/usr/share/slib/bytenumb.scm is in slib 3b1-3.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | ;;; "bytenumb.scm" Byte integer and IEEE floating-point conversions.
; Copyright (C) 2003 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(require 'byte)
(require 'logical)
;;@code{(require 'byte-number)}
;;@ftindex byte-number
;;@noindent
;;The multi-byte sequences produced and used by numeric conversion
;;routines are always big-endian. Endianness can be changed during
;;reading and writing bytes using @code{read-bytes} and
;;@code{write-bytes} @xref{Byte, read-bytes}.
;;
;;@noindent
;;The sign of the length argument to bytes/integer conversion
;;procedures determines the signedness of the number.
;;@body
;;Converts the first @code{(abs @var{n})} bytes of big-endian @1 array
;;to an integer. If @2 is negative then the integer coded by the
;;bytes are treated as two's-complement (can be negative).
;;
;;@example
;;(bytes->integer (bytes 0 0 0 15) -4) @result{} 15
;;(bytes->integer (bytes 0 0 0 15) 4) @result{} 15
;;(bytes->integer (bytes 255 255 255 255) -4) @result{} -1
;;(bytes->integer (bytes 255 255 255 255) 4) @result{} 4294967295
;;(bytes->integer (bytes 128 0 0 0) -4) @result{} -2147483648
;;(bytes->integer (bytes 128 0 0 0) 4) @result{} 2147483648
;;@end example
(define (bytes->integer bytes n)
(define cnt (abs n))
(cond ((zero? n) 0)
((and (negative? n) (> (byte-ref bytes 0) 127))
(do ((lng (- 255 (byte-ref bytes 0))
(+ (- 255 (byte-ref bytes idx)) (* 256 lng)))
(idx 1 (+ 1 idx)))
((>= idx cnt) (- -1 lng))))
(else
(do ((lng (byte-ref bytes 0)
(+ (byte-ref bytes idx) (* 256 lng)))
(idx 1 (+ 1 idx)))
((>= idx cnt) lng)))))
;;@body
;;Converts the integer @1 to a byte-array of @code{(abs @var{n})}
;;bytes. If @1 and @2 are both negative, then the bytes in the
;;returned array are coded two's-complement.
;;
;;@example
;;(bytes->list (integer->bytes 15 -4)) @result{} (0 0 0 15)
;;(bytes->list (integer->bytes 15 4)) @result{} (0 0 0 15)
;;(bytes->list (integer->bytes -1 -4)) @result{} (255 255 255 255)
;;(bytes->list (integer->bytes 4294967295 4)) @result{} (255 255 255 255)
;;(bytes->list (integer->bytes -2147483648 -4)) @result{} (128 0 0 0)
;;(bytes->list (integer->bytes 2147483648 4)) @result{} (128 0 0 0)
;;@end example
(define (integer->bytes n len)
(define bytes (make-bytes (abs len)))
(cond ((and (negative? n) (negative? len))
(do ((idx (+ -1 (abs len)) (+ -1 idx))
(res (- -1 n) (quotient res 256)))
((negative? idx) bytes)
(byte-set! bytes idx (- 255 (modulo res 256)))))
(else
(do ((idx (+ -1 (abs len)) (+ -1 idx))
(res n (quotient res 256)))
((negative? idx) bytes)
(byte-set! bytes idx (modulo res 256))))))
;;@body
;;@1 must be a 4-element byte-array. @0 calculates and returns the
;;value of @1 interpreted as a big-endian IEEE 4-byte (32-bit) number.
(define (bytes->ieee-float bytes)
(define zero (or (string->number "0.0") 0))
(define one (or (string->number "1.0") 1))
(define len (bytes-length bytes))
(define S (logbit? 7 (byte-ref bytes 0)))
(define E (+ (ash (logand #x7F (byte-ref bytes 0)) 1)
(ash (logand #x80 (byte-ref bytes 1)) -7)))
(if (not (eqv? 4 len))
(slib:error 'bytes->ieee-float 'wrong 'length len))
(do ((F (byte-ref bytes (+ -1 len))
(+ (byte-ref bytes idx) (/ F 256)))
(idx (+ -2 len) (+ -1 idx)))
((<= idx 1)
(set! F (/ (+ (logand #x7F (byte-ref bytes 1)) (/ F 256)) 128))
(cond ((< 0 E 255) (* (if S (- one) one) (expt 2 (- E 127)) (+ 1 F)))
((zero? E)
(if (zero? F)
(if S (- zero) zero)
(* (if S (- one) one) (expt 2 -126) F)))
;; E must be 255
((not (zero? F)) (/ zero zero))
(else (/ (if S (- one) one) zero))))))
;; S EEEEEEE E FFFFFFF FFFFFFFF FFFFFFFF
;; ========= ========= ======== ========
;; 0 1 8 9 31
;;@example
;;(bytes->ieee-float (bytes 0 0 0 0)) @result{} 0.0
;;(bytes->ieee-float (bytes #x80 0 0 0)) @result{} -0.0
;;(bytes->ieee-float (bytes #x40 0 0 0)) @result{} 2.0
;;(bytes->ieee-float (bytes #x40 #xd0 0 0)) @result{} 6.5
;;(bytes->ieee-float (bytes #xc0 #xd0 0 0)) @result{} -6.5
;;
;;(bytes->ieee-float (bytes 0 #x80 0 0)) @result{} 11.754943508222875e-39
;;(bytes->ieee-float (bytes 0 #x40 0 0)) @result{} 5.877471754111437e-39
;;(bytes->ieee-float (bytes 0 0 0 1)) @result{} 1.401298464324817e-45
;;
;;(bytes->ieee-float (bytes #xff #x80 0 0)) @result{} -inf.0
;;(bytes->ieee-float (bytes #x7f #x80 0 0)) @result{} +inf.0
;;(bytes->ieee-float (bytes #x7f #x80 0 1)) @result{} 0/0
;;(bytes->ieee-float (bytes #x7f #xc0 0 0)) @result{} 0/0
;;@end example
;;@body
;;@1 must be a 8-element byte-array. @0 calculates and returns the
;;value of @1 interpreted as a big-endian IEEE 8-byte (64-bit) number.
(define (bytes->ieee-double bytes)
(define zero (or (string->number "0.0") 0))
(define one (or (string->number "1.0") 1))
(define len (bytes-length bytes))
(define S (logbit? 7 (byte-ref bytes 0)))
(define E (+ (ash (logand #x7F (byte-ref bytes 0)) 4)
(ash (logand #xF0 (byte-ref bytes 1)) -4)))
(if (not (eqv? 8 len))
(slib:error 'bytes->ieee-double 'wrong 'length len))
(do ((F (byte-ref bytes (+ -1 len))
(+ (byte-ref bytes idx) (/ F 256)))
(idx (+ -2 len) (+ -1 idx)))
((<= idx 1)
(set! F (/ (+ (logand #x0F (byte-ref bytes 1)) (/ F 256)) 16))
(cond ((< 0 E 2047) (* (if S (- one) one) (expt 2 (- E 1023)) (+ 1 F)))
((zero? E)
(if (zero? F)
(if S (- zero) zero)
(* (if S (- one) one) (expt 2 -1022) F)))
;; E must be 2047
((not (zero? F)) (/ zero zero))
(else (/ (if S (- one) one) zero))))))
;; S EEEEEEE EEEE FFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
;; ========= ========= ======== ======== ======== ======== ======== ========
;; 0 1 11 12 63
;;@example
;;(bytes->ieee-double (bytes 0 0 0 0 0 0 0 0)) @result{} 0.0
;;(bytes->ieee-double (bytes #x80 0 0 0 0 0 0 0)) @result{} -0.0
;;(bytes->ieee-double (bytes #x40 0 0 0 0 0 0 0)) @result{} 2.0
;;(bytes->ieee-double (bytes #x40 #x1A 0 0 0 0 0 0)) @result{} 6.5
;;(bytes->ieee-double (bytes #xC0 #x1A 0 0 0 0 0 0)) @result{} -6.5
;;
;;(bytes->ieee-double (bytes 0 8 0 0 0 0 0 0)) @result{} 11.125369292536006e-309
;;(bytes->ieee-double (bytes 0 4 0 0 0 0 0 0)) @result{} 5.562684646268003e-309
;;(bytes->ieee-double (bytes 0 0 0 0 0 0 0 1)) @result{} 4.0e-324
;;
;;(bytes->ieee-double (bytes #xFF #xF0 0 0 0 0 0 0)) @result{} -inf.0
;;(bytes->ieee-double (bytes #x7F #xF0 0 0 0 0 0 0)) @result{} +inf.0
;;(bytes->ieee-double (bytes #x7F #xF8 0 0 0 0 0 0)) @result{} 0/0
;;@end example
;;@args x
;;Returns a 4-element byte-array encoding the IEEE single-precision
;;floating-point of @1.
(define ieee-float->bytes
(let ((zero (or (string->number "0.0") 0))
(exactify (if (provided? 'inexact) inexact->exact identity)))
(lambda (flt)
(define byts (make-bytes 4 0))
(define S (and (real? flt) (negative? (if (zero? flt) (/ flt) flt))))
(define (scale flt scl)
(cond ((zero? scl) (out (/ flt 2) scl))
((>= flt 16)
(let ((flt/16 (/ flt 16)))
(cond ((= flt/16 flt)
(byte-set! byts 0 (if S #xFF #x7F))
(byte-set! byts 1 #x80)
byts)
(else (scale flt/16 (+ scl 4))))))
((>= flt 2) (scale (/ flt 2) (+ scl 1)))
((and (>= scl 4)
(< (* 16 flt) 1)) (scale (* flt 16) (+ scl -4)))
((< flt 1) (scale (* flt 2) (+ scl -1)))
(else (out (+ -1 flt) scl))))
(define (out flt scl)
(do ((flt (* 128 flt) (* 256 (- flt val)))
(val (exactify (floor (* 128 flt)))
(exactify (floor (* 256 (- flt val)))))
(idx 1 (+ 1 idx)))
((> idx 3)
(byte-set! byts 1 (bitwise-if #x80 (ash scl 7) (byte-ref byts 1)))
(byte-set! byts 0 (+ (if S 128 0) (ash scl -1)))
byts)
(byte-set! byts idx val)))
(set! flt (magnitude flt))
(cond ((zero? flt) (if S (byte-set! byts 0 #x80)) byts)
((or (not (real? flt))
(not (= flt flt)))
(byte-set! byts 0 (if S #xFF #x7F))
(byte-set! byts 1 #xC0)
byts)
(else (scale flt 127))))))
;;@example
;;(bytes->list (ieee-float->bytes 0.0)) @result{} (0 0 0 0)
;;(bytes->list (ieee-float->bytes -0.0)) @result{} (128 0 0 0)
;;(bytes->list (ieee-float->bytes 2.0)) @result{} (64 0 0 0)
;;(bytes->list (ieee-float->bytes 6.5)) @result{} (64 208 0 0)
;;(bytes->list (ieee-float->bytes -6.5)) @result{} (192 208 0 0)
;;
;;(bytes->list (ieee-float->bytes 11.754943508222875e-39)) @result{} ( 0 128 0 0)
;;(bytes->list (ieee-float->bytes 5.877471754111438e-39)) @result{} ( 0 64 0 0)
;;(bytes->list (ieee-float->bytes 1.401298464324817e-45)) @result{} ( 0 0 0 1)
;;
;;(bytes->list (ieee-float->bytes -inf.0)) @result{} (255 128 0 0)
;;(bytes->list (ieee-float->bytes +inf.0)) @result{} (127 128 0 0)
;;(bytes->list (ieee-float->bytes 0/0)) @result{} (127 192 0 0)
;;@end example
;;@args x
;;Returns a 8-element byte-array encoding the IEEE double-precision
;;floating-point of @1.
(define ieee-double->bytes
(let ((zero (or (string->number "0.0") 0))
(exactify (if (provided? 'inexact) inexact->exact identity)))
(lambda (flt)
(define byts (make-bytes 8 0))
(define S (and (real? flt) (negative? (if (zero? flt) (/ flt) flt))))
(define (scale flt scl)
(cond ((zero? scl) (out (/ flt 2) scl))
((>= flt 16)
(let ((flt/16 (/ flt 16)))
(cond ((= flt/16 flt)
(byte-set! byts 0 (if S #xFF #x7F))
(byte-set! byts 1 #xF0)
byts)
(else (scale flt/16 (+ scl 4))))))
((>= flt 2) (scale (/ flt 2) (+ scl 1)))
((and (>= scl 4)
(< (* 16 flt) 1)) (scale (* flt 16) (+ scl -4)))
((< flt 1) (scale (* flt 2) (+ scl -1)))
(else (out (+ -1 flt) scl))))
(define (out flt scl)
(do ((flt (* 16 flt) (* 256 (- flt val)))
(val (exactify (floor (* 16 flt)))
(exactify (floor (* 256 (- flt val)))))
(idx 1 (+ 1 idx)))
((> idx 7)
(byte-set! byts 1 (bitwise-if #xF0 (ash scl 4) (byte-ref byts 1)))
(byte-set! byts 0 (+ (if S 128 0) (ash scl -4)))
byts)
(byte-set! byts idx val)))
(set! flt (magnitude flt))
(cond ((zero? flt) (if S (byte-set! byts 0 #x80)) byts)
((or (not (real? flt))
(not (= flt flt)))
(byte-set! byts 0 #x7F)
(byte-set! byts 1 #xF8)
byts)
(else (scale flt 1023))))))
;;@example
;;(bytes->list (ieee-double->bytes 0.0)) @result{} (0 0 0 0 0 0 0 0)
;;(bytes->list (ieee-double->bytes -0.0)) @result{} (128 0 0 0 0 0 0 0)
;;(bytes->list (ieee-double->bytes 2.0)) @result{} (64 0 0 0 0 0 0 0)
;;(bytes->list (ieee-double->bytes 6.5)) @result{} (64 26 0 0 0 0 0 0)
;;(bytes->list (ieee-double->bytes -6.5)) @result{} (192 26 0 0 0 0 0 0)
;;
;;(bytes->list (ieee-double->bytes 11.125369292536006e-309))
;; @result{} ( 0 8 0 0 0 0 0 0)
;;(bytes->list (ieee-double->bytes 5.562684646268003e-309))
;; @result{} ( 0 4 0 0 0 0 0 0)
;;(bytes->list (ieee-double->bytes 4.0e-324))
;; @result{} ( 0 0 0 0 0 0 0 1)
;;
;;(bytes->list (ieee-double->bytes -inf.0)) @result{} (255 240 0 0 0 0 0 0)
;;(bytes->list (ieee-double->bytes +inf.0)) @result{} (127 240 0 0 0 0 0 0)
;;(bytes->list (ieee-double->bytes 0/0)) @result{} (127 248 0 0 0 0 0 0)
;;@end example
;;@subsubheading Byte Collation Order
;;
;;@noindent
;;The @code{string<?} ordering of big-endian byte-array
;;representations of fixed and IEEE floating-point numbers agrees with
;;the numerical ordering only when those numbers are non-negative.
;;
;;@noindent
;;Straighforward modification of these formats can extend the
;;byte-collating order to work for their entire ranges. This
;;agreement enables the full range of numbers as keys in
;;@dfn{indexed-sequential-access-method} databases.
;;@body
;;Modifies sign bit of @1 so that @code{string<?} ordering of
;;two's-complement byte-vectors matches numerical order. @0 returns
;;@1 and is its own functional inverse.
(define (integer-byte-collate! byte-vector)
(byte-set! byte-vector 0 (logxor #x80 (byte-ref byte-vector 0)))
byte-vector)
;;@body
;;Returns copy of @1 with sign bit modified so that @code{string<?}
;;ordering of two's-complement byte-vectors matches numerical order.
;;@0 is its own functional inverse.
(define (integer-byte-collate byte-vector)
(integer-byte-collate! (bytes-copy byte-vector)))
;;@body
;;Modifies @1 so that @code{string<?} ordering of IEEE floating-point
;;byte-vectors matches numerical order. @0 returns @1.
(define (ieee-byte-collate! byte-vector)
(cond ((logtest #x80 (byte-ref byte-vector 0))
(do ((idx (+ -1 (bytes-length byte-vector)) (+ -1 idx)))
((negative? idx))
(byte-set! byte-vector idx
(logxor #xFF (byte-ref byte-vector idx)))))
(else
(byte-set! byte-vector 0 (logxor #x80 (byte-ref byte-vector 0)))))
byte-vector)
;;@body
;;Given @1 modified by @code{ieee-byte-collate!}, reverses the @1
;;modifications.
(define (ieee-byte-decollate! byte-vector)
(cond ((not (logtest #x80 (byte-ref byte-vector 0)))
(do ((idx (+ -1 (bytes-length byte-vector)) (+ -1 idx)))
((negative? idx))
(byte-set! byte-vector idx
(logxor #xFF (byte-ref byte-vector idx)))))
(else
(byte-set! byte-vector 0 (logxor #x80 (byte-ref byte-vector 0)))))
byte-vector)
;;@body
;;Returns copy of @1 encoded so that @code{string<?} ordering of IEEE
;;floating-point byte-vectors matches numerical order.
(define (ieee-byte-collate byte-vector)
(ieee-byte-collate! (bytes-copy byte-vector)))
;;@body
;;Given @1 returned by @code{ieee-byte-collate}, reverses the @1
;;modifications.
(define (ieee-byte-decollate byte-vector)
(ieee-byte-decollate! (bytes-copy byte-vector)))
|