/usr/share/slib/logical.scm is in slib 3b1-3.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | ;;;; "logical.scm", bit access and operations for integers for Scheme
;;; Copyright (C) 1991, 1993, 2001, 2003, 2005 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(define logical:boole-xor
'#(#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
#(1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14)
#(2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13)
#(3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12)
#(4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11)
#(5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10)
#(6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9)
#(7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8)
#(8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7)
#(9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6)
#(10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5)
#(11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4)
#(12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3)
#(13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2)
#(14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1)
#(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)))
(define logical:boole-and
'#(#(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
#(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1)
#(0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2)
#(0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3)
#(0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4)
#(0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5)
#(0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6)
#(0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7)
#(0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8)
#(0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9)
#(0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10)
#(0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11)
#(0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12)
#(0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13)
#(0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14)
#(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)))
(define (logical:ash-4 x)
(if (negative? x)
(+ -1 (quotient (+ 1 x) 16))
(quotient x 16)))
(define (logical:reduce op4 ident)
(lambda args
(do ((res ident (op4 res (car rgs) 1 0))
(rgs args (cdr rgs)))
((null? rgs) res))))
;@
(define logand
(letrec
((lgand
(lambda (n2 n1 scl acc)
(cond ((= n1 n2) (+ acc (* scl n1)))
((zero? n2) acc)
((zero? n1) acc)
(else (lgand (logical:ash-4 n2)
(logical:ash-4 n1)
(* 16 scl)
(+ (* (vector-ref (vector-ref logical:boole-and
(modulo n1 16))
(modulo n2 16))
scl)
acc)))))))
(logical:reduce lgand -1)))
;@
(define logior
(letrec
((lgior
(lambda (n2 n1 scl acc)
(cond ((= n1 n2) (+ acc (* scl n1)))
((zero? n2) (+ acc (* scl n1)))
((zero? n1) (+ acc (* scl n2)))
(else (lgior (logical:ash-4 n2)
(logical:ash-4 n1)
(* 16 scl)
(+ (* (- 15 (vector-ref
(vector-ref logical:boole-and
(- 15 (modulo n1 16)))
(- 15 (modulo n2 16))))
scl)
acc)))))))
(logical:reduce lgior 0)))
;@
(define logxor
(letrec
((lgxor
(lambda (n2 n1 scl acc)
(cond ((= n1 n2) acc)
((zero? n2) (+ acc (* scl n1)))
((zero? n1) (+ acc (* scl n2)))
(else (lgxor (logical:ash-4 n2)
(logical:ash-4 n1)
(* 16 scl)
(+ (* (vector-ref (vector-ref logical:boole-xor
(modulo n1 16))
(modulo n2 16))
scl)
acc)))))))
(logical:reduce lgxor 0)))
;@
(define (lognot n) (- -1 n))
;@
(define (logtest n1 n2)
(not (zero? (logand n1 n2))))
;@
(define (logbit? index n)
(logtest (expt 2 index) n))
;@
(define (copy-bit index to bool)
(if bool
(logior to (arithmetic-shift 1 index))
(logand to (lognot (arithmetic-shift 1 index)))))
;@
(define (bitwise-if mask n0 n1)
(logior (logand mask n0)
(logand (lognot mask) n1)))
;@
(define (bit-field n start end)
(logand (lognot (ash -1 (- end start)))
(arithmetic-shift n (- start))))
;@
(define (copy-bit-field to from start end)
(bitwise-if (arithmetic-shift (lognot (ash -1 (- end start))) start)
(arithmetic-shift from start)
to))
;@
(define (rotate-bit-field n count start end)
(define width (- end start))
(set! count (modulo count width))
(let ((mask (lognot (ash -1 width))))
(define zn (logand mask (arithmetic-shift n (- start))))
(logior (arithmetic-shift
(logior (logand mask (arithmetic-shift zn count))
(arithmetic-shift zn (- count width)))
start)
(logand (lognot (ash mask start)) n))))
;@
(define (arithmetic-shift n count)
(if (negative? count)
(let ((k (expt 2 (- count))))
(if (negative? n)
(+ -1 (quotient (+ 1 n) k))
(quotient n k)))
(* (expt 2 count) n)))
;@
(define integer-length
(letrec ((intlen (lambda (n tot)
(case n
((0 -1) (+ 0 tot))
((1 -2) (+ 1 tot))
((2 3 -3 -4) (+ 2 tot))
((4 5 6 7 -5 -6 -7 -8) (+ 3 tot))
(else (intlen (logical:ash-4 n) (+ 4 tot)))))))
(lambda (n) (intlen n 0))))
;@
(define bitwise-bit-count
(letrec ((logcnt (lambda (n tot)
(if (zero? n)
tot
(logcnt (quotient n 16)
(+ (vector-ref
'#(0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4)
(modulo n 16))
tot))))))
(lambda (n)
(cond ((negative? n) (lognot (logcnt (lognot n) 0)))
((positive? n) (logcnt n 0))
(else 0)))))
;@
(define (logcount n)
(cond ((negative? n) (bitwise-bit-count (lognot n)))
(else (bitwise-bit-count n))))
;@
(define (log2-binary-factors n)
(+ -1 (integer-length (logand n (- n)))))
(define (bit-reverse k n)
(do ((m (if (negative? n) (lognot n) n) (arithmetic-shift m -1))
(k (+ -1 k) (+ -1 k))
(rvs 0 (logior (arithmetic-shift rvs 1) (logand 1 m))))
((negative? k) (if (negative? n) (lognot rvs) rvs))))
;@
(define (reverse-bit-field n start end)
(define width (- end start))
(let ((mask (lognot (ash -1 width))))
(define zn (logand mask (arithmetic-shift n (- start))))
(logior (arithmetic-shift (bit-reverse width zn) start)
(logand (lognot (ash mask start)) n))))
;@
(define (integer->list k . len)
(if (null? len)
(do ((k k (arithmetic-shift k -1))
(lst '() (cons (odd? k) lst)))
((<= k 0) lst))
(do ((idx (+ -1 (car len)) (+ -1 idx))
(k k (arithmetic-shift k -1))
(lst '() (cons (odd? k) lst)))
((negative? idx) lst))))
;@
(define (list->integer bools)
(do ((bs bools (cdr bs))
(acc 0 (+ acc acc (if (car bs) 1 0))))
((null? bs) acc)))
(define (booleans->integer . bools)
(list->integer bools))
;;;;@ SRFI-60 aliases
(define ash arithmetic-shift)
(define bitwise-ior logior)
(define bitwise-xor logxor)
(define bitwise-and logand)
(define bitwise-not lognot)
(define bit-count logcount)
(define bit-set? logbit?)
(define any-bits-set? logtest)
(define first-set-bit log2-binary-factors)
(define bitwise-merge bitwise-if)
(provide 'srfi-60)
;;; Legacy
;;(define (logical:rotate k count len) (rotate-bit-field k count 0 len))
;;(define (logical:ones deg) (lognot (ash -1 deg)))
;;(define integer-expt expt) ; legacy name
|