is a constructor that accepts values
for the fields whose tags are specified.
<i>Predicate-name</i> is a predicate that returns <tt>#t</tt> for
elements of the type and <tt>#f</tt> for everything else.
The <i>accessor-name</i>s retrieve the values of fields,
and the <i>modifier-name</i>'s update them.
<i>Tag</i> is used in printing instances of the record type and
the <i>field-tag</i>s are used in the inspector and to match
constructor arguments with fields. If <i>tag</i> is not specified,
<i>type-name</i> is used instead.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(define-record-discloser<i> type discloser</i>)</tt><a name="node_idx_162"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Define-record-discloser</tt> determines how
records of type <i>type</i> are printed.
<i>Discloser</i> should be procedure which takes a single
record of type <i>type</i> and returns a list whose car is
a symbol.
The record will be printed as the value returned by <i>discloser</i>
with curly braces used instead of the usual parenthesis.</p>
<p>
For example
</p>
<pre class=verbatim>(define-record-type pare :pare
  (kons x y)
  pare?
  (x kar set-kar!)
  (y kdr))
</pre><p>
defines <tt>kons</tt> to be a constructor, <tt>kar</tt> and <tt>kdr</tt> to be
accessors, <tt>set-kar!</tt> to be a modifier, and <tt>pare?</tt> to be a predicate
for a new type of object.
The type itself is named <tt>:pare</tt>.
<tt>Pare</tt> is a tag used in printing the new objects.</p>
<p>
By default, the new objects print as <tt>#{Pare}</tt>.
The print method can be modified using <tt>define-record-discloser</tt>:
</p>
<pre class=verbatim>(define-record-discloser :pare
  (lambda (p) `(pare ,(kar p) ,(kdr p))))
</pre><p>
will cause the result of <tt>(kons 1 2)</tt> to print as
<tt>#{Pare 1 2}</tt>.</p>
<p>
<tt>Define-record-resumer</tt> (section&nbsp;<a href="manual-Z-H-9.html#node_sec_8.7.6">8.7.6</a>)
can be used to control how records are stored in heap images.</p>
<p>
</p>
<a name="node_sec_5.9.1"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.9.1">5.9.1&nbsp;&nbsp;Low-level access to records</a></h3>
<p>Records are implemented using primitive objects exactly analogous
to vectors.
Every record has a record type (which is another record) in the first slot.
Note that use of these procedures, especially <tt>record-set!</tt>, breaks
the record abstraction described above; caution is advised.</p>
<p>
These procedures are in the structure <tt>records</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-record<i> n value</i>)&nbsp;&ndash;&gt;&nbsp;<i>record</i></tt><a name="node_idx_164"></a></p>
<li><p></p>

<p class=noindent><tt>(record<i> value <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>record-vector</i></tt><a name="node_idx_166"></a></p>
<li><p></p>

<p class=noindent><tt>(record?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_168"></a></p>
<li><p></p>

<p class=noindent><tt>(record-length<i> record</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_170"></a></p>
<li><p></p>

<p class=noindent><tt>(record-type<i> record</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_172"></a></p>
<li><p></p>

<p class=noindent><tt>(record-ref<i> record i</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_174"></a></p>
<li><p></p>

<p class=noindent><tt>(record-set!<i> record i value</i>)</tt><a name="node_idx_176"></a></p>
</ul><p>
</p>

<p class=noindent>These the same as the standard <tt>vector-</tt> procedures except that they
operate on records.
The value returned by <tt>record-length</tt> includes the slot holding the
record's type.
<tt>(record-type <i>x</i>)</tt> is equivalent to <tt>(record-ref <i>x</i> 0)</tt>.</p>
<p>
</p>
<a name="node_sec_5.9.2"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.9.2">5.9.2&nbsp;&nbsp;Record types</a></h3>
<p>Record types are themselves records of a particular type (the first slot
of <tt>:record-type</tt> points to itself).
A record type contains four values: the name of the record type, a list of
the names its fields, and procedures for disclosing and resuming records
of that type.
Procedures for manipulating them are in the structure <tt>record-types</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-record-type<i> name field-names</i>)&nbsp;&ndash;&gt;&nbsp;<i>record-type</i></tt><a name="node_idx_178"></a></p>
<li><p></p>

<p class=noindent><tt>(record-type?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_180"></a></p>
<li><p></p>

<p class=noindent><tt>(record-type-name<i> record-type</i>)&nbsp;&ndash;&gt;&nbsp;<i>symbol</i></tt><a name="node_idx_182"></a></p>
<li><p></p>

<p class=noindent><tt>(record-type-field-names<i> record-type</i>)&nbsp;&ndash;&gt;&nbsp;<i>symbols</i></tt><a name="node_idx_184"></a></p>
</ul><p>
</p>

<p class=noindent></p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(record-constructor<i> record-type field-names</i>)&nbsp;&ndash;&gt;&nbsp;<i>procedure</i></tt><a name="node_idx_186"></a></p>
<li><p></p>

<p class=noindent><tt>(record-predicate<i> record-type</i>)&nbsp;&ndash;&gt;&nbsp;<i>procedure</i></tt><a name="node_idx_188"></a></p>
<li><p></p>

<p class=noindent><tt>(record-accessor<i> record-type field-name</i>)&nbsp;&ndash;&gt;&nbsp;<i>procedure</i></tt><a name="node_idx_190"></a></p>
<li><p></p>

<p class=noindent><tt>(record-modifier<i> record-type field-name</i>)&nbsp;&ndash;&gt;&nbsp;<i>procedure</i></tt><a name="node_idx_192"></a></p>
</ul><p>
</p>

<p class=noindent>These procedures construct the usual record-manipulating procedures.
<tt>Record-constructor</tt> returns a constructor that is passed the initial
values for the fields specified and returns a new record.
<tt>Record-predicate</tt> returns a predicate that return true when passed
a record of type <i>record-type</i> and false otherwise.
<tt>Record-accessor</tt> and <tt>record-modifier</tt> return procedures that
reference and set the given field in records of the appropriate type.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(define-record-discloser<i> record-type discloser</i>)</tt><a name="node_idx_194"></a></p>
<li><p></p>

<p class=noindent><tt>(define-record-resumer<i> record-type resumer</i>)</tt><a name="node_idx_196"></a></p>
</ul><p>
</p>

<p class=noindent></p>

<p class=noindent><tt>Record-types</tt> is the initial exporter of
<tt>define-record-discloser</tt>
(re-exported by <tt>define-record-types</tt> described above)
and
<tt>define-record-resumer</tt>
(re-exported by
<tt>external-calls</tt> (section&nbsp;<a href="manual-Z-H-9.html#node_sec_8.7.6">8.7.6</a>)).</p>
<p>
The procedures described in this section can be used to define new
record-type-defining macros.
</p>
<pre class=verbatim>(define-record-type pare :pare
  (kons x y)
  pare?
  (x kar set-kar!)
  (y kdr))
</pre><p>
is (semantically) equivalent to
</p>
<pre class=verbatim>(define :pare (make-record-type 'pare '(x y)))
(define kons (record-constructor :pare '(x y)))
(define kar (record-accessor :pare 'x))
(define set-kar! (record-modifier :pare 'x))
(define kdr (record-accessor :pare 'y))
</pre><p></p>
<p>
The &ldquo;(semantically)&rdquo; above is because <tt>define-record-type</tt> adds
declarations, which allows the type checker to detect some misuses of records,
and uses more efficient definitions for the constructor, accessors, and
modifiers.
Ignoring the declarations, which will have to wait for another edition of
the manual, what the above example actually expands into is:
</p>
<pre class=verbatim>(define :pare (make-record-type 'pare '(x y)))
(define (kons x y) (record :pare x y))
(define (kar r) (checked-record-ref r :pare 1))
(define (set-kar! r new)
  (checked-record-set! r :pare 1 new))
(define (kdr r) (checked-record-ref r :pare 2))
</pre><p> 
<tt>Checked-record-ref</tt> and <tt>Checked-record-set!</tt> are
low-level procedures that check the type of the
record and access or modify it using a single VM instruction.</p>
<p>
</p>
<a name="node_sec_5.10"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.10">5.10&nbsp;&nbsp;Finite record types</a></h2>
<p></p>
<p>
The structure <tt>finite-types</tt> has
two macros for defining `finite' record types.
These are record types for which there are a fixed number of instances,
all of which are created at the same time as the record type itself.
The syntax for defining an enumerated type is:
</p>
<pre class=verbatim>(define-enumerated-type <i>tag</i> <i>type-name</i>
  <i>predicate-name</i>
  <i>vector-of-instances-name</i>
  <i>name-accessor</i>
  <i>index-accessor</i>
  (<i>instance-name</i> <tt>...</tt>))
</pre><p>
This defines a new record type, bound to <i>type-name</i>, with as many
instances as there are <i>instance-name</i>'s.
<i>Vector-of-instances-name</i> is bound to a vector containing the instances
of the type in the same order as the <i>instance-name</i> list.
<i>Tag</i> is bound to a macro that when given an <i>instance-name</i> expands
into an expression that returns corresponding instance.
The name lookup is done at macro expansion time.
<i>Predicate-name</i> is a predicate for the new type.
<i>Name-accessor</i> and <i>index-accessor</i> are accessors for the
name and index (in <i>vector-of-instances</i>) of instances of the type.</p>
<p>
</p>
<pre class=verbatim>(define-enumerated-type color :color
  color?
  colors
  color-name
  color-index
  (black white purple maroon))

(color-name (vector-ref colors 0)) <code class=verbatim>=&gt; </code>black
(color-name (color white))         <code class=verbatim>=&gt; </code>white
(color-index (color purple))       <code class=verbatim>=&gt; </code>2
</pre><p></p>
<p>
Finite types are enumerations that allow the user to add additional
fields in the type.
The syntax for defining a finite type is:
</p>
<pre class=verbatim>(define-finite-type <i>tag</i> <i>type-name</i>
  (<i>field-tag</i> <tt>...</tt>)
  <i>predicate-name</i>
  <i>vector-of-instances-name</i>
  <i>name-accessor</i>
  <i>index-accessor</i>
  (<i>field-tag</i> <i>accessor-name</i> [<i>modifier-name</i>])
  <tt>...</tt>((<i>instance-name</i> <i>field-value</i> <tt>...</tt>)
   <tt>...</tt>))
</pre><p>
The additional fields are specified exactly as with <tt>define-record-type</tt>.
The field arguments to the constructor are listed after the <i>type-name</i>;
these do not include the name and index fields.
The form ends with the names and the initial field values for
the instances of the type.
The instances are constructed by applying the (unnamed) constructor to
these initial field values.
The name must be first and 
the remaining values must match the <i>field-tag</i>s in the constructor's
argument list.</p>
<p>
</p>
<p>
</p>
<pre class=verbatim>(define-finite-type color :color
  (red green blue)
  color?
  colors
  color-name
  color-index
  (red   color-red)
  (green color-green)
  (blue  color-blue)
  ((black    0   0   0)
   (white  255 255 255)
   (purple 160  32 240)
   (maroon 176  48  96)))

(color-name (color black))         <code class=verbatim>=&gt; </code>black
(color-name (vector-ref colors 1)) <code class=verbatim>=&gt; </code>white
(color-index (color purple))       <code class=verbatim>=&gt; </code>2
(color-red (color maroon))         <code class=verbatim>=&gt; </code>176
</pre><p></p>
<p>
</p>
<a name="node_sec_5.11"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.11">5.11&nbsp;&nbsp;Sets over finite types</a></h2>
<p></p>
<p>
The structure <tt>enum-sets</tt> has a macro for defining types for sets
of elements of finite types.  These work naturally with the finite
types defined by the <tt>finite-types</tt> structure, but are not tied
to them.  The syntax for defining such a type is:</p>
<p>
</p>
<pre class=verbatim>(define-enum-set-type <i>id</i> <i>type-name</i> <i>predicate</i> <i>constructor</i>
   <i>element-syntax</i> <i>element-predicate</i> <i>all-elements</i> <i>element-index-ref</i>)
</pre><p>
This defines <i>id</i> to be syntax for constructing sets,
<i>type-name</i> to be a value representing the type,
<i>predicate</i> to be a predicate for those sets, and
<i>constructor</i> a procedure for constructing one from a list.</p>
<p>
<i>Element-syntax</i> must be the name of a macro for constructing set
elements from names (akin to the <i>tag</i> argument to
<tt>define-enumerated-type</tt>).  <i>Element-predicate</i> must be a
predicate for the element type, <i>all-elements</i> a vector of all
values of the element type, and <i>element-index-ref</i> must return
the index of an element within the <i>all-elements</i> vector.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(enum-set-&gt;list<i> enum-set</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_198"></a></p>
<li><p></p>

<p class=noindent><tt>(enum-set-member?<i> enum-set enumerand</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_200"></a></p>
<li><p></p>

<p class=noindent><tt>(enum-set=?<i> enum-set enum-set</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_202"></a></p>
<li><p></p>

<p class=noindent><tt>(enum-set-subset?<i> enum-set enum-set</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_204"></a></p>
<li><p></p>

<p class=noindent><tt>(enum-set-union<i> enum-set enum-set</i>)&nbsp;&ndash;&gt;&nbsp;<i>enum-set</i></tt><a name="node_idx_206"></a></p>
<li><p></p>

<p class=noindent><tt>(enum-set-intersection<i> enum-set enum-set</i>)&nbsp;&ndash;&gt;&nbsp;<i> enum-set</i></tt><a name="node_idx_208"></a></p>
<li><p></p>

<p class=noindent><tt>(enum-set-difference<i> enum-set enum-set</i>)&nbsp;&ndash;&gt;&nbsp;<i> enum-set</i></tt><a name="node_idx_210"></a></p>
<li><p></p>

<p class=noindent><tt>(enum-set-negation<i> enum-set</i>)&nbsp;&ndash;&gt;&nbsp;<i>enum-set</i></tt><a name="node_idx_212"></a></p>
</ul><p>
<tt>Enum-set-&gt;list</tt> converts a set into a list of its elements.
<tt>Enum-set-member?</tt> tests for membership.  <tt>Enum-set=?</tt> tests
two sets of equal type for equality.  (If its arguments are not of the
same type, <tt>enum-set=?</tt> raises an exception.)
<tt>Enum-set-subset?</tt> tests, for two sets of equal type, 
if the first set is a subset of the second one.
<tt>Enum-set-union</tt> computes the union of two sets of equal type,
<tt>enum-set-intersection</tt> computes the intersection, 
<tt>enum-set-difference</tt> computes the intersection, 
and
<tt>enum-set-negation</tt> computes the complement of a set.</p>
<p>
Here is an example.  Given an enumerated type:</p>
<p>
</p>
<pre class=verbatim>(define-enumerated-type color :color
  color?
  colors
  color-name
  color-index
  (red blue green))
</pre><p></p>
<p>
we can define sets of colors:</p>
<p>
</p>
<pre class=verbatim>(define-enum-set-type color-set :color-set
                      color-set?
                      make-color-set
  color color? colors color-index)
</pre><p></p>
<p>
</p>
<pre class=verbatim>&gt; (enum-set-&gt;list (color-set red blue))
(#{Color red} #{Color blue})
&gt; (enum-set-&gt;list (enum-set-negation (color-set red blue)))
(#{Color green})
&gt; (enum-set-member? (color-set red blue) (color blue))
#t
</pre><p></p>
<p>
</p>
<a name="node_sec_5.12"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.12">5.12&nbsp;&nbsp;Hash tables</a></h2>
<p>These are generic hash tables, and are in the structure <tt>tables</tt>.
Strictly speaking they are more maps than tables, as every table has a
value for every possible key (for that type of table).
All but a finite number of those values are <tt>#f</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-table<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>table</i></tt><a name="node_idx_214"></a></p>
<li><p></p>

<p class=noindent><tt>(make-symbol-table<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>symbol-table</i></tt><a name="node_idx_216"></a></p>
<li><p></p>

<p class=noindent><tt>(make-string-table<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>string-table</i></tt><a name="node_idx_218"></a></p>
<li><p></p>

<p class=noindent><tt>(make-integer-table<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>integer-table</i></tt><a name="node_idx_220"></a></p>
<li><p></p>

<p class=noindent><tt>(make-table-maker<i> compare-proc hash-proc</i>)&nbsp;&ndash;&gt;&nbsp;<i>procedure</i></tt><a name="node_idx_222"></a></p>
<li><p></p>

<p class=noindent><tt>(make-table-immutable!<i> table</i>)</tt><a name="node_idx_224"></a></p>
</ul><p>
</p>

<p class=noindent>The first four functions listed make various kinds of tables.
<tt>Make-table</tt> returns a table whose keys may be symbols, integer,
characters, booleans, or the empty list (these are also the values
that may be used in <tt>case</tt> expressions).
As with <tt>case</tt>, comparison is done using <tt>eqv?</tt>.
The comparison procedures used in symbol, string, and integer tables are
<tt>eq?</tt>, <tt>string=?</tt>, and <tt>=</tt>.</p>
<p>
<tt>Make-table-maker</tt> takes two procedures as arguments and returns
a nullary table-making procedure.
<i>Compare-proc</i> should be a two-argument equality predicate.
<i>Hash-proc</i> should be a one argument procedure that takes a key
and returns a non-negative integer hash value.
If <tt>(<i>compare-proc</i> <i>x</i> <i>y</i>)</tt> returns true,
then <tt>(= (<i>hash-proc</i> <i>x</i>) (<i>hash-proc</i> <i>y</i>))</tt>
must also return true.
For example, <tt>make-integer-table</tt> could be defined
as <tt>(make-table-maker = abs)</tt>.</p>
<p>
<tt>Make-table-immutable!</tt> prohibits future modification to its argument.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(table?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_226"></a></p>
<li><p></p>

<p class=noindent><tt>(table-ref<i> table key</i>)&nbsp;&ndash;&gt;&nbsp;<i>value or <tt>#f</tt></i></tt><a name="node_idx_228"></a></p>
<li><p></p>

<p class=noindent><tt>(table-set!<i> table key value</i>)</tt><a name="node_idx_230"></a></p>
<li><p></p>

<p class=noindent><tt>(table-walk<i> procedure table</i>)</tt><a name="node_idx_232"></a></p>
<li><p></p>

<p class=noindent><tt>(table-&gt;entry-list<i> table</i>)&nbsp;&ndash;&gt;&nbsp;<i>list of pairs</i></tt><a name="node_idx_234"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Table?</tt> is the predicate for tables.
<tt>Table-ref</tt> and <tt>table-set!</tt> access and modify the value of <i>key</i>
in <i>table</i>.
<tt>Table-walk</tt> applies <i>procedure</i>, which must accept two arguments,
to every associated key and non-<tt>#f</tt> value in <tt>table</tt>.
<tt>Table-&gt;entry-list</tt> returns a list with the values of
the table.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(default-hash-function<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_236"></a></p>
<li><p></p>

<p class=noindent><tt>(string-hash<i> string</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_238"></a></p>
<li><p></p>

<p class=noindent><tt>(symbol-hash<i> symbol</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_240"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Default-hash-function</tt> is the hash function used in the tables
returned by <tt>make-table</tt>, <tt>string-hash</tt> is the one used
by <tt>make-string-table</tt>, and <tt>symbol-hash</tt> is the one used
by <tt>make-symbol-table</tt>.</p>
<p>
</p>
<a name="node_sec_5.13"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.13">5.13&nbsp;&nbsp;Port extensions</a></h2>
<p>These procedures are in structure <tt>extended-ports</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-string-input-port<i> string</i>)&nbsp;&ndash;&gt;&nbsp;<i>input-port</i></tt><a name="node_idx_242"></a></p>
<li><p></p>

<p class=noindent><tt>(make-string-output-port<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>output-port</i></tt><a name="node_idx_244"></a></p>
<li><p></p>

<p class=noindent><tt>(string-output-port-output<i> string-output-port</i>)&nbsp;&ndash;&gt;&nbsp;<i>string</i></tt><a name="node_idx_246"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Make-string-input-port</tt> returns an input port that
that reads characters from the supplied string.  An end-of-file
object is returned if the user reads past the end of the string.
<tt>Make-string-output-port</tt> returns an output port that saves
the characters written to it.
These are then returned as a string by <tt>string-output-port-output</tt>.</p>
<p>
</p>
<pre class=verbatim>(read (make-string-input-port &quot;(a b)&quot;))
    <code class=verbatim>=&gt; </code>'(a b)

(let ((p (make-string-output-port)))
  (write '(a b) p)
  (let ((s (string-output-port-output p)))
    (display &quot;c&quot; p)
    (list s (string-output-port-output p))))
    <code class=verbatim>=&gt; </code>'(&quot;(a b)&quot; &quot;(a b)c&quot;)
</pre><p></p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(limit-output<i> output-port n procedure</i>)</tt><a name="node_idx_248"></a></p>
</ul><p>
</p>

<p class=noindent><i>Procedure</i> is called on an output port.
Output written to that port is copied to <i>output-port</i> until <i>n</i>
characters have been written, at which point <tt>limit-output</tt> returns.
If <i>procedure</i> returns before writing <i>n</i> characters, then
<tt>limit-output</tt> also returns at that time, regardless of how many
characters have been written.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-tracking-input-port<i> input-port</i>)&nbsp;&ndash;&gt;&nbsp;<i>input-port</i></tt><a name="node_idx_250"></a></p>
<li><p></p>

<p class=noindent><tt>(make-tracking-output-port<i> output-port</i>)&nbsp;&ndash;&gt;&nbsp;<i>output-port</i></tt><a name="node_idx_252"></a></p>
<li><p></p>

<p class=noindent><tt>(current-row<i> port</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer or <tt>#f</tt></i></tt><a name="node_idx_254"></a></p>
<li><p></p>

<p class=noindent><tt>(current-column<i> port</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer or <tt>#f</tt></i></tt><a name="node_idx_256"></a></p>
<li><p></p>

<p class=noindent><tt>(fresh-line<i> output-port</i>)</tt><a name="node_idx_258"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Make-tracking-input-port</tt> and <tt>make-tracking-output-port</tt>
return ports that keep track of the current row and column and
are otherwise identical to their arguments.
Closing a tracking port does not close the underlying port.
<tt>Current-row</tt> and <tt>current-column</tt> return
<i>port</i>'s current read or write location.
They return <tt>#f</tt> if <i>port</i> does not keep track of its location.
<tt>Fresh-line</tt> writes a newline character to <i>output-port</i> if
<tt>(current-row <i>port</i>)</tt> is not 0.</p>
<p>
</p>
<pre class=verbatim>(define p (make-tracking-output-port (open-output-file &quot;/tmp/temp&quot;)))
(list (current-row p) (current-column p))
    <code class=verbatim>=&gt; </code>'(0 0)
(display &quot;012&quot; p)
(list (current-row p) (current-column p))
    <code class=verbatim>=&gt; </code>'(0 3)
(fresh-line p)
(list (current-row p) (current-column p))
    <code class=verbatim>=&gt; </code>'(1 0)
(fresh-line p)
(list (current-row p) (current-column p))
    <code class=verbatim>=&gt; </code>'(1 0)
</pre><p></p>
<p>
</p>
<a name="node_sec_5.14"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.14">5.14&nbsp;&nbsp;Fluid bindings</a></h2>
<p>These procedures implement dynamic binding and are in structure <tt>fluids</tt>.
A <i>fluid</i> is a cell whose value can be bound dynamically.
Each fluid has a top-level value that is used when the fluid
is unbound in the current dynamic environment.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-fluid<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>fluid</i></tt><a name="node_idx_260"></a></p>
<li><p></p>

<p class=noindent><tt>(fluid<i> fluid</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_262"></a></p>
<li><p></p>

<p class=noindent><tt>(let-fluid<i> fluid value thunk</i>)&nbsp;&ndash;&gt;&nbsp;<i>value(s)</i></tt><a name="node_idx_264"></a></p>
<li><p></p>

<p class=noindent><tt>(let-fluids<i> fluid<sub>0</sub> value<sub>0</sub>  fluid<sub>1</sub> value<sub>1</sub> <tt>...</tt>thunk</i>)&nbsp;&ndash;&gt;&nbsp;<i>value(s)</i></tt><a name="node_idx_266"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Make-fluid</tt> returns a new fluid with <i>value</i> as its initial
top-level value.
<tt>Fluid</tt> returns <tt>fluid</tt>'s current value.
<tt>Let-fluid</tt> calls <tt>thunk</tt>, with <i>fluid</i> bound to <i>value</i>
until <tt>thunk</tt> returns.
Using a continuation to throw out of the call to <tt>thunk</tt> causes
<i>fluid</i> to revert to its original value, while throwing back
in causes <i>fluid</i> to be rebound to <i>value</i>.
<tt>Let-fluid</tt> returns the value(s) returned by <i>thunk</i>.
<tt>Let-fluids</tt> is identical to <tt>let-fluid</tt> except that it binds
an arbitrary number of fluids to new values.</p>
<p>
</p>
<pre class=verbatim>(let* ((f (make-fluid 'a))
       (v0 (fluid f))
       (v1 (let-fluid f 'b
             (lambda ()
               (fluid f))))
       (v2 (fluid f)))
  (list v0 v1 v2))
  <code class=verbatim>=&gt; </code>'(a b a)
</pre><p></p>
<p>
</p>
<pre class=verbatim>(let ((f (make-fluid 'a))
      (path '())
      (c #f))
  (let ((add (lambda ()
               (set! path (cons (fluid f) path)))))
    (add)
    (let-fluid f 'b
      (lambda ()
        (call-with-current-continuation
          (lambda (c0)
            (set! c c0)))
        (add)))
    (add)
    (if (&lt; (length path) 5)
        (c)
        (reverse path))))
  <code class=verbatim>=&gt; </code>'(a b a b a)
</pre><p></p>
<p>
</p>
<a name="node_sec_5.15"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.15">5.15&nbsp;&nbsp;OS strings</a></h2>
<p></p>
<p>
<a name="node_idx_268"></a>On common operating systems such as Unix and Windows, various
parameters to OS functionality&mdash;such as file names, user names,
command-line arguments etc.&mdash;appear as text in most contexts, but are
really byte sequences: On Unix, the byte sequence may be interpreted
as text through some locale-determined encoding.  On Windows, such
parameters are typically represented as sequences of UTF-16 code
units.  In both cases, not every such byte sequence has a string
equivalent: On Unix, a byte sequence encoding a file name using
Latin-1 often cannot be decoded using UTF-8.  On Windows, unpaired
UTF-16 surrogates are admissible in encodings, and no lossless text
decoding for them exists.</p>
<p>
For representing such string-like parameters, Scheme&nbsp;48 uses an
abstraction called <i>OS strings</i>.  An OS string is created from
either a string or a NUL-terminated byte sequence stored in a byte
vector, and has an associated text codec (see
section&nbsp;<a href="manual-Z-H-7.html#node_sec_6.6.1">6.6.1</a>) that is able to convert from one
representation to the other.  The exact meaning of a NUL-terminated
byte sequence is dependent on this text codec.  However, only codecs
for encodings that are a conservative extension of ASCII (such as
ASCII itself, Latin-1, or UTF-8) should be used here, to allow a
minimal set of portable file names.  (The Windows port uses a special
synthetic encoding called UTF-8of16 compatible with UTF-8 but capable
of encoding even invalid UTF-16 internally, but uses the UTF-8 codec
at the Scheme level.)</p>
<p>
Most procedures accepting OS strings also accept strings or byte
vectors, which are then used to construct a OS string.  In the headers
of the specifications of these procedures, such arguments occur as
<i>os-string-thing</i>.<a name="node_idx_270"></a>The standard Scheme procedures such as <tt>open-input-file</tt> that
take file names all accept <i>os-string-thing</i> arguments.  OS
strings are in the <tt>os-strings</tt> structure.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(os-string?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_272"></a></p>
<li><p></p>

<p class=noindent><tt>(make-os-string<i> text-codec string/byte-vector</i>)&nbsp;&ndash;&gt;&nbsp;<i>os-string</i></tt><a name="node_idx_274"></a></p>
</ul><p>
The <tt>os-string?</tt> predicate returns <tt>#t</tt> if its argument is
an OS string, <tt>#f</tt> otherwise.</p>
<p>
The <tt>make-os-string</tt> procedure creates an OS string from a text
codec and a byte vector or string that defines its contents.  If the
argument is a byte vector, it does not matter if it is NUL-terminated
or not.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(string-&gt;os-string<i> string</i>)&nbsp;&ndash;&gt;&nbsp;<i>os-string</i></tt><a name="node_idx_276"></a></p>
<li><p></p>

<p class=noindent><tt>(byte-vector-&gt;os-string<i> byte-vector</i>)&nbsp;&ndash;&gt;&nbsp;<i>os-string</i></tt><a name="node_idx_278"></a></p>
<li><p></p>

<p class=noindent><tt>(x-&gt;os-string<i> os-string-thing</i>)&nbsp;&ndash;&gt;&nbsp;<i>os-string</i></tt><a name="node_idx_280"></a></p>
</ul><p>
</p>

<p class=noindent>These procedures create an OS string from a string, a byte-vector
(whose last value should be 0), and an <i>os-string-thing</i> argument,
respectively, always using the standard OS-string text codec (see
below).</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(os-string-&gt;byte-vector<i> os-string</i>)&nbsp;&ndash;&gt;&nbsp;<i>byte-vector</i></tt><a name="node_idx_282"></a></p>
<li><p></p>

<p class=noindent><tt>(os-string-&gt;string<i> os-string</i>)&nbsp;&ndash;&gt;&nbsp;<i>string</i></tt><a name="node_idx_284"></a></p>
</ul><p>
</p>

<p class=noindent>These procedures yield the contents of an OS string.  For an OS string
created from a string, <tt>os-string-&gt;string</tt> will return a string
with the same contents; for an OS string created from a byte vector,
<tt>os-string-&gt;byte-vector</tt> will return a byte vector with the same
contents.  For the other cases, data loss as determined by the text
codec is possible.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(os-string-text-codec<i> os-string</i>)&nbsp;&ndash;&gt;&nbsp;<i>text-codec</i></tt><a name="node_idx_286"></a></p>
</ul><p>
This procedure returns the text codec of the OS string.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(os-string=?<i> os-string os-string</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_288"></a></p>
</ul><p>
This procedure returns <tt>#t</tt> if its arguments denote the same
byte sequence, <tt>#f</tt> otherwise.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(x-&gt;os-byte-vector<i> os-string-thing</i>)&nbsp;&ndash;&gt;&nbsp;<i>byte-vector</i></tt><a name="node_idx_290"></a></p>
<li><p></p>

<p class=noindent><tt>(string-&gt;os-byte-vector<i> string</i>)&nbsp;&ndash;&gt;&nbsp;<i>byte-vector</i></tt><a name="node_idx_292"></a></p>
</ul><p>
These are convenience procedures: The first is the composition of
<tt>x-&gt;os-string</tt> and <tt>os-string-&gt;byte-vector</tt>, and the second
is the composition of <tt>string-&gt;os-string</tt> and
<tt>os-string-&gt;byte-vector</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(current-os-string-text-codec<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>text-codec</i></tt><a name="node_idx_294"></a></p>
<li><p></p>

<p class=noindent><tt>(call-with-os-string-text-codec<i> text-codec thunk</i>)&nbsp;&ndash;&gt;&nbsp;<i> value(s)</i></tt><a name="node_idx_296"></a></p>
</ul><p>
</p>

<p class=noindent>The <tt>current-os-string-text-codec</tt> returns the current text codec
used for creating new OS strings.  The initial default is determined
by the operating system.  (On Unix, this is the text codec determined
by the locale.  On Windows, this is UTF-8.)  The
<tt>call-with-os-string-text-codec</tt> procedure dynamically binds the
current text codec to <i>text-codec</i> during the invocation of
<i>thunk</i>.</p>
<p>
</p>
<a name="node_sec_5.16"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.16">5.16&nbsp;&nbsp;Shell commands</a></h2>
<p>Structure <tt>c-system-function</tt> provides access to the C <tt>system()</tt>
function.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(have-system?<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_298"></a></p>
<li><p></p>

<p class=noindent><tt>(system<i> os-string-thing</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_300"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Have-system?</tt> returns true if the underlying C implementation
has a command processor.
<tt>(System <i>string</i>)</tt> passes <i>string</i> to the C
<tt>system()</tt> function and returns the result.</p>
<p>
</p>
<pre class=verbatim>(begin
  (system &quot;echo foo &gt; test-file&quot;)
  (call-with-input-file &quot;test-file&quot; read))
<code class=verbatim>=&gt; </code>'foo
</pre><p></p>
<p>
</p>
<a name="node_sec_5.17"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.17">5.17&nbsp;&nbsp;Sockets</a></h2>
<p></p>
<p>
Structure <tt>sockets</tt> provides access to TCP/IP sockets for interprocess
and network communication.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(open-socket<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>socket</i></tt><a name="node_idx_302"></a></p>
<li><p></p>

<p class=noindent><tt>(open-socket<i> port-number</i>)&nbsp;&ndash;&gt;&nbsp;<i>socket</i></tt><a name="node_idx_304"></a></p>
<li><p></p>

<p class=noindent><tt>(socket-port-number<i> socket</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer</i></tt><a name="node_idx_306"></a></p>
<li><p></p>

<p class=noindent><tt>(close-socket<i> socket</i>)</tt><a name="node_idx_308"></a></p>
<li><p></p>

<p class=noindent><tt>(socket-accept<i> socket</i>)&nbsp;&ndash;&gt;&nbsp;<i>input-port output-port</i></tt><a name="node_idx_310"></a></p>
<li><p></p>

<p class=noindent><tt>(get-host-name<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>string</i></tt><a name="node_idx_312"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Open-socket</tt> creates a new socket.
If no <i>port-number</i> is supplied the system picks one at random.
<tt>Socket-port-number</tt> returns a socket's port number.
<tt>Close-socket</tt> closes a socket, preventing any further connections.
<tt>Socket-accept</tt> accepts a single connection on <i>socket</i>, returning
an input port and an output port for communicating with the client.
If no client is waiting <tt>socket-accept</tt> blocks until one appears.
<tt>Get-host-name</tt> returns the network name of the machine.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(socket-client<i> host-name port-number</i>)&nbsp;&ndash;&gt;&nbsp;<i>input-port output-port</i></tt><a name="node_idx_314"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Socket-client</tt> connects to the server at <i>port-number</i> on
the machine named <i>host-name</i>.
<tt>Socket-client</tt> blocks until the server accepts the connection.</p>
<p>
The following simple example shows a server and client for a centralized UID
service.
</p>
<pre class=verbatim>(define (id-server)
  (let ((socket (open-socket)))
    (display &quot;Waiting on port &quot;)
    (display (socket-port-number socket))
    (newline)
    (let loop ((next-id 0))
      (call-with-values
        (lambda ()
          (socket-accept socket))
        (lambda (in out)
          (display next-id out)
          (close-input-port in)
          (close-output-port out)
          (loop (+ next-id 1)))))))
         
(define (get-id machine port-number)
  (call-with-values
    (lambda ()
      (socket-client machine port-number))
    (lambda (in out)
      (let ((id (read in)))
        (close-input-port in)
        (close-output-port out)
        id))))
</pre><p></p>
<p>
</p>
<a name="node_sec_5.18"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.18">5.18&nbsp;&nbsp;Profiling</a></h2>
<p>The profiler can be used programmatically from within the code and
its results can be processed dynamically.</p>
<p>
The structure <tt>profiler</tt> offers basic data structures and functions.
All functions need a <tt>profile-data</tt> record argument that can be created with
<tt>make-empty-profile-data</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(make-empty-profile-data<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>profile-data</i></tt><a name="node_idx_316"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-thunk<i> profile-data thunk [interrupt-time [with-non-instr?]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>value</i></tt><a name="node_idx_318"></a></p>
</ul><p></p>
<p>
<tt>profile-thunk</tt> executes a thunk under the profiler. The data is stored in
the <i>profile-data</i> record passed as argument. Optionally the timeout for the profiler interrupt
can be passed (in milliseconds). The return value of <tt>profile-thunk</tt> is the return value
of <tt>thunk</tt>. By default, non-instrumented code will be profiled by the sampling process.
By passing <tt>with-non-instr? = #f</tt> only instrumented functions will be profiled.</p>
<p>
After profiling data, can be retrieved with the following accessors:</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(profile-data-starttime<i> profile-data</i>)&nbsp;&ndash;&gt;&nbsp;<i>number</i></tt><a name="node_idx_320"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-data-endtime<i> profile-data</i>)&nbsp;&ndash;&gt;&nbsp;<i>number</i></tt><a name="node_idx_322"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-data-runtime<i> profile-data</i>)&nbsp;&ndash;&gt;&nbsp;<i>number</i></tt><a name="node_idx_324"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-data-memoryuse<i> profile-data</i>)&nbsp;&ndash;&gt;&nbsp;<i>number</i></tt><a name="node_idx_326"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-data-gcruns<i> profile-data</i>)&nbsp;&ndash;&gt;&nbsp;<i>number</i></tt><a name="node_idx_328"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-data-samples<i> profile-data</i>)&nbsp;&ndash;&gt;&nbsp;<i>number</i></tt><a name="node_idx_330"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-data-interrupttime<i> profile-data</i>)&nbsp;&ndash;&gt;&nbsp;<i>number</i></tt><a name="node_idx_332"></a></p>
</ul><p></p>
<p>
Times are in milliseconds, memory usage in bytes.</p>
<p>
The following functions produce the same output as the <tt>,profile</tt> command
(see section <a href="manual-Z-H-4.html#node_sec_3.6">3.6</a>).
They all take an optional <i>port</i> argument. Default is the <tt>current-output-port</tt>.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(profile-display<i> profile-data [port]</i>)</tt><a name="node_idx_334"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-display-overview<i> profile-data [port]</i>)</tt><a name="node_idx_336"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-display-flat<i> profile-data [port]</i>)</tt><a name="node_idx_338"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-display-tree<i> profile-data [port]</i>)</tt><a name="node_idx_340"></a></p>
</ul><p></p>
<p>
<tt>profile-display</tt> prints the full output of the profiler.
The other <tt>profile-display-<tt>...</tt></tt> functions only display the respective part of the output.</p>
<p>
The single fields in the flat profile can be retrieved with the following accessors:</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(profile-function-calls<i> profile-data names</i>)</tt><a name="node_idx_342"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-function-reccalls<i> profile-data names</i>)</tt><a name="node_idx_344"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-function-nonreccalls<i> profile-data names</i>)</tt><a name="node_idx_346"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-function-occurs<i> profile-data names</i>)</tt><a name="node_idx_348"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-function-hist<i> profile-data names</i>)</tt><a name="node_idx_350"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-function-memoryuse<i> profile-data names</i>)</tt><a name="node_idx_352"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-function-timeshare<i> profile-data names</i>)</tt><a name="node_idx_354"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-function-time-cumulative<i> profile-data names</i>)</tt><a name="node_idx_356"></a></p>
<li><p></p>

<p class=noindent><tt>(profile-function-time-self<i> profile-data names</i>)</tt><a name="node_idx_358"></a></p>
</ul><p></p>
<p>
Here <i>names</i> is the list of names specifying the function, optionally
with it's module. For example, <tt>names = (&quot;dynamic-wind&quot;, &quot;wind&quot;)</tt>
would specify the <tt>dynamic-wind</tt> function in the module <tt>wind</tt>, if
it was seen while profiling. If two or more functions match, the first one
is used. If no function matches, the functions return <tt>#{Unspecific}</tt>.</p>
<p>
The argument <i>names</i> can also be a plain string, as in
<tt>(profile-display-function-flat prof-data &quot;module&quot;)</tt>. This will display
all flat function profiles that have &ldquo;module&rdquo; either as name or module.</p>
<p>
The meanings of the fields that the functions return are as follows:
</p>
<ul>
<li><p><tt>calls</tt>:
total number of calls (recursive and non-recursive) to the function
</p>
<li><p><tt>reccalls</tt>: 
total number of recursive calls to the function
</p>
<li><p><tt>nonreccalls</tt>: 
total number of non-recursive calls to the function
</p>
<li><p><tt>occurs</tt>: 
number of times the function was seen on stack while profiling
</p>
<li><p><tt>hist</tt>: 
number of times the function was seen running while profiling
</p>
<li><p><tt>memoryuse</tt>: 
bytes of memory used by the function
</p>
<li><p><tt>timeshare</tt>: 
percentage of time used by the function itself (number from 0 to 1)
</p>
<li><p><tt>time-cumulative</tt>: 
total time in ms the function was on call-stack
</p>
<li><p><tt>time-self</tt>: 
total time in ms the function actively running
</p>
</ul><p></p>
<p>
The following shows a short example of the usage of the profiler interface, where <tt>main</tt>
is the function to be profiled:
</p>
<pre class=verbatim>(define prof-data (make-empty-profile-data))

(profile-thunk prof-data (lambda () (main 22)))
(display &quot;Samples: &quot;)
(display (profile-data-samples prof-data))
(newline)

(profile-display-overview prof-data)
(profile-display-flat prof-data (current-output-port))
(profile-display-tree prof-data)

; print only function &quot;a&quot;
(profile-display-function-flat prof-data '(&quot;a&quot;))

; print only function &quot;a&quot; in file &quot;x.scm&quot;
(profile-display-function-flat prof-data '(&quot;a&quot; &quot;x.scm&quot;))

; print all profiled functions in file &quot;x.scm&quot;
(profile-display-function-flat prof-data &quot;x.scm&quot;)

; print percentage of time &quot;a&quot; was running
(display (* (profile-function-timeshare prof-data '(&quot;a&quot;)) 100))
</pre><p></p>
<p>
</p>
<p>
</p>
<a name="node_sec_5.19"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.19">5.19&nbsp;&nbsp;Macros for writing loops</a></h2>
<p></p>
<p>
<tt>Iterate</tt> and <tt>reduce</tt> are extensions of named-<tt>let</tt> for
writing loops that walk down one or more sequences,
such as the elements of a list or vector, the
characters read from a port, or an arithmetic series.
Additional sequences can be defined by the user.
<tt>Iterate</tt> and <tt>reduce</tt> are in structure <tt>reduce</tt>.</p>
<p>
</p>
<a name="node_sec_5.19.1"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.19.1">5.19.1&nbsp;&nbsp;<tt>Iterate</tt></a></h3>
<p>The syntax of <tt>iterate</tt> is:
</p>
<pre class=verbatim>  (iterate <i>loop-name</i>
           ((<i>sequence-type</i> <i>element-variable</i> <i>sequence-data</i> <tt>...</tt>)
            <tt>...</tt>)
           ((<i>state-variable</i> <i>initial-value</i>)
            <tt>...</tt>)
    <i>body-expression</i>
    [<i>final-expression</i>])
</pre><p></p>
<p>
<tt>Iterate</tt> steps the <i>element-variable</i>s in parallel through the
sequences, while each <i>state-variable</i> has the corresponding
<i>initial-value</i> for the first iteration and have later values
supplied by <i>body-expression</i>. 
If any sequence has reached its limit the value of the <tt>iterate</tt>
expression is
the value of <i>final-expression</i>, if present, or the current values of
the <i>state-variable</i>s, returned as multiple values.
If no sequence has reached
its limit, <i>body-expression</i> is evaluated and either calls <i>loop-name</i> with
new values for the <i>state-variable</i>s, or returns some other value(s).</p>
<p>
The <i>loop-name</i> and the <i>state-variable</i>s and <i>initial-value</i>s behave
exactly as in named-<tt>let</tt>.  The named-<tt>let</tt> expression
</p>
<pre class=verbatim>  (let loop-name ((state-variable initial-value) ...)
    body ...)
</pre><p>
is equivalent to an <tt>iterate</tt> expression with no sequences
(and with an explicit
<tt>let</tt> wrapped around the body expressions to take care of any
internal <tt>define</tt>s):
</p>
<pre class=verbatim>  (iterate loop-name
           ()
           ((state-variable initial-value) ...)
    (let () body ...))
</pre><p></p>
<p>
The <i>sequence-type</i>s are keywords (they are actually macros of a particular
form; it is easy to add additional types of sequences).
Examples are <tt>list*</tt> which walks down the elements of a list and
<tt>vector*</tt> which does the same for vectors.
For each iteration, each <i>element-variable</i> is bound to the next
element of the sequence.
The <i>sequence-data</i> gives the actual list or vector or whatever.</p>
<p>
If there is a <i>final-expression</i>, it is evaluated when the end of one or more
sequences is reached.
If the <i>body-expression</i> does not call <i>loop-name</i> the
<i>final-expression</i> is not evaluated.
The <i>state-variable</i>s are visible in
<i>final-expression</i> but the <i>sequence-variable</i>s are not.  </p>
<p>
The <i>body-expression</i> and the <i>final-expression</i> are in tail-position within
the <tt>iterate</tt>.
Unlike named-<tt>let</tt>, the behavior of a non-tail-recursive call to
<i>loop-name</i> is unspecified (because iterating down a sequence may involve side
effects, such as reading characters from a port).</p>
<p>
</p>
<a name="node_sec_5.19.2"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.19.2">5.19.2&nbsp;&nbsp;<tt>Reduce</tt></a></h3>
<p>If an <tt>iterate</tt> expression is not meant to terminate before a sequence
has reached its end,
<i>body-expression</i> will always end with a tail call to <i>loop-name</i>.
<tt>Reduce</tt> is a macro that makes this common case explicit.
The syntax of <tt>reduce</tt> is
the same as that of <tt>iterate</tt>, except that there is no <i>loop-name</i>.
The <i>body-expression</i> returns new values of the <i>state-variable</i>s
instead of passing them to <i>loop-name</i>.
Thus <i>body-expression</i> must return as many values as there are state
variables.
By special dispensation, if there are
no state variables then <i>body-expression</i> may return any number of values,
all of which are ignored.</p>
<p>
The syntax of <tt>reduce</tt> is:
</p>
<pre class=verbatim>  (reduce ((<i>sequence-type</i> <i>element-variable</i> <i>sequence-data</i> <tt>...</tt>)
            <tt>...</tt>)
           ((<i>state-variable</i> <i>initial-value</i>)
            <tt>...</tt>)
    <i>body-expression</i>
    [<i>final-expression</i>])
</pre><p></p>
<p>
The value(s) returned by an instance of <tt>reduce</tt> is the value(s) returned
by the <i>final-expression</i>, if present, or the current value(s) of the state
variables when the end of one or more sequences is reached.</p>
<p>
A <tt>reduce</tt> expression can be rewritten as an equivalent <tt>iterate</tt>
expression by adding a <i>loop-var</i> and a wrapper for the
<i>body-expression</i> that calls the <i>loop-var</i>.
</p>
<pre class=verbatim>(iterate loop
         ((<i>sequence-type</i> <i>element-variable</i> <i>sequence-data</i> <tt>...</tt>)
          <tt>...</tt>)
         ((<i>state-variable</i> <i>initial-value</i>)
          <tt>...</tt>)
  (call-with-values (lambda ()
                      <i>body-expression</i>)
                    loop)
  [<i>final-expression</i>])
</pre><p></p>
<p>
</p>
<a name="node_sec_5.19.3"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.19.3">5.19.3&nbsp;&nbsp;Sequence types</a></h3>
<p>The predefined sequence types are:
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(list* <i>elt-var</i> <i>list</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(list-spine* <i>elt-var</i> <i>list</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(list-spine-cycle-safe* <i>elt-var</i> <i>list</i> <i>on-cycle-thunk</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(vector* <i>elt-var</i> <i>vector</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(string* <i>elt-var</i> <i>string</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(count* <i>elt-var</i> <i>start</i> [<i>end</i> [<i>step</i>]])</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(bits* <i>elt-var</i> <i>i</i> [<i>size</i>])</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(input* <i>elt-var</i> <i>input-port</i> <i>read-procedure</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(stream* <i>elt-var</i> <i>procedure</i> <i>initial-data</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
</ul><p></p>
<p>
For lists, vectors, and strings the element variable is bound to the
successive elements of the list or vector, or the characters in the
string.</p>
<p>
For <tt>list-spine*</tt> the element variable is bound to the successive
pairs in the spine of the list.
<tt>List-spine-cycle-safe*</tt> is similar, but calls <i>on-cycle-thunk</i>
with no arguments and with the continuation of the loop macro at an
unspecified time if <i>list</i> contains a cycle.</p>
<p>
For <tt>count*</tt> the element variable is bound to the elements of the sequence
</p>
<pre class=verbatim> <i>start</i>, <i>start</i> + <i>step</i>, <i>start</i> + 2<i>step</i>, <tt>...</tt>, <i>end</i>
</pre><p>
inclusive of <i>start</i> and exclusive of <i>end</i>.
The default <i>step</i> is 1.
The sequence does not terminate if no <i>end</i> is given or if there
is no <em>N</em> &gt; 0 such that <i>end</i> = <i>start</i> + N<i>step</i>
(<tt>=</tt> is used to test for termination).
For example, <tt>(count* i 0 -1)</tt> doesn't terminate
because it begins past the <i>end</i> value and <tt>(count* i 0 1 2)</tt> doesn't
terminate because it skips over the <i>end</i> value.</p>
<p>
For <tt>bits*</tt>, the element variable is bound to a sequence of
representations of successive bit-fields of <i>i</i>, from least to most
significant.
If <i>size</i> is present, it must be a positive exact integer, and the
element variable is bound to a sequence of <i>size</i>-bit integers.
If <i>size</i> is omitted, <tt>bits*</tt> iterates through single bits, and the
element variable is bound to a sequence of booleans. <tt>#t</tt> represents 1,
and <tt>#f</tt> represents 0.</p>
<p>
For <tt>input*</tt> the elements are the results of successive applications
of <i>read-procedure</i> to <i>input-port</i>.
The sequence ends when <i>read-procedure</i> returns an end-of-file object.</p>
<p>
For a stream, the <i>procedure</i> takes the current data value as an argument
and returns two values, the next value of the sequence and a new data value.
If the new data is <tt>#f</tt> then the previous element was the last
one.  For example,
</p>
<pre class=verbatim>  (list* elt my-list)
</pre><p>
is the same as
</p>
<pre class=verbatim>  (stream* elt list-&gt;stream my-list)
</pre><p>
where <tt>list-&gt;stream</tt> is
</p>
<pre class=verbatim>  (lambda (list)
    (if (null? list)
        (values 'ignored #f)
        (values (car list) (cdr list))))
</pre><p></p>
<p>
</p>
<a name="node_sec_5.19.4"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.19.4">5.19.4&nbsp;&nbsp;Synchronous sequences</a></h3>
<p>When using the sequence types described above, a loop terminates when any of
its sequences reaches its end.  To help detect bugs it is useful to have
sequence types that check to see if two or more sequences end on the same
iteration.  For this purpose there is second set of sequence types called
synchronous sequences.  These are identical to the ones listed above except
that they cause an error to be signalled if a loop is terminated by a
synchronous sequence and some other synchronous sequence did not reach its
end on the same iteration.</p>
<p>
Sequences are checked for termination in order, from left to right, and
if a loop is terminated by a non-synchronous sequence no further checking
is done.</p>
<p>
The synchronous sequences are:</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(list% <i>elt-var</i> <i>list</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(list-spine% <i>elt-var</i> <i>list</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(list-spine-cycle-safe% <i>elt-var</i> <i>list</i> <i>on-cycle-thunk</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(vector% <i>elt-var</i> <i>vector</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(string% <i>elt-var</i> <i>string</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(count% <i>elt-var</i> <i>start</i> <i>end</i> [<i>step</i>])</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(input% <i>elt-var</i> <i>input-port</i> <i>read-procedure</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
<li><p></p>

<p class=noindent><tt>(stream% <i>elt-var</i> <i>procedure</i> <i>initial-data</i>)</tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(syntax)
</p>
</ul><p></p>
<p>
Note that the synchronous <tt>count%</tt> must have an <i>end</i>, unlike the
nonsynchronous <tt>count*</tt>.</p>
<p>
</p>
<a name="node_sec_5.19.5"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.19.5">5.19.5&nbsp;&nbsp;Examples</a></h3>
<p></p>

<p class=noindent>Gathering the indexes of list elements that answer true to some
predicate.
</p>
<pre class=verbatim>(lambda (my-list predicate)
  (reduce ((list* elt my-list)
           (count* i 0))
          ((hits '()))
    (if (predicate elt)
        (cons i hits)
        hits)
    (reverse hits))
</pre><p></p>
<p>
</p>

<p class=noindent>Looking for the index of an element of a list.
</p>
<pre class=verbatim>(lambda (my-list predicate)
  (iterate loop
           ((list* elt my-list)
            (count* i 0))
           ()                                ; no state
    (if (predicate elt)
        i
        (loop))))
</pre><p></p>
<p>
</p>

<p class=noindent>Reading one line.
</p>
<pre class=verbatim>(define (read-line port)
  (iterate loop
           ((input* c port read-char))
           ((chars '()))
    (if (char=? c #<code class=verbatim>\</code>newline)
        (list-&gt;string (reverse chars))
        (loop (cons c chars)))
    (if (null? chars)
        (eof-object)
        ; no newline at end of file
        (list-&gt;string (reverse chars)))))
</pre><p></p>
<p>
</p>

<p class=noindent>Counting the lines in a file.  We can't use <tt>count*</tt> because we
need the value of the count after the loop has finished.
</p>
<pre class=verbatim>(define (line-count name)
  (call-with-input-file name
    (lambda (in)
      (reduce ((input* l in read-line))
              ((i 0))
        (+ i 1)))))
</pre><p></p>
<p>
</p>
<a name="node_sec_5.19.6"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.19.6">5.19.6&nbsp;&nbsp;Defining sequence types</a></h3>
<p>The sequence types are object-oriented macros similar to enumerations.
A non-synchronous sequence macro needs to supply three values:
<tt>#f</tt> to indicate that it isn't synchronous, a list of state variables
and their initializers, and the code for one iteration.
The first
two methods are CPS'ed: they take another macro and argument to
which to pass their result.
The <tt>sync</tt> method gets no additional arguments.
The <tt>state-vars</tt> method is passed a list of names which
will be bound to the arguments to the sequence.
The final method, for the step, is passed the list of names bound to
the arguments and the list of state variables.
In addition there is
a variable to be bound to the next element of the sequence, the
body expression for the loop, and an expression for terminating the
loop.</p>
<p>
The definition of <tt>list*</tt> is
</p>
<pre class=verbatim>(define-syntax list*
  (syntax-rules (sync state-vars step)
    ((list* sync (next more))
     (next #f more))
    ((list* state-vars (start-list) (next more))
     (next ((list-var start-list)) more))
    ((list* step (start-list) (list-var)
            value-var loop-body final-exp)
     (if (null? list-var)
         final-exp
         (let ((value-var (car list-var))
               (list-var (cdr list-var)))
           loop-body)))))
</pre><p></p>
<p>
Synchronized sequences are the same, except that they need to
provide a termination test to be used when some other synchronized
method terminates the loop.
</p>
<pre class=verbatim>(define-syntax list%
  (syntax-rules (sync done)
    ((list% sync (next more))
     (next #t more))
    ((list% done (start-list) (list-var))
     (null? list-var))
    ((list% stuff ...)
     (list* stuff ...))))
</pre><p></p>
<p>
</p>
<a name="node_sec_5.19.7"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.19.7">5.19.7&nbsp;&nbsp;Expanded code</a></h3>
<p>The expansion of 
</p>
<pre class=verbatim>  (reduce ((list* x '(1 2 3)))
          ((r '()))
    (cons x r))
</pre><p>
is
</p>
<pre class=verbatim>  (let ((final (lambda (r) (values r)))
        (list '(1 2 3))
        (r '()))
    (let loop ((list list) (r r))
      (if (null? list)
          (final r)
          (let ((x (car list))
                (list (cdr list)))
            (let ((continue (lambda (r)
                              (loop list r))))
              (continue (cons x r)))))))
</pre><p></p>
<p>
The only inefficiencies in this code are the <tt>final</tt> and <tt>continue</tt>
procedures, both of which could be substituted in-line.
The macro expander could do the substitution for <tt>continue</tt> when there
is no explicit proceed variable, as in this case, but not in general.</p>
<p>
</p>
<a name="node_sec_5.20"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.20">5.20&nbsp;&nbsp;Sorting lists and vectors</a></h2>
<p></p>
<p>
(This section, as the libraries it describes, was written mostly by
Olin Shivers for the draft of SRFI&nbsp;32.)</p>
<p>
The sort libraries in Scheme&nbsp;48 include
</p>
<ul>
<li><p>vector insert sort (stable)
</p>
<li><p>vector heap sort
</p>
<li><p>vector quick sort (with regular comparisons and with median-of-3 pivot picking)
</p>
<li><p>vector merge sort (stable)
</p>
<li><p>pure and destructive list merge sort (stable)
</p>
<li><p>stable vector and list merge
</p>
<li><p>miscellaneous sort-related procedures: vector and list merging, 
sorted predicates, vector binary search, vector and list 
delete-equal-neighbor procedures.
</p>
<li><p>a general, non-algorithmic set of procedure names for general sorting
and merging
</p>
</ul><p></p>
<p>
</p>
<a name="node_sec_5.20.1"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.20.1">5.20.1&nbsp;&nbsp;Design rules</a></h3>
<p></p>
<a name="node_sec_Temp_5"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_5">What vs. how</a></h5>
<p>There are two different interfaces: &ldquo;what&rdquo; (simple) and &ldquo;how&rdquo; (detailed).</p>
<p>
</p>
<dl><dt></dt><dd>
</dd><dt><b>Simple</b></dt><dd> you specify semantics: datatype (list or vector), 
mutability, and stability.<p>
</p>
</dd><dt><b>Detailed</b></dt><dd> you specify the actual algorithm (quick, heap,
insert, merge). Different algorithms have different properties,
both semantic and pragmatic, so these exports are necessary.<p>
It is necessarily the case that the specifications of these procedures
make statements about execution &ldquo;pragmatics.&rdquo; For example, the sole
distinction between heap sort and quick sort&mdash;both of which are
provided by this library&mdash;-is one of execution time, which is not a
&ldquo;semantic&rdquo; distinction. Similar resource-use statements are made about
&ldquo;iterative&rdquo; procedures, meaning that they can execute on input of
arbitrary size in a constant number of stack frames.
</p>
</dd></dl><p></p>
<p>
</p>
<a name="node_sec_Temp_6"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_6">Consistency across procedure signatures</a></h5>
<p>The two interfaces share common procedure signatures wherever
possible, to facilitate switching a given call from one procedure
to another.</p>
<p>
</p>
<a name="node_sec_Temp_7"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_7">Less-than parameter first, data parameter after</a></h5>
<p>These procedures uniformly observe the following parameter order:
the data to be sorted comes after the comparison procedure.
That is, we write</p>
<p>
</p>
<pre class=verbatim>  (sort &lt; <i>list</i>)
</pre><p></p>
<p>
not</p>
<p>
</p>
<pre class=verbatim>  (sort <i>list</i> &lt;)
</pre><p>
</p>
<p>
</p>
<a name="node_sec_Temp_8"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_8">Ordering, comparison procedures and stability</a></h5>
<p>These routines take a &lt; comparison procedure, not a &le; comparison
procedure, and they sort into increasing order. The difference between
a &lt; spec and a &le; spec comes up in two places: </p>
<p>
</p>
<ul>
<li><p>the definition of an ordered or sorted data set, and
</p>
<li><p>the definition of a stable sorting algorithm.
</p>
</ul><p>
</p>
<p>
We say that a data set (a list or vector) is <i>sorted</i> or
<i>ordered</i> if it contains no adjacent pair of values <tt>...</tt> <em>x</em>,
<em>y</em> <tt>...</tt> such that <em>y</em> &lt; <em>x</em>.</p>
<p>
In other words, scanning across the data never takes a &ldquo;downwards&rdquo; step.</p>
<p>
If you use a &le; procedure where these algorithms expect a &lt;
procedure, you may not get the answers you expect. For example,
the <tt>list-sorted?</tt> procedure will return false if you pass it a &le; comparison
procedure and an ordered list containing adjacent equal elements.</p>
<p>
A &ldquo;stable&rdquo; sort is one that preserves the pre-existing order of equal
elements. Suppose, for example, that we sort a list of numbers by 
comparing their absolute values, i.e., using comparison procedure
</p>
<pre class=verbatim>(lambda (x y) (&lt; (abs x) (abs y)))
</pre><p>
If we sort a list that contains both 3 and -3: </p>
<div class=mathdisplay align=center><table><tr><td></td><td><table><tr><td align=center><tt>...</tt> 3, <tt>...</tt>, &minus;3 <tt>...</tt></td></tr></table></td><td></td></tr></table></div>
<p class=noindent>
then a stable sort is an algorithm that will not swap the order
of these two elements, that is, the answer is guaranteed to to look like
</p>
<div class=mathdisplay align=center><table><tr><td></td><td><table><tr><td align=center><tt>...</tt> 3, &minus;3 <tt>...</tt></td></tr></table></td><td></td></tr></table></div>
<p class=noindent>
not
</p>
<div class=mathdisplay align=center><table><tr><td></td><td><table><tr><td align=center><tt>...</tt> &minus;3, 3 <tt>...</tt></td></tr></table></td><td></td></tr></table></div>
<p class=noindent>
Choosing &lt; for the comparison procedure instead of &le; affects
how stability is coded. Given an adjacent pair <em>x</em>, <em>y</em>, <tt>(&lt;
<em>y</em> <em>x</em>)</tt> means &ldquo;<em>x</em> should be moved in front of <em>x</em>&rdquo;&mdash;otherwise,
leave things as they are. So using a &le; procedure where a &lt;
procedure is expected will <em>invert</em> stability.</p>
<p>
This is due to the definition of equality, given a &lt; comparator:
</p>
<pre class=verbatim>    (and (not (&lt; x y))
         (not (&lt; y x)))
</pre><p>
The definition is rather different, given a &le; comparator:
</p>
<pre class=verbatim>    (and (&lt;= x y)
         (&lt;= y x))
</pre><p>
A &ldquo;stable&rdquo; merge is one that reliably favors one of its data sets
when equal items appear in both data sets. <em>All merge operations in
this library are stable</em>, breaking ties between data sets in favor
of the first data set&mdash;elements of the first list come before equal 
elements in the second list.</p>
<p>
So, if we are merging two lists of numbers ordered by absolute value,
the stable merge operation <tt>list-merge</tt>
</p>
<pre class=verbatim>    (list-merge (lambda (x y) (&lt; (abs x) (abs y)))
                '(0 -2 4 8 -10) '(-1 3 -4 7))
</pre><p>
reliably places the 4 of the first list before the equal-comparing -4
of the second list:
</p>
<pre class=verbatim>    (0 -1 -2 4 -4 7 8 -10)
</pre><p>
Some sort algorithms <em>will not work correctly</em> if given a &le;
when they expect a &lt; comparison (or vice-versa).</p>
<p>
</p>
<p>
In short, if your comparison procedure <em>f</em> answers true to <tt>(<em>f</em> x x)</tt>, then 
</p>
<ul>
<li><p>using a stable sorting or merging algorithm will not give you a
stable sort or merge, 
</p>
<li><p><tt>list-sorted?</tt> may surprise you.
</p>
</ul><p>
Note that  you can synthesize a &lt; procedure from a &le; procedure with
</p>
<pre class=verbatim>    (lambda (x y) (not (&lt;= y x)))
</pre><p>
if need be. </p>
<p>
Precise definitions give sharp edges to tools, but require care in use. 
&ldquo;Measure twice, cut once.&rdquo;</p>
<p>
</p>
<p>
</p>
<a name="node_sec_Temp_9"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_9">All vector operations accept optional subrange parameters</a></h5>
<p>The vector operations specified below all take optional
<tt>start</tt>/<tt>end</tt> arguments indicating a selected subrange
of a vector's elements. If a <tt>start</tt> parameter or
<tt>start</tt>/<tt>end</tt> parameter pair is given to such a
procedure, they must be exact, non-negative integers, such that
</p>
<div class=mathdisplay align=center><table><tr><td></td><td><table><tr><td align=center>
0 &le; </td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>start</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td> &le; </td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>end</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td> &le; <tt></td><td><table><tr><td align=center></td><td><table><tr><td align=center>(vector-length </td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>vector</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>)</td></tr></table></td><td></td></tr></table></td><td></tt>
</td></tr></table></td><td></td></tr></table></div>
<p class=noindent>
where <i>vector</i> is the related vector parameter. If not specified,
they default to 0 and the length of the vector, respectively. They are
interpreted to select the range [<i>start</i>,<i>end</i>), that
is, all elements from index <i>start</i> (inclusive) up to, but not
including, index <i>end</i>.</p>
<p>
</p>
<a name="node_sec_Temp_10"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_10">Required vs. allowed side-effects</a></h5>
<p><tt>List-sort!</tt> and <tt>List-stable-sort!</tt> are allowed, but
not required, to alter their arguments' cons cells to construct the
result list. This is consistent with the what-not-how character of the
group of procedures to which they belong (the <tt>sorting</tt> structure).</p>
<p>
The <tt>list-delete-neighbor-dups!</tt>, <tt>list-merge!</tt> and
<tt>list-merge-sort!</tt> procedures, on the other hand, provide
specific algorithms, and, as such, explicitly commit to the use of
side-effects on their input lists in order to guarantee their key
algorithmic properties (e.g., linear-time operation).</p>
<p>
</p>
<a name="node_sec_5.20.2"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.20.2">5.20.2&nbsp;&nbsp;Procedure specification</a></h3>
<p></p>
<div align=center><table><tr><td>

<table border=0><tr><td valign=top >Structure name </td><td valign=top >Functionality</td></tr>
<tr><td valign=top ><tt>sorting</tt> </td><td valign=top >General sorting for lists and vectors</td></tr>
<tr><td valign=top ><tt>sorted</tt> </td><td valign=top >Sorted predicates for lists and vectors</td></tr>
<tr><td valign=top ><tt>list-merge-sort</tt></td><td valign=top >List merge sort</td></tr>
<tr><td valign=top ><tt>vector-merge-sort</tt> </td><td valign=top >Vector merge sort</td></tr>
<tr><td valign=top ><tt>vector-heap-sort</tt> </td><td valign=top >Vector heap sort</td></tr>
<tr><td valign=top ><tt>vector-quick-sort</tt> </td><td valign=top >Vector quick sort</td></tr>
<tr><td valign=top ><tt>vector-quick-sort3</tt> </td><td valign=top >Vector quick sort with 3-way comparisons</td></tr>
<tr><td valign=top ><tt>vector-insert-sort</tt> </td><td valign=top >Vector insertion sort</td></tr>
<tr><td valign=top ><tt>delete-neighbor-duplicates</tt> </td><td valign=top >List and vector delete neighbor duplicates</td></tr>
<tr><td valign=top ><tt>binary-searches</tt> </td><td valign=top >Vector binary search
</td></tr></table>
</td></tr></table></div>

Note that there is no &ldquo;list insert sort&rdquo; package, as you might as well always
use list merge sort. The reference implementation's destructive list merge
sort will do fewer <tt>set-cdr!</tt>s than a destructive insert sort.<p>
</p>
<a name="node_sec_Temp_11"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_11">Procedure naming and functionality</a></h5>
<p>Almost all of the procedures described below are variants of two basic
operations: sorting and merging. These procedures are consistently named
by composing a set of basic lexemes to indicate what they do.
</p>
<div align=center><table><tr><td>
</td></tr><tr><td>
<p>
</p>
<table border=0><tr><td valign=top >Lexeme </td><td valign=top >Meaning</td></tr>
<tr><td valign=top ><tt>sort</tt></td><td valign=top >The procedure sorts its input data set by some &lt; comparison procedure.
</td></tr>
<tr><td valign=top ><tt>merge</tt></td><td valign=top >The procedure merges two ordered data sets into a single ordered
result.
</td></tr>
<tr><td valign=top ><tt>stable</tt> </td><td valign=top >This lexeme indicates that the sort is a stable one.
</td></tr>
<tr><td valign=top ><tt>vector</tt></td><td valign=top >The procedure operates upon vectors.
</td></tr>
<tr><td valign=top ><tt>list</tt> </td><td valign=top >The procedure operates upon lists.
</td></tr>
<tr><td valign=top ><tt>!</tt>      </td><td valign=top >Procedures that end in <tt>!</tt> are allowed, and sometimes required, 
to reuse their input storage to construct their answer.
</td></tr></table>
</td></tr></table></div>
<p>
</p>
<a name="node_sec_Temp_12"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_12">Types of parameters and return values</a></h5>
<p>In the procedures specified below,
</p>
<ul>
<li><p>A <tt>&lt;</tt> or <tt>=</tt> parameter is a procedure accepting
two arguments taken from the specified procedure's data set(s), and
returning a boolean;
</p>
<li><p><tt>Start</tt> and <tt>end</tt> parameters are exact, non-negative integers that 
serve as vector indices selecting a subrange of some associated vector.
When specified, they must satisfy the relation
</p>
<div class=mathdisplay align=center><table><tr><td></td><td><table><tr><td align=center>
0 &le; </td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>start</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td> &le; </td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>end</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td> &le; <tt></td><td><table><tr><td align=center></td><td><table><tr><td align=center>(vector-length </td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>vector</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>)</td></tr></table></td><td></td></tr></table></td><td></tt>
</td></tr></table></td><td></td></tr></table></div>
<p class=noindent>
where <i>vector</i> is the associated vector.
</p>
</ul><p>
Passing values to procedures with these parameters that do not satisfy
these types is an error.</p>
<p>
If a procedure is said to return &ldquo;unspecified,&rdquo; this means that
nothing at all is said about what the procedure returns, not even the
number of return values. Such a procedure is not even required to be
consistent from call to call in the nature or number of its return
values. It is simply required to return a value (or values) that may
be passed to a command continuation, e.g.  as the value of an
expression appearing as a non-terminal subform of a <tt>begin</tt>
expression. Note that in R<sup>5</sup>RS, this restricts such a procedure to
returning a single value; non-R<sup>5</sup>RS systems may not even provide this
restriction.</p>
<p>
</p>
<a name="node_sec_5.20.2.1"></a>
<h4 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.20.2.1">5.20.2.1&nbsp;&nbsp;<tt>sorting</tt>&mdash;general sorting package</a></h4>
<p>This library provides basic sorting and merging functionality suitable for
general programming. The procedures are named by their semantic properties,
i.e., what they do to the data (sort, stable sort, merge, and so forth).</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(list-sorted?<i> &lt; list</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_360"></a></p>
<li><p></p>

<p class=noindent><tt>(list-merge<i> &lt; list<sub>1</sub> list<sub>2</sub></i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_362"></a></p>
<li><p></p>

<p class=noindent><tt>(list-merge!<i> &lt; list<sub>1</sub> list<sub>2</sub></i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_364"></a></p>
<li><p></p>

<p class=noindent><tt>(list-sort<i> &lt; lis</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_366"></a></p>
<li><p></p>

<p class=noindent><tt>(list-sort!<i> &lt; lis</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_368"></a></p>
<li><p></p>

<p class=noindent><tt>(list-stable-sort<i>  &lt; list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_370"></a></p>
<li><p></p>

<p class=noindent><tt>(list-stable-sort!<i> &lt; list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_372"></a></p>
<li><p></p>

<p class=noindent><tt>(list-delete-neighbor-dups<i>   =  list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_374"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-sorted?<i> &lt; v [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_376"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-merge<i> &lt; v<sub>1</sub> v<sub>2</sub> [start1 [end1 [start2 [end2]]]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_378"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-merge!<i> &lt; v v<sub>1</sub> v<sub>2</sub> [start [start1 [end1 [start2 [end2]]]]]</i>)</tt><a name="node_idx_380"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-sort<i> &lt; v [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_382"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-sort!<i> &lt; v [start [end]]</i>)</tt><a name="node_idx_384"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-stable-sort<i> &lt; v [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_386"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-stable-sort!<i> &lt; v [start [end]]</i>)</tt><a name="node_idx_388"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-delete-neighbor-dups<i>  =  v [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_390"></a></p>
</ul><p></p>
<p>
</p>
<div align=center><table><tr><td>

<table border=0><tr><td valign=top >Procedure </td><td valign=top >Suggested algorithm
</td></tr>
<tr><td valign=top ><tt>list-sort</tt> </td><td valign=top >vector heap or quick</td></tr>
<tr><td valign=top ><tt>list-sort!</tt> </td><td valign=top >list merge sort</td></tr>
<tr><td valign=top ><tt>list-stable-sort</tt> </td><td valign=top >vector merge sort</td></tr>
<tr><td valign=top ><tt>list-stable-sort!</tt> </td><td valign=top >list merge sort</td></tr>
<tr><td valign=top ><tt>vector-sort</tt> </td><td valign=top >heap or quick sort</td></tr>
<tr><td valign=top ><tt>vector-sort!</tt> </td><td valign=top >heap or quick sort</td></tr>
<tr><td valign=top ><tt>vector-stable-sort</tt> </td><td valign=top >vector merge sort</td></tr>
<tr><td valign=top ><tt>vector-stable-sort!</tt> merge sort
</td></tr></table>
</td></tr></table></div>

<tt>List-Sorted?</tt> and <tt>vector-sorted?</tt> return true if their
input list or vector is in sorted order, as determined by their <i>&lt;</i>
comparison parameter.<p>
All four merge operations are stable: an element of the initial list
<i>list<sub>1</sub></i> or vector <i>vector<sub>1</sub></i> will come before an
equal-comparing element in the second list <i>list<sub>2</sub></i> or vector
<i>vector<sub>2</sub></i> in the result.</p>
<p>
The procedures
</p>
<ul>
<li><p><tt>list-merge</tt>
</p>
<li><p><tt>list-sort</tt>
</p>
<li><p><tt>list-stable-sort</tt>
</p>
<li><p><tt>list-delete-neighbor-dups</tt>
</p>
</ul><p>
do not alter their inputs and are allowed to return a value that shares 
a common tail with a list argument.</p>
<p>
The procedure
</p>
<ul>
<li><p><tt>list-sort!</tt>
</p>
<li><p><tt>list-stable-sort!</tt>
</p>
</ul><p>
are &ldquo;linear update&rdquo; operators&mdash;they are allowed, but not required, to
alter the cons cells of their arguments to produce their results. </p>
<p>
On the other hand, the <tt>list-merge!</tt> procedure 
make only a single, iterative, linear-time pass over its argument
list, using <tt>set-cdr!</tt>s to rearrange the cells of the list
into the final result &mdash;it works &ldquo;in place.&rdquo; Hence, any cons cell
appearing in the result must have originally appeared in an input. The
intent of this iterative-algorithm commitment is to allow the
programmer to be sure that if, for example, <tt>list-merge!</tt> is asked to
merge two ten-million-element lists, the operation will complete
without performing some extremely (possibly twenty-million) deep
recursion.</p>
<p>
The vector procedures
</p>
<ul>
<li><p><tt>vector-sort</tt>
</p>
<li><p><tt>vector-stable-sort</tt>
</p>
<li><p><tt>vector-delete-neighbor-dups</tt>
</p>
</ul><p>
do not alter their inputs, but allocate a fresh vector for their result,
of length <i>end</i> &minus; <i>start</i>. </p>
<p>
The vector procedures
</p>
<ul>
<li><p><tt>vector-sort!</tt>
</p>
<li><p><tt>vector-stable-sort!</tt>
</p>
</ul><p>
sort their data in-place. (But note that <tt>vector-stable-sort!</tt>
may allocate temporary storage proportional to the size of the
input
.)</p>
<p>
<tt>Vector-merge</tt> returns a vector of length (<i>end<sub>1</sub></i>&minus;<i>start<sub>1</sub></i> + (<i>end<sub>2</sub></i>&minus;<i>start<sub>2</sub></i>).</p>
<p>
<tt>Vector-merge!</tt> writes its result into vector <i>v</i>,
beginning at index <i>start</i>, for indices less than <i>end</i>  = 
<i>start</i>  +  (<i>end<sub>1</sub></i>&minus;<i>start<sub>1</sub></i>)  + 
(<i>end<sub>2</sub></i>&minus;<i>start<sub>2</sub></i>). The target subvector
<i>v</i>[<i>start</i>,<i>end</i>) may not overlap either source
subvector <i>vector<sub>1</sub></i>[<i>start<sub>1</sub></i>,<i>end<sub>1</sub></i>) <i>vector<sub>2</sub></i>[<i>start<sub>2</sub></i>,<i>end<sub>2</sub></i>).</p>
<p>
The <tt><tt>...</tt>-delete-neighbor-dups-<tt>...</tt></tt> procedures:
These procedures delete adjacent duplicate elements from a list or a
vector, using a given element-equality procedure. The first/leftmost
element of a run of equal elements is the one that survives. The list or
vector is not otherwise disordered.</p>
<p>
These procedures are linear time&mdash;much faster than the <em>O</em>(<em>n</em><sup>2</sup>) general
duplicate-element deletors that do not assume any &ldquo;bunching&rdquo; of elements
(such as the ones provided by SRFI&nbsp;1). If you want to delete duplicate
elements from a large list or vector, you can sort the elements to bring
equal items together, then use one of these procedures, for a total time
of <em>O</em>(<em>n</em>log(<em>n</em>)).</p>
<p>
The comparison procedure  =  passed to these procedures is always
applied
<tt>( =  <em>x</em> <em>y</em>)</tt>
where <em>x</em> comes before <em>y</em> in the containing list or vector.</p>
<p>
</p>
<ul>
<li><p><tt>List-delete-neighbor-dups</tt> does not alter its input list; its answer
may share storage with the input list.
</p>
<li><p><tt>Vector-delete-neighbor-dups</tt> does not alter its input vector, but
rather allocates a fresh vector to hold the result.
</p>
</ul><p>
Examples:</p>
<p>
</p>
<pre class=verbatim>(list-delete-neighbor-dups = '(1 1 2 7 7 7 0 -2 -2))
  ===&rArr; (1 2 7 0 -2)

(vector-delete-neighbor-dups = '#(1 1 2 7 7 7 0 -2 -2))
  ===&rArr; #(1 2 7 0 -2)

(vector-delete-neighbor-dups = '#(1 1 2 7 7 7 0 -2 -2) 3 7)
  ===&rArr; #(7 0 -2)
</pre><p></p>
<p>
</p>
<a name="node_sec_5.20.2.2"></a>
<h4 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.20.2.2">5.20.2.2&nbsp;&nbsp;Algorithm-specific sorting packages</a></h4>
<p>These packages provide more specific sorting functionality, that is,
specific commitment to particular algorithms that have particular
pragmatic consequences (such as memory locality, asymptotic running time)
beyond their semantic behaviour (sorting, stable sorting, merging, etc.).
Programmers that need a particular algorithm can use one of these packages.</p>
<p>
</p>
<a name="node_sec_Temp_13"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_13"><tt>sorted</tt>&mdash;sorted predicates</a></h5>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(list-sorted?<i> &lt; list</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_392"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-sorted?<i> &lt; vector</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_394"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-sorted?<i> &lt; vector start</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_396"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-sorted?<i> &lt; vector start end</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_398"></a></p>
</ul><p></p>
<p>
Return <tt>#f</tt> iff there is an adjacent pair <tt>...</tt> <em>x</em>, <em>y</em> <tt>...</tt> in the input
list or vector such that <em>y</em> &lt; <em>x</em>. The optional <i>start</i>/<i>end</i> range 
arguments restrict <tt>vector-sorted?</tt> to the indicated subvector.</p>
<p>
</p>
<a name="node_sec_Temp_14"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_14"><tt>list-merge-sort</tt>&mdash;list merge sort</a></h5>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(list-merge-sort<i> &lt; list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_400"></a></p>
<li><p></p>

<p class=noindent><tt>(list-merge-sort!<i> &lt; list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_402"></a></p>
<li><p></p>

<p class=noindent><tt>(list-merge<i> list<sub>1</sub> &lt; list<sub>2</sub></i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_404"></a></p>
<li><p></p>

<p class=noindent><tt>(list-merge!<i> list<sub>1</sub> &lt; list<sub>2</sub></i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_406"></a></p>
</ul><p>
The sort procedures sort their data using a list merge sort, which is
stable. (The reference implementation is, additionally, a &ldquo;natural&rdquo; sort.
See below for the properties of this algorithm.)</p>
<p>
The <tt>!</tt> procedures are destructive&mdash;they use <tt>set-cdr!</tt>s to
rearrange the cells of the lists into the proper order. As such, they
do not allocate any extra cons cells&mdash;they are &ldquo;in place&rdquo; sorts.
</p>
<p>
The merge operations are stable: an element of <i>list<sub>1</sub></i> will
come before an equal-comparing element in <i>list<sub>2</sub></i> in the result
list.</p>
<p>
</p>
<a name="node_sec_Temp_15"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_15"><tt>vector-merge-sort</tt>&mdash;vector merge sort</a></h5>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(vector-merge-sort<i> &lt; vector [start [end [temp]]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_408"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-merge-sort!<i> &lt; vector [start [end [temp]]]</i>)</tt><a name="node_idx_410"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-merge<i> &lt; vector<sub>1</sub> vector<sub>2</sub> [start<sub>1</sub> [end<sub>1</sub> [start<sub>2</sub> [end<sub>2</sub>]]]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_412"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-merge!<i> &lt; vector vector<sub>1</sub> vector<sub>2</sub> [start [start<sub>1</sub> [end<sub>1</sub> [start<sub>2</sub> [end<sub>2</sub>]]]]]</i>)</tt><a name="node_idx_414"></a></p>
</ul><p>
The sort procedures sort their data using vector merge sort, which is
stable. (The reference implementation is, additionally, a &ldquo;natural&rdquo; sort.
See below for the properties of this algorithm.)</p>
<p>
The optional <i>start</i>/<i>end</i> arguments provide for sorting of subranges, and
default to 0 and the length of the corresponding vector.</p>
<p>
Merge-sorting a vector requires the allocation of a temporary
&ldquo;scratch&rdquo; work vector for the duration of the sort. This scratch
vector can be passed in by the client as the optional <i>temp</i>
argument; if so, the supplied vector must be of size &le; <i>end</i>,
and will not be altered outside the range [start,end). If not
supplied, the sort routines allocate one themselves.</p>
<p>
The merge operations are stable: an element of <i>vector<sub>1</sub></i> will
come before an equal-comparing element in <i>vector<sub>2</sub></i> in the
result vector.</p>
<p>
</p>
<ul>
<li><p><tt>Vector-merge-sort!</tt> leaves its result in
<i>vector</i>[<i>start</i>,<i>end</i>).
</p>
<li><p><tt>Vector-merge-sort</tt> returns a vector of length
<i>end</i>&minus;<i>start</i>.
</p>
<li><p><tt>Vector-merge</tt> returns a vector of length
(<i>end<sub>1</sub></i>&minus;<i>start<sub>1</sub></i>) + (<i>end<sub>2</sub></i>&minus;<i>start<sub>2</sub></i>).
</p>
<li><p><tt>Vector-merge!</tt> writes its result into <i>vector</i>, beginning
at index <i>start</i>,
for indices less than <i>end</i>  = <i>start</i>  + 
(<i>end<sub>1</sub></i>&minus;<i>start<sub>1</sub></i>)  +  (<i>end<sub>2</sub></i>&minus;<i>start<sub>2</sub></i>).
The target subvector
</p>
<div class=mathdisplay align=center><table><tr><td></td><td><table><tr><td align=center></td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>vector</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>[</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>start</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>,</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>end</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>)</td></tr></table></td><td></td></tr></table></div>
<p class=noindent>
may not overlap either source subvector
</p>
<div class=mathdisplay align=center><table><tr><td></td><td><table><tr><td align=center></td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>vector<sub>1</sub></td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>[</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>start<sub>1</sub></td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>,</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>end<sub>1</sub></td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>), </td><td><table><tr><td align=center></td><td><table><tr><td align=center> or </td></tr></table></td><td></td></tr></table></td><td>
</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>vector<sub>2</sub></td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>[</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>start<sub>2</sub></td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>,</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>end<sub>2</sub></td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>).</td></tr></table></td><td></td></tr></table></div>
<p class=noindent>
</p>
</ul><p></p>
<p>
</p>
<a name="node_sec_Temp_16"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_16"><tt>vector-heap-sort</tt>&mdash;vector heap sort</a></h5>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(vector-heap-sort<i> &lt; vector [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_416"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-heap-sort!<i> &lt; vector [start [end]]</i>)</tt><a name="node_idx_418"></a></p>
</ul><p>
These procedures sort their data using heap sort, 
which is not a stable sorting algorithm.</p>
<p>
<tt>Vector-heap-sort</tt> returns a vector of length <i>end</i>&minus;<i>start</i>. 
<tt>Vector-heap-sort!</tt> is in-place, leaving its result in
<i>vector</i>[<i>start</i>,<i>end</i>).</p>
<p>
</p>
<a name="node_sec_Temp_17"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_17"><tt>vector-quick-sort</tt>&mdash;vector quick sort</a></h5>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(vector-quick-sort<i> &lt; vector [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_420"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-quick-sort!<i> &lt; vector [start [end]]</i>)</tt><a name="node_idx_422"></a></p>
</ul><p>
These procedures sort their data using quick sort, 
which is not a stable sorting algorithm.</p>
<p>
<tt>Vector-quick-sort</tt> returns a vector of length <i>end</i>&minus;<i>start</i>. 
<tt>Vector-quick-sort!</tt> is in-place, leaving its result in
<i>vector</i>[<i>start</i>,<i>end</i>).</p>
<p>
</p>
<a name="node_sec_Temp_18"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_18"><tt>vector-quick-sort3</tt>&mdash;vector quick sort with 3-way comparisons</a></h5>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(vector-quick-sort3<i> comp vector [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_424"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-quick-sort3!<i> comp vector [start [end]]</i>)</tt><a name="node_idx_426"></a></p>
</ul><p>
These procedures sort their data using quick sort, 
which is not a stable sorting algorithm.</p>
<p>
<tt>Vector-quick-sort3</tt> returns a vector of length <i>end</i>&minus;<i>start</i>. 
<tt>Vector-quick-sort3!</tt> is in-place, leaving its result in
<i>vector</i>[<i>start</i>,<i>end</i>).</p>
<p>
These procedures implement a variant of quick-sort that takes a three-way
comparison procedure <em>C</em>. <em>C</em> compares a pair of elements and returns
an exact integer whose sign indicates their relationship:
</p>
<a name="node_eqn_Temp_19"></a>
<div align=center><table width=100%>
<tr><td align=right>
(<em>C</em> <em>x</em> <em>y</em>) &lt; 0   </td><td align=center width=2%>&rArr;</td><td>   <em>x</em>&lt;<em>y</em></td></tr>
<tr><td align=right>(<em>C</em> <em>x</em> <em>y</em>)  =  0   </td><td align=center width=2%>&rArr;</td><td>   <em>x</em> = <em>y</em></td></tr>
<tr><td align=right>(<em>C</em> <em>x</em> <em>y</em>) &gt; 0   </td><td align=center width=2%>&rArr;</td><td>   <em>x</em>&gt;<em>y</em>
</td></tr>
</table></div><p>*</p>
<p>
To help remember the relationship between the sign of the result and
the relation, use the procedure &minus; as the model for <em>C</em>: (&minus; <em>x</em> <em>y</em>) &lt; 0
means that <em>x</em> &lt; <em>y</em>; (&minus; <em>x</em> <em>y</em>) &gt; 0 means that <em>x</em> &gt; <em>y</em>.</p>
<p>
</p>
<a name="node_sec_Temp_20"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_20"><tt>vector-insert-sort</tt>&mdash;vector insertion sort</a></h5>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(vector-insert-sort<i> &lt; vector [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_428"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-insert-sort!<i> &lt; vector [start [end]]</i>)</tt><a name="node_idx_430"></a></p>
</ul><p>
These procedures stably sort their data using insertion sort.
</p>
<ul>
<li><p><tt>Vector-insert-sort</tt> returns a vector of length <i>end</i>&minus;<i>start</i>.
</p>
<li><p><tt>Vector-insert-sort!</tt> is in-place, leaving its result in
<i>vector</i>[<i>start</i>,<i>end</i>).
</p>
</ul><p></p>
<p>
</p>
<a name="node_sec_Temp_21"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_21"><tt>delete-neighbor-duplicates</tt>&mdash;list and vector
delete neighbor duplicates</a></h5>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(list-delete-neighbor-dups<i>  =  list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_432"></a></p>
<li><p></p>

<p class=noindent><tt>(list-delete-neighbor-dups!<i>  =  list</i>)&nbsp;&ndash;&gt;&nbsp;<i>list</i></tt><a name="node_idx_434"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-delete-neighbor-dups<i>  =  vector [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>vector</i></tt><a name="node_idx_436"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-delete-neighbor-dups!<i>  =  vector [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>end&prime;</i></tt><a name="node_idx_438"></a></p>
</ul><p>
These procedures delete adjacent duplicate elements from a list or
a vector, using a given element-equality procedure  = . The first/leftmost
element of a run of equal elements is the one that survives. The list
or vector is not otherwise disordered.</p>
<p>
These procedures are linear time&mdash;much faster than the <em>O</em>(<em>n</em><sup>2</sup>) general
duplicate-element deletors that do not assume any &ldquo;bunching&rdquo; of elements
(such as the ones provided by SRFI&nbsp;1). If you want to delete duplicate
elements from a large list or vector, you can sort the elements to bring
equal items together, then use one of these procedures, for a total time
of <em>O</em>(<em>n</em>log(<em>n</em>)).</p>
<p>
The comparison procedure = passed to these procedures is always
applied</p>
<p>
</p>
<pre class=verbatim>( =  <em>x</em> <em>y</em>)
</pre><p></p>
<p>
where <em>x</em> comes before <em>y</em> in the containing list or vector.
</p>
<ul>
<li><p><tt>List-delete-neighbor-dups</tt> does not alter its input list; its
answer may share storage with the input list.
</p>
<li><p><tt>Vector-delete-neighbor-dups</tt> does not alter its input vector, but
rather allocates a fresh vector to hold the result.
</p>
<li><p><tt>List-delete-neighbor-dups!</tt> is permitted, but not required, to
mutate its input list in order to construct its answer.
</p>
<li><p><tt>Vector-delete-neighbor-dups!</tt> reuses its input vector to hold the
answer, packing its answer into the index range
[<i>start</i>,<i>end&prime;</i>), where
<i>end&prime;</i> is the non-negative exact integer returned as its value. It
returns <i>end&prime;</i> as its result. The vector is not altered outside the range
[<i>start</i>,<i>end&prime;</i>).
</p>
</ul><p>
Examples:</p>
<p>
</p>
<pre class=verbatim>(list-delete-neighbor-dups = '(1 1 2 7 7 7 0 -2 -2))
  ===&rArr; (1 2 7 0 -2)

(vector-delete-neighbor-dups = '#(1 1 2 7 7 7 0 -2 -2))
  ===&rArr; #(1 2 7 0 -2)

(vector-delete-neighbor-dups = '#(1 1 2 7 7 7 0 -2 -2) 3 7)
  ===&rArr; #(7 0 -2)

;; Result left in v[3,9):
(let ((v (vector 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6)))
  (cons (vector-delete-neighbor-dups! = v 3)
        v))
   ===&rArr; (9 . #(0 0 0 1 2 3 4 5 6 4 4 5 5 6 6))
</pre><p></p>
<p>
</p>
<a name="node_sec_Temp_22"></a>
<h5 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_Temp_22"><tt>binary-searches</tt>&mdash;vector binary search</a></h5>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(vector-binary-search<i> &lt; elt-&gt;key key vector [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer or <tt>#f</tt></i></tt><a name="node_idx_440"></a></p>
<li><p></p>

<p class=noindent><tt>(vector-binary-search3<i> compare-proc vector [start [end]]</i>)&nbsp;&ndash;&gt;&nbsp;<i>integer or <tt>#f</tt></i></tt><a name="node_idx_442"></a></p>
</ul><p></p>
<p>
<tt>vector-binary-search</tt> searches <i>vector</i> in range
[<i>start</i>,<i>end</i>) (which default to 0 and the length of
<i>vector</i>, respectively) for an element whose
associated key is equal to <i>key</i>. The procedure <i>elt-&gt;key</i> is used to map
an element to its associated key. The elements of the vector are assumed
to be ordered by the &lt; relation on these keys. That is, </p>
<p>
</p>
<pre class=verbatim>(vector-sorted? (lambda (x y) (&lt; (<i>elt-&gt;key</i> x) (<i>elt-&gt;key</i> y)))
                <i>vector</i> <i>start</i> <i>end</i>) ===&rArr; true
</pre><p></p>
<p>
An element <i>e</i> of <i>vector</i> is a match for <i>key</i> if it's
neither less nor greater than the key:</p>
<p>
</p>
<pre class=verbatim>(and (not (&lt; (<i>elt-&gt;key</i> <i>e</i>) <i>key</i>))
     (not (&lt; <i>key</i> (<i>elt-&gt;key</i> <i>e</i>))))
</pre><p></p>
<p>
If there is such an element, the procedure returns its index in the
vector as an exact integer. If there is no such element in the searched 
range, the procedure returns false.</p>
<p>
</p>
<pre class=verbatim>(vector-binary-search &lt; car 4 '#((1 . one) (3 . three)
                                 (4 . four) (25 . twenty-five)))
===&rArr; 2

(vector-binary-search &lt; car 7 '#((1 . one) (3 . three)
                                 (4 . four) (25 . twenty-five)))
===&rArr; #f
</pre><p>    </p>
<p>
<tt>Vector-binary-search3</tt> is a variant that uses a three-way comparison
procedure <i>compare-proc</i>. <i>Compare-proc</i> compares its
parameter to the search key, and returns an
exact integer whose sign indicates its relationship to the search key.
</p>
<div class=mathdisplay align=center><table><tr><td></td><td><table><tr><td align=center>
</td><td><table><tr><td align=center>array</td><td><table><tr><td align=center><em>r</em><em>c</em><em>l</em><em>c</em><em>r</em><em>c</em><em>l</em></td></tr></table></td><td>
(</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>compare-proc</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>&nbsp;<em>x</em>) &nbsp;</td><td align=center>&nbsp;&lt;&nbsp;</td><td align=center>&nbsp; 0&nbsp;</td><td align=center>&nbsp; &rArr;&nbsp;</td><td align=center>&nbsp;  <em>x</em> &nbsp;</td><td align=center>&nbsp;&lt;&nbsp;</td><td align=center>&nbsp; </td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>search-key</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td></td></tr>
<tr><td align=center>
(</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>compare-proc</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>&nbsp;<em>x</em>) &nbsp;</td><td align=center>&nbsp; = &nbsp;</td><td align=center>&nbsp; 0&nbsp;</td><td align=center>&nbsp; &rArr;&nbsp;</td><td align=center>&nbsp;  <em>x</em> &nbsp;</td><td align=center>&nbsp; = &nbsp;</td><td align=center>&nbsp; </td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>search-key</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td></td></tr>
<tr><td align=center>
(</td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>compare-proc</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>&nbsp;<em>x</em>) &nbsp;</td><td align=center>&nbsp;&gt;&nbsp;</td><td align=center>&nbsp; 0&nbsp;</td><td align=center>&nbsp; &rArr;&nbsp;</td><td align=center>&nbsp;  <em>x</em> &nbsp;</td><td align=center>&nbsp;&gt;&nbsp;</td><td align=center>&nbsp; </td><td><table><tr><td align=center><i></td><td><table><tr><td align=center></td><td><table><tr><td align=center>search-key</td></tr></table></td><td></td></tr></table></td><td></i></td></tr></table></td><td>
endarray</td></tr></table></td><td>
</td></tr></table></td><td></td></tr></table></div>
<p class=noindent></p>
<p>
</p>
<pre class=verbatim>(vector-binary-search3 (lambda (elt) (- (car elt) 4))
                       '#((1 . one) (3 . three)
                          (4 . four) (25 . twenty-five)))
===&rArr; 2
</pre><p></p>
<p>
</p>
<p>
</p>
<a name="node_sec_5.20.3"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.20.3">5.20.3&nbsp;&nbsp;Algorithmic properties</a></h3>
<p>Different sort and merge algorithms have different properties.
Choose the algorithm that matches your needs:</p>
<p>
</p>
<dl><dt></dt><dd>
</dd><dt><b>Vector insert sort</b></dt><dd>
Stable, but only suitable for small vectors&mdash;<em>O</em>(<em>n</em><sup>2</sup>).
</dd><dt><b>Vector quick sort</b></dt><dd>
Not stable. Is fast on average&mdash;<em>O</em>(<em>n</em>log(<em>n</em>))&mdash;but has bad worst-case
behaviour. Has good memory locality for big vectors (unlike heap sort). 
A clever pivot-picking trick (median of three samples) helps avoid 
worst-case behaviour, but pathological cases can still blow up.
</dd><dt><b>Vector heap sort</b></dt><dd>
Not stable. Guaranteed fast&mdash;<em>O</em>(<em>n</em>log(<em>n</em>)) <em>worst</em> case. Poor
locality on large vectors. A very reliable workhorse.
</dd><dt><b>Vector merge sort</b></dt><dd>
Stable. Not in-place&mdash;requires a temporary buffer of equal size. 
Fast&mdash;<em>O</em>(<em>n</em>log(<em>n</em>))&mdash;and has good memory locality for large vectors.<p>
The implementation of vector merge sort provided by this
implementation is, additionally, a &ldquo;natural&rdquo; sort, meaning that it
exploits existing order in the input data, providing <em>O</em>(<em>n</em>) best case.
</p>
</dd><dt><b>Destructive list merge sort</b></dt><dd>
Stable, fast and in-place (i.e., allocates no new cons cells). &ldquo;Fast&rdquo;
means <em>O</em>(<em>n</em>log(<em>n</em>)) worst-case, and substantially better if the data
is already mostly ordered, all the way down to linear time for
a completely-ordered input list (i.e., it is a &ldquo;natural&rdquo; sort).<p>
Note that sorting lists involves chasing pointers through memory, which
can be a loser on modern machine architectures because of poor cache and
page locality.
Sorting vectors has inherently better locality.</p>
<p>
This implementation's destructive list merge and merge sort
implementations are opportunistic&mdash;they avoid redundant
<tt>set-cdr!</tt>s, and try to take long
already-ordered runs of list structure as-is when doing the merges.
</p>
</dd><dt><b>Pure list merge sort</b></dt><dd>
Stable and fast&mdash;<em>O</em>(<em>n</em>log(<em>n</em>)) worst-case, and possibly <em>O</em>(<em>n</em>),
depending upon the input list (see discussion above).
</dd></dl><p></p>
<p>
</p>
<div align=center><table><tr><td>

<table border=0><tr><td valign=top >Algorithm </td><td valign=top >Stable? </td><td valign=top >Worst case </td><td valign=top >Average case </td><td valign=top >In-place</td></tr>
<tr><td valign=top >Vector insert </td><td valign=top >Yes</td><td valign=top ><em>O</em>(<em>n</em><sup>2</sup>) </td><td valign=top ><em>O</em>(<em>n</em><sup>2</sup>)</td><td valign=top >Yes</td></tr>
<tr><td valign=top >Vector quick  </td><td valign=top >No </td><td valign=top ><em>O</em>(<em>n</em><sup>2</sup>)  </td><td valign=top ><em>O</em>(<em>n</em>log(<em>n</em>))</td><td valign=top >Yes</td></tr>
<tr><td valign=top >Vector heap   </td><td valign=top >No </td><td valign=top ><em>O</em>(<em>n</em>log(<em>n</em>))</td><td valign=top ><em>O</em>(<em>n</em>log(<em>n</em>))</td><td valign=top >Yes</td></tr>
<tr><td valign=top >Vector merge  </td><td valign=top >Yes</td><td valign=top ><em>O</em>(<em>n</em>log(<em>n</em>))</td><td valign=top ><em>O</em>(<em>n</em>log(<em>n</em>))</td><td valign=top >No</td></tr>
<tr><td valign=top >List merge    </td><td valign=top >Yes</td><td valign=top ><em>O</em>(<em>n</em>log(<em>n</em>))</td><td valign=top ><em>O</em>(<em>n</em>log(<em>n</em>))</td><td valign=top >Either
</td></tr></table>
</td></tr></table></div>
<p>
</p>
<a name="node_sec_5.21"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.21">5.21&nbsp;&nbsp;Regular expressions</a></h2>
<p></p>
<p>
This section describes a functional interface for building regular
expressions and matching them against strings.
The matching is done using the POSIX regular expression package.
Regular expressions are in the structure <tt>regexps</tt>.</p>
<p>
A regular expression is either a character set, which matches any character
in the set, or a composite expression containing one or more subexpressions.
A regular expression can be matched against a string to determine success
or failure, and to determine the substrings matched by particular subexpressions.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(regexp?<i> value</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_444"></a></p>
</ul><p>
</p>

<p class=noindent>Returns <tt>#t</tt> if <i>value</i> is a regular expression created
using the functional interface for regular expressions, and <tt>#f</tt>
otherwise.</p>
<p>
</p>
<a name="node_sec_5.21.1"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.21.1">5.21.1&nbsp;&nbsp;Character sets</a></h3>
<p>Character sets may be defined using a list of characters and strings,
using a range or ranges of characters, or by using set operations on
existing character sets.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(set<i> character-or-string <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>char-set</i></tt><a name="node_idx_446"></a></p>
<li><p></p>

<p class=noindent><tt>(range<i> low-char high-char</i>)&nbsp;&ndash;&gt;&nbsp;<i>char-set</i></tt><a name="node_idx_448"></a></p>
<li><p></p>

<p class=noindent><tt>(ranges<i> low-char high-char <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>char-set</i></tt><a name="node_idx_450"></a></p>
<li><p></p>

<p class=noindent><tt>(ascii-range<i> low-char high-char</i>)&nbsp;&ndash;&gt;&nbsp;<i>char-set</i></tt><a name="node_idx_452"></a></p>
<li><p></p>

<p class=noindent><tt>(ascii-ranges<i> low-char high-char <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>char-set</i></tt><a name="node_idx_454"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Set</tt> returns a set that contains the character arguments and the
characters in any string arguments.  <tt>Range</tt> returns a character
set that contain all characters between <i>low-char</i> and <i>high-char</i>,
inclusive.  <tt>Ranges</tt> returns a set that contains all characters in
the given ranges.  <tt>Range</tt> and <tt>ranges</tt> use the ordering induced by
<tt>char-&gt;integer</tt>.  <tt>Ascii-range</tt> and <tt>ascii-ranges</tt> use the
ASCII ordering.
It is an error for a <i>high-char</i> to be less than the preceding
<i>low-char</i> in the appropriate ordering.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(negate<i> char-set</i>)&nbsp;&ndash;&gt;&nbsp;<i>char-set</i></tt><a name="node_idx_456"></a></p>
<li><p></p>

<p class=noindent><tt>(intersection<i> char-set char-set</i>)&nbsp;&ndash;&gt;&nbsp;<i>char-set</i></tt><a name="node_idx_458"></a></p>
<li><p></p>

<p class=noindent><tt>(union<i> char-set char-set</i>)&nbsp;&ndash;&gt;&nbsp;<i>char-set</i></tt><a name="node_idx_460"></a></p>
<li><p></p>

<p class=noindent><tt>(subtract<i> char-set char-set</i>)&nbsp;&ndash;&gt;&nbsp;<i>char-set</i></tt><a name="node_idx_462"></a></p>
</ul><p>
</p>

<p class=noindent>These perform the indicated operations on character sets.</p>
<p>
The following character sets are predefined:
</p>
<div align=center><table><tr><td>

<table border=0><tr><td valign=top ><tt>lower-case</tt> </td><td valign=top ><tt>(set &quot;abcdefghijklmnopqrstuvwxyz&quot;)</tt> </td></tr>
<tr><td valign=top ><tt>upper-case</tt> </td><td valign=top ><tt>(set &quot;ABCDEFGHIJKLMNOPQRSTUVWXYZ&quot;)</tt> </td></tr>
<tr><td valign=top ><tt>alphabetic</tt> </td><td valign=top ><tt>(union lower-case upper-case)</tt> </td></tr>
<tr><td valign=top ><tt>numeric</tt> </td><td valign=top ><tt>(set &quot;0123456789&quot;)</tt> </td></tr>
<tr><td valign=top ><tt>alphanumeric</tt> </td><td valign=top ><tt>(union alphabetic numeric)</tt> </td></tr>
<tr><td valign=top ><tt>punctuation</tt> </td><td valign=top ><tt>(set &quot;</tt><code class=verbatim>!\&quot;#$%&amp;'()*+,&#x2011;./:;&lt;=&gt;?@[\\]^_`{|}~</code><tt>&quot;)</tt> </td></tr>
<tr><td valign=top ><tt>graphic</tt> </td><td valign=top ><tt>(union alphanumeric punctuation)</tt> </td></tr>
<tr><td valign=top ><tt>printing</tt> </td><td valign=top ><tt>(union graphic (set #</tt><code class=verbatim>\</code><tt>space))</tt> </td></tr>
<tr><td valign=top ><tt>control</tt> </td><td valign=top ><tt>(negate printing)</tt> </td></tr>
<tr><td valign=top ><tt>blank</tt> </td><td valign=top ><tt>(set #</tt><code class=verbatim>\</code><tt>space (ascii-&gt;char 9))</tt> ; 9 is tab </td></tr>
<tr><td valign=top ><tt>whitespace</tt> </td><td valign=top ><tt>(union (set #</tt><code class=verbatim>\</code><tt>space) (ascii-range 9 13))</tt> </td></tr>
<tr><td valign=top ><tt>hexdigit</tt> </td><td valign=top ><tt>(set &quot;0123456789abcdefABCDEF&quot;)</tt> </td></tr>
<tr><td valign=top ></td></tr></table></td></tr></table></div>


<p class=noindent>The above are taken from the default locale in POSIX.
The characters in <tt>whitespace</tt> are <i>space</i>, <i>tab</i>,
<i>newline</i> (= <i>line feed</i>), <i>vertical tab</i>, <i>form feed</i>, and
<i>carriage return</i>.</p>
<p>
</p>
<a name="node_sec_5.21.2"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.21.2">5.21.2&nbsp;&nbsp;Anchoring</a></h3>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(string-start<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_464"></a></p>
<li><p></p>

<p class=noindent><tt>(string-end<i></i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_466"></a></p>
</ul><p>
</p>

<p class=noindent><tt>String-start</tt> returns a regular expression that matches the beginning
of the string being matched against; string-end returns one that matches
the end.</p>
<p>
</p>
<a name="node_sec_5.21.3"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.21.3">5.21.3&nbsp;&nbsp;Composite expressions</a></h3>
<p></p>
<ul>
<li><p></p>

<p class=noindent><tt>(sequence<i> reg-exp <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_468"></a></p>
<li><p></p>

<p class=noindent><tt>(one-of<i> reg-exp <tt>...</tt></i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_470"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Sequence</tt> matches the concatenation of its arguments, <tt>one-of</tt> matches
any one of its arguments.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(text<i> string</i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_472"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Text</tt> returns a regular expression that matches the characters in
<i>string</i>, in order.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(repeat<i> reg-exp</i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_474"></a></p>
<li><p></p>

<p class=noindent><tt>(repeat<i> count reg-exp</i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_476"></a></p>
<li><p></p>

<p class=noindent><tt>(repeat<i> min max reg-exp</i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_478"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Repeat</tt> returns a regular expression that matches zero or more
occurrences of its <i>reg-exp</i> argument.  With no count the result
will match any number of times (<i>reg-exp</i>*).  With a single
count the returned expression will match
<i>reg-exp</i> exactly that number of times.
The final case will match from <i>min</i> to <i>max</i>
repetitions, inclusive.
<i>Max</i> may be <tt>#f</tt>, in which case there
is no maximum number of matches.
<i>Count</i> and <i>min</i> should be exact, non-negative integers;
<i>max</i> should either be an exact non-negative integer or <tt>#f</tt>.</p>
<p>
</p>
<a name="node_sec_5.21.4"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.21.4">5.21.4&nbsp;&nbsp;Case sensitivity</a></h3>
<p>Regular expressions are normally case-sensitive.
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(ignore-case<i> reg-exp</i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_480"></a></p>
<li><p></p>

<p class=noindent><tt>(use-case<i> reg-exp</i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_482"></a></p>
</ul><p>
</p>

<p class=noindent>The value returned by
<tt>ignore-case</tt> is identical its argument except that case will be
ignored when matching.
The value returned by <tt>use-case</tt> is protected
from future applications of <tt>ignore-case</tt>.
The expressions returned
by <tt>use-case</tt> and <tt>ignore-case</tt> are unaffected by later uses of the
these procedures.
By way of example, the following matches <tt>&quot;ab&quot;</tt> but not <tt>&quot;aB&quot;</tt>,
<tt>&quot;Ab&quot;</tt>, or <tt>&quot;AB&quot;</tt>.
</p>
<pre class=verbatim><tt>(text &quot;ab&quot;)</tt>
</pre><p>
</p>

<p class=noindent>while
</p>
<pre class=verbatim><tt>(ignore-case (test &quot;ab&quot;))</tt>
</pre><p>
</p>

<p class=noindent>matches <tt>&quot;ab&quot;</tt>, <tt>&quot;aB&quot;</tt>,
<tt>&quot;Ab&quot;</tt>, and <tt>&quot;AB&quot;</tt> and
</p>
<pre class=verbatim>(ignore-case (sequence (text &quot;a&quot;)
                       (use-case (text &quot;b&quot;))))
</pre><p>
</p>

<p class=noindent>matches <tt>&quot;ab&quot;</tt> and <tt>&quot;Ab&quot;</tt> but not <tt>&quot;aB&quot;</tt> or <tt>&quot;AB&quot;</tt>.</p>
<p>
</p>
<a name="node_sec_5.21.5"></a>
<h3 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.21.5">5.21.5&nbsp;&nbsp;Submatches and matching</a></h3>
<p>A subexpression within a larger expression can be marked as a submatch.
When an expression is matched against a string, the success or failure
of each submatch within that expression is reported, as well as the
location of the substring matched be each successful submatch.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(submatch<i> key reg-exp</i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_484"></a></p>
<li><p></p>

<p class=noindent><tt>(no-submatches<i> reg-exp</i>)&nbsp;&ndash;&gt;&nbsp;<i>reg-exp</i></tt><a name="node_idx_486"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Submatch</tt> returns a regular expression that matches its argument and
causes the result of matching its argument to be reported by the <tt>match</tt>
procedure.
<i>Key</i> is used to indicate the result of this particular submatch 
in the alist of successful submatches returned by <tt>match</tt>.
Any value may be used as a <i>key</i>.
<tt>No-submatches</tt> returns an expression identical to its
argument, except that all submatches have been elided.</p>
<p>
</p>
<ul>
<li><p></p>

<p class=noindent><tt>(any-match?<i> reg-exp string</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_488"></a></p>
<li><p></p>

<p class=noindent><tt>(exact-match?<i> reg-exp string</i>)&nbsp;&ndash;&gt;&nbsp;<i>boolean</i></tt><a name="node_idx_490"></a></p>
<li><p></p>

<p class=noindent><tt>(match<i> reg-exp string</i>)&nbsp;&ndash;&gt;&nbsp;<i>match or <tt>#f</tt></i></tt><a name="node_idx_492"></a></p>
<li><p></p>

<p class=noindent><tt>(match-start<i> match</i>)&nbsp;&ndash;&gt;&nbsp;<i>index</i></tt><a name="node_idx_494"></a></p>
<li><p></p>

<p class=noindent><tt>(match-end<i> match</i>)&nbsp;&ndash;&gt;&nbsp;<i>index</i></tt><a name="node_idx_496"></a></p>
<li><p></p>

<p class=noindent><tt>(match-submatches<i> match</i>)&nbsp;&ndash;&gt;&nbsp;<i>alist</i></tt><a name="node_idx_498"></a></p>
</ul><p>
</p>

<p class=noindent><tt>Any-match?</tt> returns <tt>#t</tt> if <i>string</i> matches <i>reg-exp</i> or
contains a substring that does, and <tt>#f</tt> otherwise.
<tt>Exact-match?</tt> returns <tt>#t</tt> if <i>string</i> matches
<i>reg-exp</i> and <tt>#f</tt> otherwise.</p>
<p>
<tt>Match</tt> returns <tt>#f</tt> if <i>reg-exp</i> does not match <i>string</i>
and a match record if it does match.
A match record contains three values: the beginning and end of the substring
that matched
the pattern and an a-list of submatch keys and corresponding match records
for any submatches that also matched.
<tt>Match-start</tt> returns the index of
the first character in the matching substring and <tt>match-end</tt> gives index
of the first character after the matching substring.
<tt>Match-submatches</tt> returns an alist of submatch keys and match records.
Only the top match record returned by <tt>match</tt> has a submatch alist.</p>
<p>
Matching occurs according to POSIX.
The match returned is the one with the lowest starting index in <i>string</i>.
If there is more than one such match, the longest is returned.
Within that match the longest possible submatches are returned.</p>
<p>
All three matching procedures cache a compiled version of <i>reg-exp</i>.
Subsequent calls with the same <i>reg-exp</i> will be more efficient.</p>
<p>
The C interface to the POSIX regular expression code uses ASCII <tt>nul</tt>
as an end-of-string marker.
The matching procedures will ignore any characters following an
embedded ASCII <tt>nul</tt>s in <i>string</i>.</p>
<p>
</p>
<pre class=verbatim>(define pattern (text &quot;abc&quot;))
(any-match? pattern &quot;abc&quot;)         <code class=verbatim>=&gt; </code>#t
(any-match? pattern &quot;abx&quot;)         <code class=verbatim>=&gt; </code>#f
(any-match? pattern &quot;xxabcxx&quot;)     <code class=verbatim>=&gt; </code>#t

(exact-match? pattern &quot;abc&quot;)       <code class=verbatim>=&gt; </code>#t
(exact-match? pattern &quot;abx&quot;)       <code class=verbatim>=&gt; </code>#f
(exact-match? pattern &quot;xxabcxx&quot;)   <code class=verbatim>=&gt; </code>#f

(match pattern &quot;abc&quot;)              <code class=verbatim>=&gt; </code>#{match 0 3}
(match pattern &quot;abx&quot;)              <code class=verbatim>=&gt; </code>#f
(match pattern &quot;xxabcxx&quot;)          <code class=verbatim>=&gt; </code>#{match 2 5}

(let ((x (match (sequence (text &quot;ab&quot;)
                          (submatch 'foo (text &quot;cd&quot;))
                          (text &quot;ef&quot;))
                &quot;xxxabcdefxx&quot;)))
  (list x (match-submatches x)))
  <code class=verbatim>=&gt; </code>(#{match 3 9} ((foo . #{match 5 7}))

(match-submatches
  (match (sequence
           (set &quot;a&quot;)
           (one-of (submatch 'foo (text &quot;bc&quot;))
                   (submatch 'bar (text &quot;BC&quot;))))
         &quot;xxxaBCd&quot;))
  <code class=verbatim>=&gt; </code>((bar . #{match 4 6}))
</pre><p></p>
<p>
</p>
<a name="node_sec_5.22"></a>
<h2 class=section><a href="manual-Z-H-1.html#node_toc_node_sec_5.22">5.22&nbsp;&nbsp;SRFIs</a></h2>
<p>`SRFI' stands for `Scheme Request For Implementation'.
An SRFI is a description of an extension to standard Scheme.
Draft and final SRFI documents, a FAQ, and other information about SRFIs
can be found at
<a href="http://srfi.schemers.org">the SRFI web site</a>.</p>
<p>
Scheme&nbsp;48 includes implementations of the following (final) SRFIs:
</p>
<ul>
<li><p>SRFI 1 &ndash; List Library
</p>
<li><p>SRFI 2 &ndash; <tt>and-let*</tt>
</p>
<li><p>SRFI 4 &ndash; Homogeneous numeric vector datatypes (see note below)
</p>
<li><p>SRFI 5 &ndash; <tt>let</tt> with signatures and rest arguments
</p>
<li><p>SRFI 6 &ndash; Basic string ports
</p>
<li><p>SRFI 7 &ndash; Program configuration
</p>
<li><p>SRFI 8 &ndash; <tt>receive</tt>
</p>
<li><p>SRFI 9 &ndash; Defining record types
</p>
<li><p>SRFI 11 &ndash; Syntax for receiving multiple values 
</p>
<li><p>SRFI 13 &ndash; String Library
</p>
<li><p>SRFI 14 &ndash; Character-Set Library (see note below)
</p>
<li><p>SRFI 16 &ndash; Syntax for procedures of variable arity
</p>
<li><p>SRFI 17 &ndash; Generalized <tt>set!</tt>
</p>
<li><p>SRFI 19 &ndash; Time Data Types and Procedures
</p>
<li><p>SRFI 22 &ndash; Running Scheme Scripts on Unix
</p>
<li><p>SRFI 23 &ndash; Error reporting mechanism
</p>
<li><p>SRFI 25 &ndash; Multi-dimensional Array Primitives 
</p>
<li><p>SRFI 26 &ndash; Notation for Specializing Parameters without Currying
</p>
<li><p>SRFI 27 &ndash; Sources of Random Bits
</p>
<li><p>SRFI 28 &ndash; Basic Format Strings
</p>
<li><p>SRFI 31 &ndash; A special form <tt>rec</tt> for recursive evaluation
</p>
<li><p>SRFI 34 &ndash; Exception Handling for Programs
</p>
<li><p>SRFI 37 &ndash; args-fold: a program argument processor
</p>
<li><p>SRFI 40 &ndash; A Library of Streams
</p>
<li><p>SRFI 42 &ndash; Eager Comprehensions
</p>
<li><p>SRFI 43 &ndash; Vector library
</p>
<li><p>SRFI 45 &ndash; Primitives for Expressing Iterative Lazy Algorithms
</p>
<li><p>SRFI 60 &ndash; Integers as Bits
</p>
<li><p>SRFI 61 &ndash; A more general cond clause
</p>
<li><p>SRFI 62 &ndash; S-expression comments
</p>
<li><p>SRFI 63 &ndash; Homogeneous and Heterogeneous Arrays
</p>
<li><p>SRFI 66 &ndash; Octet Vectors
</p>
<li><p>SRFI 67 &ndash; Compare Procedures
</p>
<li><p>SRFI 74 &ndash; Octet-Addressed Binary Blocks
</p>
<li><p>SRFI 78 &ndash; Lightweight testing
</p>
</ul><p>
Documentation on these can be found at the web site mentioned above.</p>
<p>
SRFI&nbsp;4 specifies an external representation for homogeneous numeric
vectors that is incompatible with R<sup>5</sup>RS.  The Scheme&nbsp;48 version of
SRFI&nbsp;4 does not support this external representation.</p>
<p>
SRFI&nbsp;14 includes the procedure <tt>-&gt;char-set</tt> which is not a standard
Scheme identifier (in R<sup>5</sup>RS the only required identifier starting
with <tt>-</tt> is <tt>-</tt> itself).
In the Scheme&nbsp;48 version of SRFI&nbsp;14 we have renamed <tt>-&gt;char-set</tt>
as <tt>x-&gt;char-set</tt>.</p>
<p>
SRFI bindings can be accessed
either by opening the appropriate structure
(the structure <tt>srfi-</tt><i>n</i> contains SRFI <i>n</i>)
or by loading structure <tt>srfi-7</tt> and then using
the <tt>,load-srfi-7-program</tt> command to load an SRFI&nbsp;7-style program.
The syntax for the command is
</p>
<pre class=verbatim><tt>,load-srfi-7-program <i>name</i> <i>filename</i></tt>
</pre><p>
This creates a new structure and associated package, binds the structure
to <i>name</i> in the configuration package, and then loads the program
found in <i>filename</i> into the package.</p>
<p>
As an example, if the file <tt>test.scm</tt> contains
</p>
<pre class=verbatim>(program (code (define x 10)))
</pre><p>
this program can be loaded as follows:
</p>
<pre class=verbatim>&gt; ,load-package srfi-7
&gt; ,load-srfi-7-program test test.scm
[test]
&gt; ,in test
test&gt; x
10
test&gt; 
</pre><p></p>
<p>

</p>
<p>
</p>
<p>
</p>
<div class=smallskip></div>
<p style="margin-top: 0pt; margin-bottom: 0pt">
<div align=right class=navigation>[Go to <span><a href="manual.html">first</a>, <a href="manual-Z-H-5.html">previous</a></span><span>, <a href="manual-Z-H-7.html">next</a></span> page<span>; &nbsp;&nbsp;</span><span><a href="manual-Z-H-1.html#node_toc_start">contents</a></span><span><span>; &nbsp;&nbsp;</span><a href="manual-Z-H-11.html#node_index_start">index</a></span>]</div>
</p>
<p></p>
</div>
</body>
</html>