/usr/share/slib/dft.scm is in slib 3b1-3.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | ;;;"dft.scm" Discrete Fourier Transform
;Copyright (C) 1999, 2003, 2006 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;;; For one-dimensional power-of-two length see:
;;; Introduction to Algorithms (MIT Electrical
;;; Engineering and Computer Science Series)
;;; by Thomas H. Cormen, Charles E. Leiserson (Contributor),
;;; Ronald L. Rivest (Contributor)
;;; MIT Press; ISBN: 0-262-03141-8 (July 1990)
;;; Flipped polarity of exponent to agree with
;;; http://en.wikipedia.org/wiki/Discrete_Fourier_transform
(require 'array)
(require 'logical)
(require 'subarray)
;;@code{(require 'dft)} or
;;@code{(require 'Fourier-transform)}
;;@ftindex dft, Fourier-transform
;;
;;@code{fft} and @code{fft-1} compute the Fast-Fourier-Transforms
;;(O(n*log(n))) of arrays whose dimensions are all powers of 2.
;;
;;@code{sft} and @code{sft-1} compute the Discrete-Fourier-Transforms
;;for all combinations of dimensions (O(n^2)).
(define (dft:sft1d! new ara n dir)
(define scl (if (negative? dir) (/ 1.0 n) 1))
(define pi2i/n (/ (* 0-8i (atan 1) dir) n))
(do ((k (+ -1 n) (+ -1 k)))
((negative? k) new)
(let ((sum 0))
(do ((j (+ -1 n) (+ -1 j)))
((negative? j) (array-set! new sum k))
(set! sum (+ sum (* (exp (* pi2i/n j k))
(array-ref ara j)
scl)))))))
(define (dft:fft1d! new ara n dir)
(define scl (if (negative? dir) (/ 1.0 n) 1))
(define lgn (integer-length (+ -1 n)))
(define pi2i (* 0-8i (atan 1) dir))
(do ((k 0 (+ 1 k)))
((>= k n))
(array-set! new (* (array-ref ara k) scl) (reverse-bit-field k 0 lgn)))
(do ((s 1 (+ 1 s))
(m (expt 2 1) (expt 2 (+ 1 s))))
((> s lgn) new)
(let ((w_m (exp (/ pi2i m)))
(m/2-1 (+ (quotient m 2) -1)))
(do ((j 0 (+ 1 j))
(w 1 (* w w_m)))
((> j m/2-1))
(do ((k j (+ m k))
(k+m/2 (+ j m/2-1 1) (+ m k m/2-1 1)))
((>= k n))
(let ((t (* w (array-ref new k+m/2)))
(u (array-ref new k)))
(array-set! new (+ u t) k)
(array-set! new (- u t) k+m/2)))))))
;;; Row-major order is suboptimal for Scheme.
;;; N are copied into and operated on in place
;;; A[a, *, c] --> N1[c, a, *]
;;; N1[c, *, b] --> N2[b, c, *]
;;; N2[b, *, a] --> N3[a, b, *]
(define (dft:rotate-indexes idxs)
(define ridxs (reverse idxs))
(cons (car ridxs) (reverse (cdr ridxs))))
(define (dft:dft prot ara dir transform-1d)
(define (ranker ara rdx dims)
(define ndims (dft:rotate-indexes dims))
(if (negative? rdx)
ara
(let ((new (apply make-array prot ndims))
(rdxlen (car (last-pair ndims))))
(define x1d
(cond (transform-1d)
((eqv? rdxlen (expt 2 (integer-length (+ -1 rdxlen))))
dft:fft1d!)
(else dft:sft1d!)))
(define (ramap rdims inds)
(cond ((null? rdims)
(x1d (apply subarray new (dft:rotate-indexes inds))
(apply subarray ara inds)
rdxlen dir))
((null? inds)
(do ((i (+ -1 (car rdims)) (+ -1 i)))
((negative? i))
(ramap (cddr rdims)
(cons #f (cons i inds)))))
(else
(do ((i (+ -1 (car rdims)) (+ -1 i)))
((negative? i))
(ramap (cdr rdims) (cons i inds))))))
(if (= 1 (length dims))
(x1d new ara rdxlen dir)
(ramap (reverse dims) '()))
(ranker new (+ -1 rdx) ndims))))
(ranker ara (+ -1 (array-rank ara)) (array-dimensions ara)))
;;@args array prot
;;@args array
;;@var{array} is an array of positive rank. @code{sft} returns an
;;array of type @2 (defaulting to @1) of complex numbers comprising
;;the @dfn{Discrete Fourier Transform} of @var{array}.
(define (sft ara . prot)
(dft:dft (if (null? prot) ara (car prot)) ara 1 dft:sft1d!))
;;@args array prot
;;@args array
;;@var{array} is an array of positive rank. @code{sft-1} returns an
;;array of type @2 (defaulting to @1) of complex numbers comprising
;;the inverse Discrete Fourier Transform of @var{array}.
(define (sft-1 ara . prot)
(dft:dft (if (null? prot) ara (car prot)) ara -1 dft:sft1d!))
(define (dft:check-dimensions ara name)
(for-each (lambda (n)
(if (not (eqv? n (expt 2 (integer-length (+ -1 n)))))
(slib:error name "array length not power of 2" n)))
(array-dimensions ara)))
;;@args array prot
;;@args array
;;@var{array} is an array of positive rank whose dimensions are all
;;powers of 2. @code{fft} returns an array of type @2 (defaulting to
;;@1) of complex numbers comprising the Discrete Fourier Transform of
;;@var{array}.
(define (fft ara . prot)
(dft:check-dimensions ara 'fft)
(dft:dft (if (null? prot) ara (car prot)) ara 1 dft:fft1d!))
;;@args array prot
;;@args array
;;@var{array} is an array of positive rank whose dimensions are all
;;powers of 2. @code{fft-1} returns an array of type @2 (defaulting
;;to @1) of complex numbers comprising the inverse Discrete Fourier
;;Transform of @var{array}.
(define (fft-1 ara . prot)
(dft:check-dimensions ara 'fft-1)
(dft:dft (if (null? prot) ara (car prot)) ara -1 dft:fft1d!))
;;@code{dft} and @code{dft-1} compute the discrete Fourier transforms
;;using the best method for decimating each dimension.
;;@args array prot
;;@args array
;;@0 returns an array of type @2 (defaulting to @1) of complex
;;numbers comprising the Discrete Fourier Transform of @var{array}.
(define (dft ara . prot)
(dft:dft (if (null? prot) ara (car prot)) ara 1 #f))
;;@args array prot
;;@args array
;;@0 returns an array of type @2 (defaulting to @1) of
;;complex numbers comprising the inverse Discrete Fourier Transform of
;;@var{array}.
(define (dft-1 ara . prot)
(dft:dft (if (null? prot) ara (car prot)) ara -1 #f))
;;@noindent
;;@code{(fft-1 (fft @var{array}))} will return an array of values close to
;;@var{array}.
;;
;;@example
;;(fft '#(1 0+i -1 0-i 1 0+i -1 0-i)) @result{}
;;
;;#(0.0 0.0 0.0+628.0783185208527e-18i 0.0
;; 0.0 0.0 8.0-628.0783185208527e-18i 0.0)
;;
;;(fft-1 '#(0 0 0 0 0 0 8 0)) @result{}
;;
;;#(1.0 -61.23031769111886e-18+1.0i -1.0 61.23031769111886e-18-1.0i
;; 1.0 -61.23031769111886e-18+1.0i -1.0 61.23031769111886e-18-1.0i)
;;@end example
|