/usr/share/snd/dlocsig.scm is in snd 11.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Copyright (c) 92, 93, 94, 98, 99, 2000, 2001 Fernando Lopez Lezcano.
;;; All rights reserved.
;;; Use and copying of this software and preparation of derivative works
;;; based upon this software are permitted and may be copied as long as
;;; no fees or compensation are charged for use, copying, or accessing
;;; this software and all copies of this software include this copyright
;;; notice. Suggestions, comments and bug reports are welcome. Please
;;; address email to: nando@ccrma.stanford.edu
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Dynamic multichannel three-dimentional signal locator
;;; (wow that sound good! :-)
;;;
;;; by Fernando Lopez Lezcano
;;; CCRMA, Stanford University
;;; nando@ccrma.stanford.edu
;;;
;;; Thanks to Juan Pampin for help in the initial coding of the new version
;;; and for prodding me to finish it. To Joseph L. Anderson and Marcelo Perticone
;;; for insights into the Ambisonics coding and decoding process.
;;; http://www.york.ac.uk/inst/mustech/3d_audio/ambison.htm for more details...
;;; CHANGES:
;;; 04/26/2010: add delay hack to remove artifacts in delay output, fix other bugs (Nando)
;;; added proper doppler src conversion thanks to Bill's code in dsp.scm
;;; merged in code for higher order ambisonics (up to 2nd order h/v)
;;; 06/28/2009: remove class/method stuff for s7 (Bill)
;;; 01/08/2007: make a few functions local etc (Bill)
;;; 07/05/2006: translate to scheme, use move-sound generator (Bill)
;;; 04/29/2002: fixed reverb envelopes for no reverb under clisp
;;; 01/14/2001: added multichannel reverb output with local and global control
;;; in the reverberator (the hrtf code is currently not merged into
;;; this version). Reverb-amount can now be an envelope. Ambisonics
;;; now outputs signal to the reverb stream.
;;; 02/05/2000: . don't compile as part of the clm package, import symbols
;;; . switched over to clm-2, otherwise convolve HAS to operate
;;; on a file, we want convolve to process the output of the
;;; doppler delay line (for the hrtf code)
;;; 02/03/2000: started working on hrtf's
;;; 01/15/2000: rewrote transform-path code to account for 3d paths
;;; 01/13/2000: . changed order of b-format output file to W:X:Y:Z from X:Y:Z:W
;;; . plot method would bomb with paths that had constant velocity,
;;; fixed norm function
;;; . added make-literal-path and friends to enable to create
;;; paths with user supplied coordinates
;;; . decoded-ambisonics was rotating sounds in the wrong direction
;;; . in change-direction: only check for change if both points are
;;; different (intersect-inside-radius can create a redundant point)
;;; 11/28/1999: decoded-ambisonics is now working for N channels
;;; includes reverberation send
;;; 11/27/1999: set minimum segment distance for rendering, otherwise for long
;;; lines the amplitude envelope does not reflect power curve.
;;; 11/26/1999: added code to check for intersection with inner radius
;;; fixed nearest-point to handle trivial cases
;;; 01/21/2001: fix envelope generated for mono reverberation stream.
;;; change input and output to use frames and mixers
;;; fix supersonic movement warning code
;;; > add warnings when object goes outside of area covered by speakers
;;; > fix one common vertice case of 3 speaker group transitions
;;; > redo the old code for multiple images (reflections in a rectangular room)
;;; a bit of a pain, would have to add z (ceiling and floor reflections)
;;; would be better to find general purpose code for non-rectangular rooms
;;; > we really need a good N-channel reverb [fixed with freeverb]
;;; > change reverb to be multichannel, add local and global reverb
;;; 11/24/1999: should use a waveguide reverb like pph@ccrma project
;;; would be a good idea to inject the signal through a center
;;; injection point that moves inside the virtual cube, more like
;;; a physical model of what actually happens in a room
;;; | add ambisonics back-end
;;; 11/24/1999: code to b-format sort of working
;;; how to deal with the inner space and 0:0:0?
;;; decoded format not working if we incorporate distance att
;;; formulas are wrong...
;;; > add hrtf back-end
;;; > extract a supath from an existing path
;;; > recode the transformation functions
;;; > add arcs of circles and other basic geometric paths
;;; make it so that you can concatenate them...
;;; | 11/25/1999 fix the "diagonal case" (sounds go through the head of the listener)
(provide 'snd-dlocsig.scm)
(define* (envelope-interp x env base) ;env is list of x y breakpoint pairs, interpolate at x returning y
"(envelope-interp x env (base 1.0)) -> value of env at x; base controls connecting segment
type: (envelope-interp .3 '(0 0 .5 1 1 0) -> .6"
(cond ((null? env) 0.0) ;no data -- return 0.0
((or (<= x (car env)) ;we're sitting on x val (or if < we blew it)
(null? (cddr env))) ;or we're at the end of the list
(cadr env)) ;so return current y value
((> (caddr env) x) ;x <= next env x axis value
(if (or (= (cadr env) (cadddr env))
(and base (= base 0.0)))
(cadr env) ;y1=y0, so just return y0 (avoid endless calculations below)
(if (or (not base) (= base 1.0))
(+ (cadr env) ;y0+(x-x0)*(y1-y0)/(x1-x0)
(* (- x (car env))
(/ (- (cadddr env) (cadr env))
(- (caddr env) (car env)))))
(+ (cadr env) ; this does not exactly match xramp-channel
(* (/ (- (cadddr env) (cadr env))
(- base 1.0))
(- (expt base (/ (- x (car env))
(- (caddr env) (car env))))
1.0))))))
(else (envelope-interp x (cddr env) base)))) ;go on looking for x segment
(define (x-norm env xmax)
"(x-norm env xmax) changes 'env' x axis values so that they run to 'xmax'"
(let ((scl (/ xmax (list-ref env (- (length env) 2))))
(val '())
(len (length env)))
(do ((i 0 (+ i 2)))
((>= i len))
(set! val (cons (* (list-ref env i) scl) val))
(set! val (cons (list-ref env (+ i 1)) val)))
(reverse val)))
;;;;;;;;;;;;;;;;;;;;;
;;; Global Parameters
;;; Define the base in which all angles are expressed
(define dlocsig-one-turn 360)
(define (one-turn-is unit)
"(one-turn-is unit) sets dlocsig's angle unit (degrees=360, the default or radians=2*pi)"
(set! dlocsig-one-turn unit)
unit)
(define (angles-in-degree)
"(angles-in-degree) sets dlocsig's unit to degrees (the default)"
(one-turn-is 360))
(define (angles-in-radians)
"(angles-in-radians) sets dlocsig's unit to radians (default is degrees)"
(one-turn-is (* 2 pi)))
(define (angles-in-turns)
"(angles-in-turns) sets dlocsig's angle unit to turns"
(one-turn-is 1))
;; speed of sound in air, in meters per second under normal conditions
(define dlocsig-speed-of-sound 344)
(define (distances-in-meters)
"(distances-in-meters) sets dlocsig's distances in meters (the default)"
(set! dlocsig-speed-of-sound 344)
344)
(define (distances-in-feet)
"(distances-in-feet) sets dlocsig's distances in feet (default is meters)"
(set! dlocsig-speed-of-sound 1128)
1128)
;; default for whether to use two or three-dimensional speaker configurations
(define dlocsig-3d #f)
;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Speaker Configuration
(define* (make-group (id 0) (size 0) vertices speakers matrix)
(list 'group id size vertices speakers matrix))
(define group-id (make-procedure-with-setter (lambda (a) (list-ref a 1)) (lambda (a b) (list-set! a 1 b))))
(define group-size (make-procedure-with-setter (lambda (a) (list-ref a 2)) (lambda (a b) (list-set! a 2 b))))
(define group-vertices (make-procedure-with-setter (lambda (a) (list-ref a 3)) (lambda (a b) (list-set! a 3 b))))
(define group-speakers (make-procedure-with-setter (lambda (a) (list-ref a 4)) (lambda (a b) (list-set! a 4 b))))
(define group-matrix (make-procedure-with-setter (lambda (a) (list-ref a 5)) (lambda (a b) (list-set! a 5 b))))
(define* (make-speaker-config number dimension coords groups delays omap)
(list 'speaker-config number dimension coords groups delays omap))
(define speaker-config-number (make-procedure-with-setter (lambda (a) (list-ref a 1)) (lambda (a b) (list-set! a 1 b))))
(define speaker-config-dimension (make-procedure-with-setter (lambda (a) (list-ref a 2)) (lambda (a b) (list-set! a 2 b))))
(define speaker-config-coords (make-procedure-with-setter (lambda (a) (list-ref a 3)) (lambda (a b) (list-set! a 3 b))))
(define speaker-config-groups (make-procedure-with-setter (lambda (a) (list-ref a 4)) (lambda (a b) (list-set! a 4 b))))
(define speaker-config-delays (make-procedure-with-setter (lambda (a) (list-ref a 5)) (lambda (a b) (list-set! a 5 b))))
(define speaker-config-map (make-procedure-with-setter (lambda (a) (list-ref a 6)) (lambda (a b) (list-set! a 6 b))))
;;; Create a speaker configuration structure based on a list of speakers
;;;
;;; speakers: list of angles of speakers with respect to 0
;;; delays: list of delays for each speaker, zero if nil
;;; distances: list relative speaker distances,
;;; (instead of delays)
;;; omap: mapping of speakers to output channels
;;; content should be output channel number, zero based
(define (cis a)
"(cis a) returns e^(ia)"
(exp (* 0.0+1.0i a)))
(defmacro when (test . forms)
`(if ,test (begin ,@forms)))
(define (copy-list lis)
"(copy-list lst) returns a copy of 'lst'"
(append lis '()))
(define (third a)
"(third lst) returns the 3rd element of 'lst'"
(if (>= (length a) 3) (list-ref a 2) #f))
(define (fourth a)
"(fourth lst) returns the 4th element of 'lst'"
(if (>= (length a) 4) (list-ref a 3) #f))
(define* (last a n)
"(last lst) returns the last 'n' elements of 'lst' as a list"
(if (null? a)
#f
(if (not n)
(list (list-ref a (- (length a) 1)))
(let ((res '()))
(do ((i 0 (+ 1 i)))
((= i n))
(set! res (cons (list-ref a (- (length a) (+ i 1))) res)))
res))))
(define (listp a)
"(listp lst) is #t is 'lst' is a non-null list"
(and (list? a) (not (null? a))))
(define (make-list-1 n val)
(let ((lst '()))
(do ((i 0 (+ i 1)))
((= i n))
(set! lst (cons val lst)))
lst))
(define* (arrange-speakers (speakers '())
(groups '())
(delays '())
(distances '())
(channel-map '()))
;; sanity checking of configuration
(define (has-duplicates? lst)
;; from ice-9/common-list.scm
(cond ((null? lst) #f)
((member (car lst) (cdr lst)) #t)
(else (has-duplicates? (cdr lst)))))
(define (invert3x3 mat) ; invert a 3x3 matrix using cofactors
(let ((m (make-mixer 3))
(det 0.0)
(invdet 0.0))
(do ((i 0 (+ 1 i)))
((= i 3))
(do ((j 0 (+ 1 j)))
((= j 3))
(set! (mixer-ref m i j) (mixer-ref mat i j))))
(set! (mixer-ref mat 0 0) (- (* (mixer-ref m 1 1) (mixer-ref m 2 2)) (* (mixer-ref m 1 2) (mixer-ref m 2 1))))
(set! (mixer-ref mat 0 1) (- (* (mixer-ref m 0 2) (mixer-ref m 2 1)) (* (mixer-ref m 0 1) (mixer-ref m 2 2))))
(set! (mixer-ref mat 0 2) (- (* (mixer-ref m 0 1) (mixer-ref m 1 2)) (* (mixer-ref m 0 2) (mixer-ref m 1 1))))
(set! (mixer-ref mat 1 0) (- (* (mixer-ref m 1 2) (mixer-ref m 2 0)) (* (mixer-ref m 1 0) (mixer-ref m 2 2))))
(set! (mixer-ref mat 1 1) (- (* (mixer-ref m 0 0) (mixer-ref m 2 2)) (* (mixer-ref m 0 2) (mixer-ref m 2 0))))
(set! (mixer-ref mat 1 2) (- (* (mixer-ref m 0 2) (mixer-ref m 1 0)) (* (mixer-ref m 0 0) (mixer-ref m 1 2))))
(set! (mixer-ref mat 2 0) (- (* (mixer-ref m 1 0) (mixer-ref m 2 1)) (* (mixer-ref m 1 1) (mixer-ref m 2 0))))
(set! (mixer-ref mat 2 1) (- (* (mixer-ref m 0 1) (mixer-ref m 2 0)) (* (mixer-ref m 0 0) (mixer-ref m 2 1))))
(set! (mixer-ref mat 2 2) (- (* (mixer-ref m 0 0) (mixer-ref m 1 1)) (* (mixer-ref m 0 1) (mixer-ref m 1 0))))
(set! det (+ (* (mixer-ref m 0 0) (mixer-ref mat 0 0))
(* (mixer-ref m 0 1) (mixer-ref mat 1 0))
(* (mixer-ref m 0 2) (mixer-ref mat 2 0))))
(if (<= (abs det) 1e-06)
#f
(begin
(set! invdet (/ 1.0 det))
(do ((row 0 (+ 1 row)))
((= row 3))
(do ((col 0 (+ 1 col)))
((= col 3))
(set! (mixer-ref mat row col) (* (mixer-ref mat row col) invdet))))
mat))))
(define (invert2x2 mat) ; invert a 2x2 matrix
(let* ((m (make-mixer 2))
(det (- (* (mixer-ref mat 0 0) (mixer-ref mat 1 1))
(* (mixer-ref mat 1 0) (mixer-ref mat 0 1)))))
(if (<= (abs det) 1e-06)
#f
(begin
(set! (mixer-ref m 0 0) (/ (mixer-ref mat 1 1) det))
(set! (mixer-ref m 1 1) (/ (mixer-ref mat 0 0) det))
(set! (mixer-ref m 0 1) (- (/ (mixer-ref mat 0 1) det)))
(set! (mixer-ref m 1 0) (- (/ (mixer-ref mat 1 0) det)))
m))))
(if (null? speakers)
(error 'mus-error "ERROR: a speaker configuration must have at least one speaker!~%"))
(if (not (null? groups))
(let ((first-len (length (car groups))))
(for-each
(lambda (group)
(if (not (= (length group) first-len))
(error 'mus-error "ERROR: all groups must be of the same length! (~A)~%" first-len)))
groups))
;; if the speakers are defined with only azimuth angles (no elevation)
(if (not (list? (car speakers)))
;; then create the groups ourselves because it is a 2d configuration;
;; we could create the 3d configuration groups but the algorithm for
;; doing that in the generic case is not trivial
(let ((len (length speakers)))
(if (= len 1)
(set! groups (list (list 0)))
(begin
(do ((i 0 (+ 1 i))
(j 1 (+ 1 j)))
((= i len))
(set! groups (cons (list i (modulo j len)) groups)))
(set! groups (reverse groups)))))))
(if (null? groups)
(error 'mus-error "ERROR: no groups specified, speakers must be arranged in groups~%"))
(if (and (not (null? delays))
(not (null? distances)))
(error 'mus-error "ERROR: please specify delays or distances but not both~%"))
(if (not (null? delays))
(if (> (length speakers) (length delays))
(error 'mus-error "ERROR: all speaker delays have to be specified, only ~A supplied [~A]~%" (length delays) delays)
(if (< (length speakers) (length delays))
(error 'mus-error "ERROR: more speaker delays than speakers, ~A supplied instead of ~A [~A]~%" (length delays) (length speakers) delays))))
(if (not (null? delays))
(for-each
(lambda (delay)
(if (< delay 0.0) (error 'mus-error "ERROR: delays must be all positive, ~A is negative~%" delay)))
delays))
(if (not (null? distances))
(if (> (length speakers) (length distances))
(error 'mus-error "ERROR: all speaker distances have to be specified, only ~A supplied [~A]~%" (length distances) distances)
(if (< (length speakers) (length distances))
(error 'mus-error "ERROR: more speaker distances than speakers, ~A supplied instead of ~A [~A]~%" (length distances) (length speakers) distances))))
(if (not (null? distances))
(for-each
(lambda (delay)
(if (< delay 0.0) (error 'mus-error "ERROR: distances must be all positive, ~A is negative~%" delay)))
distances))
(if (not (null? channel-map))
(if (> (length speakers) (length channel-map))
(error 'mus-error "ERROR: must map all speakers to output channels, only ~A mapped [~A]~%" (length channel-map) channel-map)
(if (< (length speakers) (length channel-map))
(error 'mus-error "ERROR: trying to map more channels than there are speakers, ~A supplied instead of ~A [~A]~%"
(length channel-map) (length speakers) channel-map))))
;; collect unit vectors describing the speaker positions
(let* ((coords
(let ((val '()))
(for-each
(lambda (s) ; speakers
(let* ((a (if (list? s) (car s) s))
(e (if (list? s) (or (cadr s) 0.0) 0.0))
(evec (cis (* (/ e dlocsig-one-turn) 2 pi)))
(dxy (real-part evec))
(avec (cis (* (/ a dlocsig-one-turn) 2 pi)))
(x (* dxy (imag-part avec)))
(y (* dxy (real-part avec)))
(z (imag-part evec))
(mag (sqrt (+ (* x x) (* y y) (* z z)))))
(set! val (cons (list (/ x mag) (/ y mag) (/ z mag)) val))))
speakers)
(reverse val)))
;; minimum distance
(min-dist (if (not (null? distances))
(let ((mind (car distances)))
(for-each
(lambda (d)
(if (< d mind) (set! mind d)))
distances)
mind)
0.0))
;; find delay times from specified distances or delays
(times (let ((v (make-vct (length speakers))))
(do ((i 0 (+ 1 i)))
((= i (length speakers)))
(vct-set! v i (let ((distance (and (not (null? distances)) (list-ref distances i)))
(delay (and (not (null? delays)) (list-ref delays i))))
(or delay
(and distance
(/ (- distance min-dist) dlocsig-speed-of-sound))
0.0))))
v))
;; create the group structures
(groups (let* ((vals '())
(id 0))
(for-each
(lambda (group)
(let* ((size (length group))
(vertices (map (lambda (n)
(list-ref coords n))
group))
(matrix (if (= size 3)
(let* ((m (make-mixer 3)))
(do ((i 0 (+ 1 i)))
((= i 3))
(do ((j 0 (+ 1 j)))
((= j 3))
(mixer-set! m i j (list-ref (list-ref vertices i) j))))
(invert3x3 m))
(if (= size 2)
(let* ((m (make-mixer 2)))
(do ((i 0 (+ 1 i)))
((= i 2))
(do ((j 0 (+ 1 j)))
((= j 2))
(mixer-set! m i j (list-ref (list-ref vertices i) j))))
(invert2x2 m))
#f))))
(set! vals (cons (make-group :id id
:size size
:speakers group
:vertices vertices
:matrix matrix)
vals))
(set! id (+ 1 id))))
groups)
(reverse vals))))
;; check validity of map entries
(if channel-map
(let ((entries (length channel-map)))
(for-each
(lambda (entry)
(if (>= entry entries)
(error 'mus-error "ERROR: channel ~A in map ~A is out of range (max=~A)~%" entry channel-map entries)))
channel-map)
(if (has-duplicates? channel-map)
(error 'mus-error "ERROR: there are duplicate channels in channel-map ~A~%" channel-map))))
;; create the speaker configuration structure
(make-speaker-config :number (length speakers)
:dimension (group-size (car groups))
:coords coords
:groups groups
:delays times
:omap (let ((v (make-vector (length speakers))))
(do ((chan 0 (+ 1 chan)))
((= chan (length speakers)))
(vector-set! v chan (or (and (not (null? channel-map)) (list-ref channel-map chan))
chan)))
v))))
;;; Default speaker configurations
(define dlocsig-speaker-configs
;; by default up to eight channels, 2-d and 3-d configurations
(list
(list
;;
;; 2-D speaker configurations
;; no channels: impossible
#f
;; mono
(arrange-speakers :speakers '(0))
;; stereo
(arrange-speakers :speakers '(-60 60))
;; three channels
(arrange-speakers :speakers '(-45 45 180))
;; four channels
(arrange-speakers :speakers '(-45 45 135 225))
;; five channels (5.1 arrangement)
(arrange-speakers :speakers '(-45 0 45 135 -135))
;; six channels
(arrange-speakers :speakers '(-60 0 60 120 180 240))
;; seven channels
(arrange-speakers :speakers '(-45 0 45 100 140 -140 -100))
;; eight speakers
(arrange-speakers :speakers '(-22.5 22.5 67.5 112.5 157.5 202.5 247.5 292.5)))
;;
;; 3-D speaker configurations
;;
(list
;; no channels: impossible
#f
;; mono
#f
;; stereo
#f
;; three channels
#f
;; four channels 3d
(arrange-speakers :speakers '((-60 0) (60 0) (180 0)
(0 90))
:groups '((0 1 3) (1 2 3) (2 0 3)
;; floor
(0 1 2)))
;; five channels 3d
(arrange-speakers :speakers '((-45 0) (45 0) (135 0) (-135 0)
(0 90))
:groups '((0 1 4) (1 2 4) (2 3 4) (3 0 4)
;; floor
(0 1 2) (2 3 0)))
;; six channels 3d
(arrange-speakers :speakers '((-45 0) (45 0) (135 0) (-135 0)
(-90 60) (90 60))
:groups '((0 1 4) (1 4 5) (1 2 5) (2 3 5) (3 4 5) (3 0 4)
;; floor
(0 1 2) (2 3 0)))
;; seven channels 3d
(arrange-speakers :speakers '((-45 0) (45 0) (135 0) (-135 0)
(-60 60) (60 60) (180 60))
:groups '((0 1 4) (1 4 5) (1 2 5) (2 6 5) (2 3 6) (3 4 6) (3 0 4) (4 5 6)
;; floor
(0 1 2) (2 3 0)))
;; eight speakers 3d
(arrange-speakers :speakers '((-45 -10) (45 -10) (135 -10) (225 -10)
(-45 45) (45 45) (135 45) (225 45))
:groups '((0 4 5) (0 5 1) (5 1 2) (2 6 5) (6 7 2) (2 3 7)
(3 7 4) (3 0 4)
;; ceiling
(4 7 6) (6 5 4)
;; floor
(0 1 2) (2 3 0))))))
;;; Set a particular speaker configuration
(define* (set-speaker-configuration config (configs dlocsig-speaker-configs))
"(set-speaker-configuration config (configs dlocsig-speaker-configs)) sets a dlocsig speaker configuration"
(let ((lst (if (< (speaker-config-dimension config) 3)
(car configs)
(cadr configs)))
(num (speaker-config-number config)))
(list-set! lst num config)))
;;; Get the speaker configuration for a given number of output channels
(define* (get-speaker-configuration channels (3d dlocsig-3d) (configs dlocsig-speaker-configs))
"(get-speaker-configuration channels (3d dlocsig-3d) (configs dlocsig-speaker-configs)) returns a dlocsig speaker configuration"
(let* ((config (if 3d (list-ref (cadr configs) channels) (list-ref (car configs) channels))))
(if (null? config)
(error 'mus-error "ERROR: no speaker configuration exists for ~A ~A output channel~A~%~%"
(if 3d "tridimensional" "bidimensional")
channels (if (= channels 1) "s" "")))
config))
;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Dlocsig unit generator
;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; global dlocsig parameters
(define dlocsig-path '())
(define dlocsig-scaler 1.0)
(define dlocsig-direct-power 1.5)
(define dlocsig-inside-direct-power 1.5)
(define dlocsig-reverb-power 0.5)
(define dlocsig-inside-reverb-power 0.5)
(define dlocsig-initial-delay #f)
(define dlocsig-unity-gain-distance #f)
(define dlocsig-reverb-amount 0.04)
(define dlocsig-inside-radius 1.0)
(define dlocsig-minimum-segment-length 1.0)
;; render using:
(define amplitude-panning 1)
(define ambisonics 2)
(define decoded-ambisonics 3)
;(define stereo-hrtf 4)
; for backwards compatibility
(define b-format-ambisonics ambisonics)
; a reasonable default
(define dlocsig-render-using amplitude-panning)
;; ambisonics horizontal and vertical order for encoding
;; the default is first order b-format WXYZ
(define dlocsig-ambisonics-h-order 1)
(define dlocsig-ambisonics-v-order 1)
;; globals for ambisonics
(define point707 (cos (/ (* pi 2) 8.0)))
(define dlocsig-ambisonics-scaler point707)
(define dlocsig-ambisonics-ho-rev-scaler 0.05)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Get number of channels needed by ambisonics
(define (ambisonics-channels h-order v-order)
(let* ((count 0))
(if (>= h-order 0)
(begin
(if (>= h-order 1)
;; W X Y
(set! count (+ count 3)))
(if (>= v-order 1)
;; Z
(set! count (+ count 1)))
(if (>= v-order 2)
;; R S T
(set! count (+ count 3)))
(if (>= h-order 2)
;; U V
(set! count (+ count 2)))
count)
;; error: we need at least horizontal order 1!
0)))
;;;;;;;;;
;;; Paths
;;;;;;;;;
;;; Generic path class
;;; path is a list (type rx ry rz rv rt tx ty tz tt ...)
(define path-rx (make-procedure-with-setter (lambda (p) (list-ref p 1)) (lambda (p val) (list-set! p 1 val))))
(define path-ry (make-procedure-with-setter (lambda (p) (list-ref p 2)) (lambda (p val) (list-set! p 2 val))))
(define path-rz (make-procedure-with-setter (lambda (p) (list-ref p 3)) (lambda (p val) (list-set! p 3 val))))
(define path-rv (make-procedure-with-setter (lambda (p) (list-ref p 4)) (lambda (p val) (list-set! p 4 val))))
(define path-rt (make-procedure-with-setter (lambda (p) (list-ref p 5)) (lambda (p val) (list-set! p 5 val))))
(define path-tx (make-procedure-with-setter (lambda (p) (list-ref p 6)) (lambda (p val) (list-set! p 6 val))))
(define path-ty (make-procedure-with-setter (lambda (p) (list-ref p 7)) (lambda (p val) (list-set! p 7 val))))
(define path-tz (make-procedure-with-setter (lambda (p) (list-ref p 8)) (lambda (p val) (list-set! p 8 val))))
(define path-tt (make-procedure-with-setter (lambda (p) (list-ref p 9)) (lambda (p val) (list-set! p 9 val))))
;(define (make-path) (list 'path '() '() '() '() '() '() '() '() '()))
(define (describe path)
(cond ((or (eq? (car path) 'bezier-path)
(eq? (car path) 'open-bezier-path))
(format #f "<bezier-path>:~% rx: ~A~% ry: ~A~% rz: ~A~% rv: ~A~% rt: ~A~% tx: ~A~% ty: ~A~% tz: ~A~% tt: ~A~% ~
x: ~A~% y: ~A~% z: ~A~% v: ~A~% bx: ~A~% by: ~A~% bz: ~A~% error: ~A~% curvature: ~A~%"
(path-rx path) (path-ry path) (path-rz path) (path-rv path) (path-rt path) (path-tx path) (path-ty path) (path-tz path) (path-tt path)
(bezier-x path) (bezier-y path) (bezier-z path) (bezier-v path) (bezier-bx path) (bezier-by path) (bezier-bz path) (bezier-error path) (bezier-curvature path)))
(else
(format #f "<path>:~% rx: ~A~% ry: ~A~% rz: ~A~% rv: ~A~% rt: ~A~% tx: ~A~% ty: ~A~% tz: ~A~% tt: ~A~%"
(path-rx path) (path-ry path) (path-rz path) (path-rv path) (path-rt path) (path-tx path) (path-ty path) (path-tz path) (path-tt path)))))
;;; Inquiries into the state of the path
(define (not-rendered path)
(null? (path-rx path)))
(define (not-transformed path)
(null? (path-tx path)))
;;; Reset any transformations on the originally rendered path
(define (reset-transformation path)
(set! (path-tt path) '())
(set! (path-tx path) '())
(set! (path-ty path) '())
(set! (path-tz path) '())
path)
;;; Reset the rendered path (and any transformations)
(define (reset-rendering path)
(set! (path-rt path) '())
(set! (path-rv path) '())
(set! (path-rx path) '())
(set! (path-ry path) '())
(set! (path-rz path) '())
(reset-transformation path))
;;; Return the best possible set of coordinates
(define (list?? a)
"list?? returns a if it is a list"
(and (listp a) a))
(define (path-x path)
(or (list?? (path-tx path))
(list?? (path-rx path))
(path-rx (render-path path))))
(define (path-y path)
(or (list?? (path-ty path))
(list?? (path-ry path))
(path-ry (render-path path))))
(define (path-z path)
(or (list?? (path-tz path))
(list?? (path-rz path))
(path-rz (render-path path))))
(define (path-time path)
(or (list?? (path-tt path))
(list?? (path-rt path))
(path-rt (render-path path))))
;;;;;;;;;;;;;;;;
;;; Bezier paths
;;;;;;;;;;;;;;;;
;;; Parse a path as two or three-dimensional paths
(define path-3d #f)
;;; Path class for bezier rendered paths
;;; bezier-path is path + path 3d polar x y z v bx by bz error curvature
(define bezier-path (make-procedure-with-setter (lambda (p) (list-ref p 10)) (lambda (p val) (list-set! p 10 val))))
(define bezier-3d (make-procedure-with-setter (lambda (p) (list-ref p 11)) (lambda (p val) (list-set! p 11 val))))
(define bezier-polar (make-procedure-with-setter (lambda (p) (list-ref p 12)) (lambda (p val) (list-set! p 12 val))))
(define bezier-x (make-procedure-with-setter (lambda (p) (list-ref p 13)) (lambda (p val) (list-set! p 13 val))))
(define bezier-y (make-procedure-with-setter (lambda (p) (list-ref p 14)) (lambda (p val) (list-set! p 14 val))))
(define bezier-z (make-procedure-with-setter (lambda (p) (list-ref p 15)) (lambda (p val) (list-set! p 15 val))))
(define bezier-v (make-procedure-with-setter (lambda (p) (list-ref p 16)) (lambda (p val) (list-set! p 16 val))))
(define bezier-bx (make-procedure-with-setter (lambda (p) (list-ref p 17)) (lambda (p val) (list-set! p 17 val))))
(define bezier-by (make-procedure-with-setter (lambda (p) (list-ref p 18)) (lambda (p val) (list-set! p 18 val))))
(define bezier-bz (make-procedure-with-setter (lambda (p) (list-ref p 19)) (lambda (p val) (list-set! p 19 val))))
(define bezier-error (make-procedure-with-setter (lambda (p) (list-ref p 20)) (lambda (p val) (list-set! p 20 val))))
(define bezier-curvature (make-procedure-with-setter (lambda (p) (list-ref p 21)) (lambda (p val) (list-set! p 21 val))))
(define* (make-bezier-path (path '()) (3d #t) (polar #f) (error 0.01) (curvature #f))
(list 'bezier-path '() '() '() '() '() '() '() '() '() path 3d polar '() '() '() '() '() '() '() error curvature))
;;; Path class for open bezier paths
(define initial-direction (make-procedure-with-setter (lambda (p) (list-ref p 22)) (lambda (p val) (list-set! p 22 val))))
(define final-direction (make-procedure-with-setter (lambda (p) (list-ref p 23)) (lambda (p val) (list-set! p 23 val))))
(define* (make-open-bezier-path (path '()) (3d #t) (polar #f) (error 0.01) (curvature #f)
(initial-direction '(0.0 0.0 0.0)) (final-direction '(0.0 0.0 0.0)))
(list 'open-bezier-path '() '() '() '() '() '() '() '() '() path 3d polar '() '() '() '() '() '() '() error curvature initial-direction final-direction))
;;;
;;; Generic defining function (for open, closed, polar and cartesian paths)
;;;
(define* (make-path path
(3d path-3d)
polar
closed
curvature
(error 0.01)
;; only for open paths
initial-direction
final-direction)
;; some sanity checks
(if (null? path)
(error 'mus-error "ERROR: Can't define a path with no points in it~%"))
(if (and closed initial-direction)
(error 'mus-error "ERROR: Can't specify initial direction ~A for a closed path ~A~%" initial-direction path))
(if (and closed final-direction)
(error 'mus-error "ERROR: Can't specify final direction ~A for a closed path ~A~%" final-direction path))
(if (and closed
(not (if (list? (car path))
(let* ((start (car path))
(end (car (last path))))
(and (= (car start) (car end))
(= (cadr start) (cadr end))
(if path-3d
(= (third start) (third end)) #t)))
(let* ((end (last path (if path-3d 3 2))))
(and (= (car path) (car end))
(= (cadr path) (cadr end))
(if path-3d
(= (third path) (third end)) #t))))))
(error 'mus-error "ERROR: Closed path ~A is not closed~%" path))
;; create the path structure
(if closed
(make-bezier-path
:path path
:3d 3d
:polar polar
:curvature curvature
:error error)
(make-open-bezier-path
:path path
:3d 3d
:polar polar
:curvature curvature
:error error
:initial-direction initial-direction
:final-direction final-direction)))
;;; Some convenient abbreviations
(define* (make-polar-path path
(3d path-3d)
closed
curvature
(error 0.01)
;; only for open paths
initial-direction
final-direction)
(if closed
(make-path :path path
:3d 3d
:polar #t
:closed closed
:curvature curvature
:error error)
(make-path :path path
:3d 3d
:polar #t
:closed closed
:curvature curvature
:error error
:initial-direction initial-direction
:final-direction final-direction)))
(define* (make-closed-path path
(3d path-3d)
polar
curvature
(error 0.01))
(make-path :path path
:3d 3d
:polar polar
:closed #t
:curvature curvature
:error error))
;;;
;;; Parse a path and transform it into cartesian coordinates
;;;
(define (not-parsed path)
(null? (bezier-x path)))
;;; Parse a set of 2d or 3d points into the separate coordinates
(define (parse-cartesian-coordinates points 3d)
"(parse-cartesian-coordinates points 3d) parses a set of 2d or 3d points into the separate coordinates"
(if (list? (car points))
;; decode a list of lists into x:y:z:v components
;; 3d -> t [default]
;; '((x0 y0 z0 v0) (x1 y1 z1 v1)...(xn yn zn vn))
;; '((x0 y0 z0) (x1 y1 z1)...(xn yn zn))
;; '((x0 y0) (x1 y1)...(xn yn))
;; v: relative velocity
;; x, y, z: coordinates of source [missing z's assumed 0.0]
;; 3d -> nil
;; '((x0 y0 v0) (x1 y1 v1)...(xn yn vn))
;; '((x0 y0) (x1 y1)...(xn yn))
;; v: relative velocity
;; x, y, z: coordinates of source [missing z's assumed 0.0]
(let* ((v '())
(x '())
(y '())
(z '()))
(for-each
(lambda (p)
(set! x (cons (car p) x))
(set! y (cons (cadr p) y))
(set! z (cons (if 3d (or (third p) 0.0) 0.0) z))
(set! v (cons (if 3d
(fourth p)
(third p))
v)))
points)
(list (reverse x) (reverse y) (reverse z) (reverse v)))
;; decode a plain list
(if 3d
;; it's a three dimensional list
;; '(x0 y0 z0 x1 y1 z1 ... xn yn zn)
;; x, y, z: coordinates of source
(let ((px '())
(py '())
(pz '())
(len (length points)))
(do ((i 0 (+ i 3)))
((>= i len))
(set! px (cons (list-ref points i) px))
(set! py (cons (list-ref points (+ i 1)) py))
(set! pz (cons (list-ref points (+ i 2)) pz)))
(list (reverse px) (reverse py) (reverse pz) (make-list-1 (length px) #f)))
;; it's a two dimensional list
;; '(x0 y0 x1 y1 ... xn yn)
;; x, y, z: coordinates of source [missing z's assumed 0.0]
(let ((px '())
(py '())
(len (length points)))
(do ((i 0 (+ i 2)))
((>= i len))
(set! px (cons (list-ref points i) px))
(set! py (cons (list-ref points (+ i 1)) py)))
(list (reverse px) (reverse py) (make-list-1 (length px) 0.0) (make-list-1 (length px) #f))))))
;;; Parse a set of 2d or 3d polar points into the separate coordinates
(define (parse-polar-coordinates points 3d)
"(parse-polar-coordinates points 3d) parses a polar path"
(if (list? (car points))
;; decode a list of lists of d:a:e:v into x:y:z:v components
;; 3d --> t [default]
;; '((d0 a0 e0 v0) (d1 a1 e1 v1)...(dn an en vn))
;; '((d0 a0 e0) (d1 a1 e1)...(dn an en))
;; '((d0 a0) (d1 a1)...(dn an))
;; 3d --> nil
;; '((d0 a0 v0) (d1 a1 v1)...(dn an vn))
;; '((d0 a0) (d1 a1)...(dn an))
;; v: velocity
;; d: distance
;; a: azimut angle
;; e: elevarion angle [missing elevations assumed 0.0]
(let ((x '())
(y '())
(z '())
(v '()))
(for-each
(lambda (p)
(let* ((d (car p))
(a (cadr p))
(e (if 3d (if (not (null? (cddr p))) (caddr p) 0.0) 0.0))
(evec (cis (* (/ e dlocsig-one-turn) 2 pi)))
(dxy (* d (real-part evec)))
(avec (cis (* (/ a dlocsig-one-turn) 2 pi))))
(set! x (cons (* dxy (imag-part avec)) x))
(set! y (cons (* dxy (real-part avec)) y))
(set! z (cons (* d (imag-part evec)) z))
(set! v (cons (if 3d (fourth p) (third p)) v))))
points)
(list (reverse x) (reverse y) (reverse z) (reverse v)))
;; decode a list of d:a:e components
(if 3d
;; decode a three dimensional list
;; '(d0 a0 e0 d1 a1 e1 ... dn an en)
;; d: distance
;; a: azimut angle
;; e: elevarion angle [missing elevations assumed 0.0]
(let ((x '())
(y '())
(z '())
(len (length points)))
(do ((i 0 (+ i 3)))
((>= i len))
(let* ((d (list-ref points i))
(a (list-ref points (+ i 1)))
(e (list-ref points (+ i 2)))
(evec (cis (* (/ e dlocsig-one-turn) 2 pi)))
(dxy (* d (real-part evec)))
(avec (cis (* (/ a dlocsig-one-turn) 2 pi))))
(set! x (cons (* dxy (imag-part avec)) x))
(set! y (cons (* dxy (real-part avec)) y))
(set! z (cons (* d (imag-part evec)) z))))
(list (reverse x) (reverse y) (reverse z) (make-list-1 (length x) #f)))
;; decode a two dimensional list
;; '(d0 a0 d1 a1 ... dn an)
;; d: distance
;; a: azimut angle
;; e: elevarion angle [missing elevations assumed 0.0]
(let* ((x '())
(y '())
(len (length points)))
(do ((i 0 (+ i 2)))
((>= i len))
(let* ((d (list-ref points i))
(a (list-ref points (+ i 1)))
(avec (cis (* (/ a dlocsig-one-turn) 2 pi))))
(set! x (cons (* d (imag-part avec)) x))
(set! y (cons (* d (real-part avec)) y))))
(list (reverse x) (reverse y) (make-list-1 (length x) 0.0) (make-list-1 (length x) #f))))))
(define (xparse-path xpath)
(let* ((polar (bezier-polar xpath))
(points (bezier-path xpath))
(3d (bezier-3d xpath)))
(if polar
;; parse a polar path
(let ((vals (parse-polar-coordinates points 3d)))
(set! (bezier-x xpath) (car vals))
(set! (bezier-y xpath) (cadr vals))
(set! (bezier-z xpath) (caddr vals))
(set! (bezier-v xpath) (cadddr vals)))
(let ((vals (parse-cartesian-coordinates points 3d)))
;; parse a cartesian path
(set! (bezier-x xpath) (car vals))
(set! (bezier-y xpath) (cadr vals))
(set! (bezier-z xpath) (caddr vals))
(set! (bezier-v xpath) (cadddr vals)))))
(for-each
(lambda (v)
(if (and (number? v)
(< v 0))
(error 'mus-error "ERROR: velocities for path ~A must be all positive~%" (bezier-path xpath))))
(bezier-v xpath))
(reset-fit xpath))
;;;
;;; Bezier curve fitting auxiliary functions
;;;
;;; Pythagoras
(define (distance x y z)
"(distance x y z) returns the euclidean distance of (x y z) from the origin"
(sqrt (+ (* x x) (* y y) (* z z))))
;;; Nearest point in a line
(define (nearest-point x0 y0 z0 x1 y1 z1 px py pz)
(define (vmag a b c)
(sqrt (+ (* a a) (* b b) (* c c))))
(define (vcos a0 b0 c0 a1 b1 c1)
(/ (+ (* a0 a1) (* b0 b1) (* c0 c1))
(* (vmag a0 b0 c0) (vmag a1 b1 c1))))
(define (same a0 b0 c0 a1 b1 c1)
(and (= a0 a1) (= b0 b1) (= c0 c1)))
(if (same x0 y0 z0 px py pz)
(list x0 y0 z0)
(if (same x1 y1 z1 px py pz)
(list x1 y1 z1)
(if (same x0 y0 z0 x1 y1 z1)
(list x0 y0 z0)
(let* ((xm0 (- x1 x0))
(ym0 (- y1 y0))
(zm0 (- z1 z0))
(xm1 (- px x0))
(ym1 (- py y0))
(zm1 (- pz z0))
(p (* (vmag xm1 ym1 zm1) (vcos xm0 ym0 zm0 xm1 ym1 zm1)))
(l (vmag xm0 ym0 zm0))
(ratio (/ p l)))
(list (+ x0 (* xm0 ratio))
(+ y0 (* ym0 ratio))
(+ z0 (* zm0 ratio))))))))
;;; Bezier curve fitting auxilliary functions
(define path-ak-even #f)
(define path-ak-odd #f)
(define path-maxcoeff 8)
(define path-gtab #f)
(define (make-a-even)
(define (g m)
(if (not path-gtab)
(begin
(set! path-gtab (make-vector path-maxcoeff))
(vector-set! path-gtab 0 1)
(vector-set! path-gtab 1 -4)
(do ((i 2 (+ i 1)))
((= i path-maxcoeff))
(vector-set! path-gtab i (- (* -4 (vector-ref path-gtab (- i 1)))
(vector-ref path-gtab (- i 2)))))))
(vector-ref path-gtab m))
(set! path-ak-even (make-vector (- path-maxcoeff 1)))
(do ((m 1 (+ 1 m)))
((= m path-maxcoeff))
(vector-set! path-ak-even (- m 1) (make-vector m))
(do ((k 1 (+ 1 k)))
((> k m))
(vector-set! (vector-ref path-ak-even (- m 1)) (- k 1) (exact->inexact (/ (- (g (- m k))) (g m)))))))
(define path-ftab #f)
(define (make-a-odd)
(define (f m)
(if (not path-ftab)
(begin
(set! path-ftab (make-vector path-maxcoeff))
(vector-set! path-ftab 0 1)
(vector-set! path-ftab 1 -3)
(do ((i 2 (+ i 1)))
((= i path-maxcoeff))
(vector-set! path-ftab i (- (* -4 (vector-ref path-ftab (- i 1)))
(vector-ref path-ftab (- i 2)))))))
(vector-ref path-ftab m))
(set! path-ak-odd (make-vector (- path-maxcoeff 1)))
(do ((m 1 (+ 1 m)))
((= m path-maxcoeff))
(vector-set! path-ak-odd (- m 1) (make-vector m))
(do ((k 1 (+ 1 k)))
((> k m))
(vector-set! (vector-ref path-ak-odd (- m 1)) (- k 1) (exact->inexact (/ (- (f (- m k))) (f m)))))))
;;; Calculate bezier difference vectors for the given path
;;; (path-x (make-path '((-10 10)(0 5)(10 10))))
(define (calculate-fit path)
(cond ((not (eq? (car path) 'open-bezier-path))
(let* ((n (- (length (bezier-x path )) 1))
(m (/ (- n (if (odd? n) 3 4)) 2))
;; data points P(i)
(p (vector (list->vector (bezier-x path))
(list->vector (bezier-y path))
(list->vector (bezier-z path))))
;; control points D(i)
(d (vector (make-vector n 0.0)
(make-vector n 0.0)
(make-vector n 0.0))))
(define (a-1 k n)
(if (odd? (min (+ (* path-maxcoeff 2) 1) n))
(begin
(if (not path-ak-odd) (make-a-odd))
(vector-ref (vector-ref path-ak-odd (/ (- n 3) 2)) (- k 1)))
(begin
(if (not path-ak-even) (make-a-even))
(vector-ref (vector-ref path-ak-even (/ (- n 4) 2)) (- k 1)))))
(define (xvector-ref z j i)
(if (> i (- n 1))
(vector-ref (vector-ref z j) (- i n))
(if (< i 0)
(vector-ref (vector-ref z j) (+ i n))
(vector-ref (vector-ref z j) i))))
(do ((i 0 (+ 1 i)))
((= i n))
(do ((k 1 (+ 1 k)))
((> k m))
(do ((a 0 (+ 1 a)))
((> a 2))
(vector-set! (vector-ref d a) i
(+ (vector-ref (vector-ref d a) i)
(* (a-1 k n)
(- (xvector-ref p a (+ i k))
(xvector-ref p a (- i k)))))))))
(if (bezier-curvature path)
(do ((i 0 (+ 1 i)))
((= i n))
(vector-set! (vector-ref d 0) i (* (vector-ref (vector-ref d 0) i) curve))
(vector-set! (vector-ref d 1) i (* (vector-ref (vector-ref d 1) i) curve))
(vector-set! (vector-ref d 2) i (* (vector-ref (vector-ref d 2) i) curve))))
(list (- n 1) p d)))
(else
(let* ((n (- (length (bezier-x path)) 1))
(m (- n 1))
;; data points P(i)
(p (vector (list->vector (bezier-x path))
(list->vector (bezier-y path))
(list->vector (bezier-z path))))
;; control points D(i)
(d (vector (make-vector (+ n 1) 0.0)
(make-vector (+ n 1) 0.0)
(make-vector (+ n 1) 0.0))))
(define (ac k n)
(let ((un (min n path-maxcoeff)))
(if (not path-ak-even) (make-a-even))
(vector-ref (vector-ref path-ak-even (- un 2)) (- k 1))))
(define (ref z j i)
(if (> i n)
(vector-ref (vector-ref z j) (- i n))
(if (< i 0)
(vector-ref (vector-ref z j) (+ i n))
(if (= i n)
(- (vector-ref (vector-ref z j) n)
(vector-ref (vector-ref d j) n))
(if (= i 0)
(+ (vector-ref (vector-ref z j) 0)
(vector-ref (vector-ref d j) 0))
(vector-ref (vector-ref z j) i))))))
;; forced initial direction
(if (initial-direction path)
(begin
(vector-set! (vector-ref d 0) 0 (car (initial-direction path)))
(vector-set! (vector-ref d 1) 0 (cadr (initial-direction path)))
(vector-set! (vector-ref d 2) 0 (third (initial-direction path))))
(begin
(vector-set! (vector-ref d 0) 0 0.0)
(vector-set! (vector-ref d 1) 0 0.0)
(vector-set! (vector-ref d 2) 0 0.0)))
;; forced final direction
(if (final-direction path)
(begin
(vector-set! (vector-ref d 0) n (car (final-direction path)))
(vector-set! (vector-ref d 1) n (cadr (final-direction path)))
(vector-set! (vector-ref d 2) n (caddr (final-direction path))))
(begin
(vector-set! (vector-ref d 0) n 0.0)
(vector-set! (vector-ref d 1) n 0.0)
(vector-set! (vector-ref d 2) n 0.0)))
;; calculate fit
(do ((i 1 (+ 1 i)))
((= i n))
(do ((k 1 (+ 1 k)))
((> k (min m (- path-maxcoeff 1))))
(let ((d0 (vector-ref (vector-ref d 0) i))
(d1 (vector-ref (vector-ref d 1) i))
(d2 (vector-ref (vector-ref d 2) i)))
(vector-set! (vector-ref d 0) i (+ d0
(* (ac k n)
(- (ref p 0 (+ i k))
(ref p 0 (- i k))))))
(vector-set! (vector-ref d 1) i (+ d1
(* (ac k n)
(- (ref p 1 (+ i k))
(ref p 1 (- i k))))))
(vector-set! (vector-ref d 2) i (+ d2
(* (ac k n)
(- (ref p 2 (+ i k))
(ref p 2 (- i k)))))))))
(list n p d)))))
;;; Calculate bezier control points for the given open path
(define (not-fitted path)
(null? (bezier-bx path)))
(define (reset-fit path)
(set! (bezier-bx path) '())
(set! (bezier-by path) '())
(set! (bezier-bz path) '())
(reset-rendering path))
(define (fit-path path)
(cond ((eq? (car path) 'open-bezier-path)
(if (not-parsed path)
(xparse-path path))
(let ((points (length (bezier-x path))))
(if (> points 2)
(let* ((vals (calculate-fit path))
(n (car vals))
(p (cadr vals))
(d (caddr vals)))
(let* ((c (bezier-curvature path))
(cs (make-vector n)))
;; setup the curvatures array
(if (or (not c) (null? c)) ; no curvature specified, default is 1.0
(do ((i 0 (+ 1 i)))
((= i n))
(vector-set! cs i (list 1.0 1.0)))
(if (number? c) ; same curvature for all segments
(do ((i 0 (+ 1 i)))
((= i n))
(vector-set! cs i (list c c)))
(if (and (list? c) (= n (length c))) ; list of curvatures
(let ((i 0))
(for-each
(lambda (ci)
(vector-set! cs i (if (list? ci)
(if (not (= (length ci) 2))
(error 'mus-error "ERROR: curvature sublist must have two elements ~A~%" ci)
ci)
(list ci ci)))
(set! i (+ 1 i)))
c))
(error 'mus-error "ERROR: bad curvature argument ~A to path, need ~A elements~%" c n))))
;; calculate control points
(let ((xc '())
(yc '())
(zc '()))
(do ((i 0 (+ 1 i)))
((= i n))
(set! xc (cons (list (vector-ref (vector-ref p 0) i)
(+ (vector-ref (vector-ref p 0) i) (* (vector-ref (vector-ref d 0) i) (car (vector-ref cs i))))
(- (vector-ref (vector-ref p 0) (+ i 1)) (* (vector-ref (vector-ref d 0) (+ i 1)) (cadr (vector-ref cs i))))
(vector-ref (vector-ref p 0) (+ i 1))) xc))
(set! yc (cons (list (vector-ref (vector-ref p 1) i)
(+ (vector-ref (vector-ref p 1) i) (* (vector-ref (vector-ref d 1) i) (car (vector-ref cs i))))
(- (vector-ref (vector-ref p 1) (+ i 1)) (* (vector-ref (vector-ref d 1) (+ i 1)) (cadr (vector-ref cs i))))
(vector-ref (vector-ref p 1) (+ i 1))) yc))
(set! zc (cons (list (vector-ref (vector-ref p 2) i)
(+ (vector-ref (vector-ref p 2) i) (* (vector-ref (vector-ref d 2) i) (car (vector-ref cs i))))
(- (vector-ref (vector-ref p 2) (+ i 1)) (* (vector-ref (vector-ref d 2) (+ i 1)) (cadr (vector-ref cs i))))
(vector-ref (vector-ref p 2) (+ i 1))) zc)))
(set! (bezier-bx path) (reverse xc))
(set! (bezier-by path) (reverse yc))
(set! (bezier-bz path) (reverse zc)))))
(if (= points 2)
;; just a line, stays a line
(let* ((x1 (car (bezier-x path)))
(x2 (cadr (bezier-x path)))
(y1 (car (bezier-y path)))
(y2 (cadr (bezier-y path)))
(z1 (car (bezier-z path)))
(z2 (cadr (bezier-z path))))
(set! (bezier-bx path) (list (list x1 x1 x2 x2)))
(set! (bezier-by path) (list (list y1 y1 y2 y2)))
(set! (bezier-bz path) (list (list z1 z1 z2 z2))))
(if (= points 1)
;; just one point, bezier won't do much here
(begin
(set! (bezier-bx path) '())
(set! (bezier-by path) '())
(set! (bezier-bz path) '())))))
(reset-rendering path)))
(else
(if (not-parsed path)
(xparse-path path))
(if (> (length (bezier-x path)) 4)
(let* ((vals (calculate-fit path))
(n (car vals))
(p (cadr vals))
(d (caddr vals)))
;; enough points, fit path
(let ((xc '())
(yc '())
(zc '()))
(do ((i 0 (+ 1 i)))
((= i n))
(set! xc (cons (list (vector-ref (vector-ref p 0) i)
(+ (vector-ref (vector-ref p 0) i) (vector-ref (vector-ref d 0) i))
(- (vector-ref (vector-ref p 0) (+ i 1)) (vector-ref (vector-ref d 0) (+ i 1)))
(vector-ref (vector-ref p 0) (+ i 1))) xc))
(set! yc (cons (list (vector-ref (vector-ref p 1) i)
(+ (vector-ref (vector-ref p 1) i) (vector-ref (vector-ref d 1) i))
(- (vector-ref (vector-ref p 1) (+ i 1)) (vector-ref (vector-ref d 1) (+ i 1)))
(vector-ref (vector-ref p 1) (+ i 1))) yc))
(set! zc (cons (list (vector-ref (vector-ref p 2) i)
(+ (vector-ref (vector-ref p 2) i) (vector-ref (vector-ref d 2) i))
(- (vector-ref (vector-ref p 2) (+ i 1)) (vector-ref (vector-ref d 2) (+ i 1)))
(vector-ref (vector-ref p 2) (+ i 1))) zc)))
(set! (bezier-bx path) (append (reverse xc) (list (list (vector-ref (vector-ref p 0) n)
(+ (vector-ref (vector-ref p 0) n) (vector-ref (vector-ref d 0) n))
(- (vector-ref (vector-ref p 0) 0) (vector-ref (vector-ref d 0) 0))
(vector-ref (vector-ref p 0) 0)))))
(set! (bezier-by path) (append (reverse yc) (list (list (vector-ref (vector-ref p 1) n)
(+ (vector-ref (vector-ref p 1) n) (vector-ref (vector-ref d 1) n))
(- (vector-ref (vector-ref p 1) 0) (vector-ref (vector-ref d 1) 0))
(vector-ref (vector-ref p 1) 0)))))
(set! (bezier-bz path) (append (reverse zc) (list (list (vector-ref (vector-ref p 2) n)
(+ (vector-ref (vector-ref p 2) n) (vector-ref (vector-ref d 2) n))
(- (vector-ref (vector-ref p 2) 0) (vector-ref (vector-ref d 2) 0))
(vector-ref (vector-ref p 2) 0)))))))
;; not enough points to fit a closed path
(let ((xc '())
(yc '())
(zc '())
(len (min (length (bezier-x path)) (length (bezier-y path)) (length (bezier-z path)))))
(do ((i 0 (+ 1 i)))
((>= i len))
(let ((x1 (list-ref (bezier-x path) i))
(x2 (list-ref (bezier-x path) (+ i 1)))
(y1 (list-ref (bezier-y path) i))
(y2 (list-ref (bezier-y path) (+ i 1)))
(z1 (list-ref (bezier-z path) i))
(z2 (list-ref (bezier-z path) (+ i 1))))
(set! xc (cons (list x1 x1 x2 x2) xc))
(set! yc (cons (list y1 y1 y2 y2) yc))
(set! zc (cons (list z1 z1 z2 z2) zc))))
(warn "[fit-path:closed-path] not enough points to do bezier fit (~A points)" len)
(set! (bezier-bx path) (reverse xc))
(set! (bezier-by path) (reverse yc))
(set! (bezier-bz path) (reverse zc))))
(reset-rendering path))))
;;;;;;;;;;;;;;;;;
;;; Literal paths
;;;;;;;;;;;;;;;;;
(define literal-points (make-procedure-with-setter (lambda (p) (list-ref p 10)) (lambda (p val) (list-set! p 10 val))))
(define literal-3d (make-procedure-with-setter (lambda (p) (list-ref p 11)) (lambda (p val) (list-set! p 11 val))))
(define literal-polar (make-procedure-with-setter (lambda (p) (list-ref p 12)) (lambda (p val) (list-set! p 12 val))))
;;; Generic literal path creation function
(define* (make-literal-path (points '()) (3d path-3d) polar)
(list 'literal-path '() '() '() '() '() '() '() '() '() points 3d polar))
;;; Specific polar literal path creation function
(define* (make-literal-polar-path (points '()) (3d path-3d))
(make-literal-path points 3d #t))
;;;;;;;;;;;
;;; Spirals
;;;;;;;;;;;
(define spiral-start-angle (make-procedure-with-setter (lambda (p) (list-ref p 13)) (lambda (p val) (list-set! p 13 val))))
(define spiral-total-angle (make-procedure-with-setter (lambda (p) (list-ref p 14)) (lambda (p val) (list-set! p 14 val))))
(define spiral-step-angle (make-procedure-with-setter (lambda (p) (list-ref p 15)) (lambda (p val) (list-set! p 15 val))))
(define spiral-turns (make-procedure-with-setter (lambda (p) (list-ref p 16)) (lambda (p val) (list-set! p 16 val))))
(define spiral-distance (make-procedure-with-setter (lambda (p) (list-ref p 17)) (lambda (p val) (list-set! p 17 val))))
(define spiral-height (make-procedure-with-setter (lambda (p) (list-ref p 18)) (lambda (p val) (list-set! p 18 val))))
(define spiral-velocity (make-procedure-with-setter (lambda (p) (list-ref p 19)) (lambda (p val) (list-set! p 19 val))))
(define* (make-spiral-path (start-angle 0.0)
total-angle
step-angle
(turns '())
(distance '(0 10 1 10))
(height '(0 0 1 0))
(velocity '(0 1 1 1)))
(if (and total-angle (not (null? turns)))
(error 'mus-error "ERROR: can't specify total-angle [~A] and turns [~A] at the same time for the spiral path~%" total-angle turns))
(list 'spiral-path '() '() '() '() '() '() '() '() '() '() path-3d #f
start-angle total-angle
(or step-angle (/ dlocsig-one-turn 100))
turns distance height velocity))
;;; Transform a Bezier control point fit to a linear segment approximation
(define (bezier-render path)
(if (not-fitted path)
(fit-path path))
(let ((xrx '()) (xry '()) (xrz '()) (xrv '()))
(define (bezier-point u c)
;; Evaluate a point at parameter u in bezier segment
(let* ((u1 (- 1 u))
(cr (vector (make-vector 3 0.0) (make-vector 3 0.0) (make-vector 3 0.0))))
(do ((j 0 (+ 1 j)))
((= j 3))
(vector-set! (vector-ref cr 0) j (+ (* u1 (vector-ref (vector-ref c 0) j)) (* u (vector-ref (vector-ref c 0) (+ j 1)))))
(vector-set! (vector-ref cr 1) j (+ (* u1 (vector-ref (vector-ref c 1) j)) (* u (vector-ref (vector-ref c 1) (+ j 1)))))
(vector-set! (vector-ref cr 2) j (+ (* u1 (vector-ref (vector-ref c 2) j)) (* u (vector-ref (vector-ref c 2) (+ j 1))))))
(do ((i 1 (- i 1)))
((< i 0))
(do ((j 0 (+ 1 j)))
((> j i))
(vector-set! (vector-ref cr 0) j (+ (* u1 (vector-ref (vector-ref cr 0) j)) (* u (vector-ref (vector-ref cr 0) (+ j 1)))))
(vector-set! (vector-ref cr 1) j (+ (* u1 (vector-ref (vector-ref cr 1) j)) (* u (vector-ref (vector-ref cr 1) (+ j 1)))))
(vector-set! (vector-ref cr 2) j (+ (* u1 (vector-ref (vector-ref cr 2) j)) (* u (vector-ref (vector-ref cr 2) (+ j 1)))))
))
(list (vector-ref (vector-ref cr 0) 0)
(vector-ref (vector-ref cr 1) 0)
(vector-ref (vector-ref cr 2) 0))))
(define (berny xl yl zl xh yh zh ul u uh c err)
;; Create a linear segment rendering of a bezier segment
(let* ((vals (bezier-point u c))
(x (car vals))
(y (cadr vals))
(z (caddr vals)))
(let* ((val1 (nearest-point xl yl zl xh yh zh x y z))
(xn (car val1))
(yn (cadr val1))
(zn (caddr val1)))
(if (> (distance (- xn x) (- yn y) (- zn z)) err)
(let* ((val2 (berny xl yl zl x y z ul (/ (+ ul u) 2) u c err))
(xi (car val2))
(yi (cadr val2))
(zi (caddr val2)))
(let* ((val3 (berny x y z xh yh zh u (/ (+ u uh) 2) uh c err))
(xj (car val3))
(yj (cadr val3))
(zj (caddr val3)))
(list (append xi (list x) xj)
(append yi (list y) yj)
(append zi (list z) zj))))
(list '() '() '())))))
;; Create linear segment approximations of the bezier segments
;; make sure there are initial and final velocity values
(if (not (listp (bezier-v path)))
(set! (bezier-v path) (list 1 1))
(if (not (car (bezier-v path)))
(begin
(list-set! (bezier-v path) 0 1)
(list-set! (bezier-v path) (- (length (bezier-v path)) 1) 1))))
;; only one point means no movement, static source
(if (= (length (bezier-x path)) 1)
(begin
(set! (path-rx path) (bezier-x path))
(set! (path-ry path) (bezier-y path))
(set! (path-rz path) (bezier-z path))
(set! (path-rt path) (list 0.0))
(reset-transformation path)) ; after?
(begin
(let ((len (length (bezier-bx path))))
;(path-x (make-path '((-10 10)(0 5)(10 10))))
;; render the path only if it has at least two points
(do ((i 0 (+ 1 i)))
((= i len))
(let* ((x-bz (list-ref (bezier-bx path) i))
(y-bz (list-ref (bezier-by path) i))
(z-bz (list-ref (bezier-bz path) i))
(vi-bz (list-ref (bezier-v path) i))
(vf-bz (list-ref (bezier-v path) (+ i 1)))
(xi-bz (car x-bz))
(xf-bz (list-ref x-bz (- (length x-bz) 1)))
(yi-bz (car y-bz))
(yf-bz (list-ref y-bz (- (length y-bz) 1)))
(zi-bz (car z-bz))
(zf-bz (list-ref z-bz (- (length z-bz) 1))))
(let* ((vals (berny xi-bz yi-bz zi-bz xf-bz yf-bz zf-bz 0.0 0.5 1.0
(vector (list->vector x-bz)
(list->vector y-bz)
(list->vector z-bz))
(bezier-error path)))
(xs (car vals))
(ys (cadr vals))
(zs (caddr vals)))
;; approximate the bezier curve with linear segments
(set! xrx (append xrx (list xi-bz) xs))
(set! xry (append xry (list yi-bz) ys))
(set! xrz (append xrz (list zi-bz) zs))
;; accumulate intermediate unknown velocities as nils
(set! xrv (append xrv (list vi-bz) (make-list-1 (length xs) #f)))
(if (= i (- len 1))
(begin
;; add the last point
(set! xrx (append xrx (list xf-bz)))
(set! xry (append xry (list yf-bz)))
(set! xrz (append xrz (list zf-bz)))
(set! xrv (append xrv (list vf-bz)))
))))))
;; calculate times for each velocity segment
(let ((len (- (length xrx) 1))
(ti 0)
(times (list 0))
(xseg (list (list-ref xrx 0)))
(yseg (list (list-ref xry 0)))
(zseg (list (list-ref xrz 0)))
(vseg (list (list-ref xrv 0)))
(vi (list-ref xrv 0)))
(do ((i 0 (+ 1 i)))
((= i len))
(let* ((x (list-ref xrx (+ i 1)))
(y (list-ref xry (+ i 1)))
(z (list-ref xrz (+ i 1)))
(v (list-ref xrv (+ i 1))))
(set! xseg (append xseg (list x)))
(set! yseg (append yseg (list y)))
(set! zseg (append zseg (list z)))
(set! vseg (append vseg (list v)))
(if v
(let* ((dseg (list))
(sum 0.0)
(len (- (length xseg) 1)))
(do ((i 0 (+ 1 i)))
((= i len))
(let* ((xsi (list-ref xseg i))
(ysi (list-ref yseg i))
(zsi (list-ref zseg i))
(xsf (list-ref xseg (+ i 1)))
(ysf (list-ref yseg (+ i 1)))
(zsf (list-ref zseg (+ i 1))))
(set! sum (+ sum (distance (- xsf xsi) (- ysf ysi) (- zsf zsi))))
(set! dseg (cons sum dseg))))
(let* ((df (car dseg)))
(set! dseg (reverse dseg))
(let* ((tseg '())
(vf v)
(a (/ (* (- vf vi) (+ vf vi)) df 4)))
(if (= vi 0.0) (set! vi 1))
(for-each
(lambda (d)
(set! tseg (cons (+ ti (if (= vf vi)
(/ d vi)
(/ (- (sqrt (+ (* vi vi) (* 4 a d))) vi) (* 2 a))))
tseg)))
dseg)
(set! ti (car tseg))
(set! tseg (reverse tseg))
(set! times (append times tseg))
(set! xseg (list x))
(set! yseg (list y))
(set! zseg (list z))
(set! vseg (list v))
(set! vi v)))))
))
(set! (path-rx path) xrx)
(set! (path-ry path) xry)
(set! (path-rz path) xrz)
(set! (path-rt path)
(let* ((tf (list-ref times (- (length times) 1)))
(val '()))
(for-each
(lambda (ti)
(set! val (cons (/ ti tf) val)))
times)
(reverse val)))
(reset-transformation path))))))
;; (set! p (make-path '((-10 10 0 0) (0 5 0 1) (10 10 0 0)) :error 0.01))
;; (set! p (make-path '((-10 10 0 1) (-7 7 0 0.9) (0 5 0 0) (7 7 0 0.2) (10 10 0 1)) :error 0.001))
;; (with-sound(:channels 4 :play #f) (sinewave 0 2 880 0.5 :path p))
(define (literal-render path)
;; Render a user-defined literal path from the data points
;; decode the points into coordinates
(let* ((points (literal-points path))
(3d (literal-3d path))
(polar (literal-polar path)))
(let ((vals (if polar (parse-polar-coordinates points 3d) (parse-cartesian-coordinates points 3d))))
(set! (path-rx path) (car vals))
(set! (path-ry path) (cadr vals))
(set! (path-rz path) (caddr vals))
(set! (path-rv path) (cadddr vals)))
;; make sure there are initial and final velocity values
(if (not (car (path-rv path)))
(begin
(list-set! (path-rv path) 0 1)
(list-set! (path-rv path) (- (length (path-rv path)) 1) 1)))
;; only one point means no movement, static source
(if (= (length (path-rx path)) 1)
(begin
(set! (path-rt path) (list 0.0))
(reset-transformation path))
(let* ((rx (path-rx path))
(ry (path-ry path))
(rz (path-rz path))
(rv (path-rv path))
(xseg (list (car rx)))
(yseg (list (car ry)))
(zseg (list (car rz)))
(vseg (list (car rv)))
(vi (car rv))
(len (length rx))
(ti 0)
(times (list ti)))
(do ((i 1 (+ 1 i)))
((= i len))
(let ((x (list-ref rx i))
(y (list-ref ry i))
(z (list-ref rz i))
(v (list-ref rv i)))
(set! xseg (append xseg (list x)))
(set! yseg (append yseg (list y)))
(set! zseg (append zseg (list z)))
(set! vseg (append vseg (list v)))
(if (number? v) ; when v
(let* ((sofar 0.0)
(dseg '())
(len (- (length xseg) 1)))
(do ((i 0 (+ 1 i)))
((= i len))
(let* ((xsi (list-ref xseg i))
(ysi (list-ref yseg i))
(zsi (list-ref zseg i))
(xsf (list-ref xseg (+ i 1)))
(ysf (list-ref yseg (+ i 1)))
(zsf (list-ref zseg (+ i 1))))
(set! sofar (+ sofar (distance (- xsf xsi) (- ysf ysi) (- zsf zsi))))
(set! dseg (cons sofar dseg))))
(let* ((df (car dseg)))
(set! dseg (reverse dseg))
(let* ((tseg '())
(vf v)
(a (/ (* (- vf vi) (+ vf vi)) df 4)))
(for-each
(lambda (d)
(set! tseg (cons (+ ti (if (= vf vi)
(/ d vi)
(/ (- (sqrt (+ (* vi vi) (* 4 a d))) vi) (* 2 a))))
tseg)))
dseg)
(set! ti (car tseg))
(set! tseg (reverse tseg))
(set! times (append times tseg))
(set! xseg (list x))
(set! yseg (list y))
(set! zseg (list z))
(set! vseg (list v))
(set! vi v)))))))
(set! (path-rt path) (let ((val '())
(tf (list-ref times (- (length times) 1))))
(for-each
(lambda (ti)
(set! val (cons (/ ti tf) val)))
times)
(reverse val)))
(reset-transformation path)))))
(define (spiral-render path)
;; Render a spiral path from the object data
(let* ((start (* (/ (spiral-start-angle path) dlocsig-one-turn) 2 pi))
(total (if (spiral-total-angle path)
(* (/ (spiral-total-angle path) dlocsig-one-turn) 2 pi)
(if (spiral-turns path)
(* (spiral-turns path) 2 pi)
(error 'mus-error "ERROR: a spiral-path needs either a total-angle or turns, none specified~%"))))
(steps (abs (/ total (* (/ (spiral-step-angle path) dlocsig-one-turn) 2 pi))))
(step (/ total (ceiling steps)
(if (< (spiral-step-angle path) 0) -1 1)))
(xdistance (x-norm (spiral-distance path) total))
(height (x-norm (spiral-height path) total)))
(let* ((x '())
(y '())
(z '())
(segments (inexact->exact (round (abs (/ total step)))))
(len (+ 1 segments)))
(do ((i 0 (+ 1 i))
(angle start (+ angle step)))
((>= i len))
(let* ((xy (cis angle))
(d (envelope-interp angle xdistance)))
(set! x (cons (* d (imag-part xy)) x))
(set! y (cons (* d (real-part xy)) y))
(set! z (cons (envelope-interp angle height) z))))
(set! x (reverse x))
(set! y (reverse y))
(set! z (reverse z))
(let* ((dp '())
(len (- (length x) 1))
(sofar 0.0))
(do ((i 0 (+ 1 i)))
((>= i len))
(let* ((xi (list-ref x i))
(xf (list-ref x (+ i 1)))
(yi (list-ref y i))
(yf (list-ref y (+ i 1)))
(zi (list-ref z i))
(zf (list-ref z (+ i 1))))
(set! sofar (+ sofar (distance (- xf xi) (- yf yi) (- zf zi))))
(set! dp (cons sofar dp))))
(let ((df (car dp)))
(set! dp (reverse dp))
(let* ((tp '())
(td 0)
(len (- (length dp) 1)))
(do ((i 0 (+ 1 i)))
((>= i len))
(let* ((di (list-ref dp i))
(df (list-ref dp (+ i 1)))
(vp (x-norm (spiral-velocity path) df))
(vi (envelope-interp di vp))
(vf (envelope-interp df vp)))
(set! tp (cons td tp))
(set! td (+ td (/ (- df di) (+ vi vf) 2)))))
(let ((tf (car tp)))
(set! tp (reverse tp))
(set! (path-rx path) x)
(set! (path-ry path) y)
(set! (path-rz path) z)
(let ((val '()))
(for-each
(lambda (ti)
(set! val (cons (/ ti tf) val)))
tp)
(set! (path-rt path) (reverse val))))))))
(reset-transformation path)))
(define (render-path path)
(cond ((or (eq? (car path) 'bezier-path)
(eq? (car path) 'open-bezier-path))
(bezier-render path))
((eq? (car path) 'literal-path)
(literal-render path))
(#t (spiral-render path))))
;;;;;;;;;;;;;;;;;;;
;;; Transformations
;;;;;;;;;;;;;;;;;;;
;;; Transform a rendered path using scaling, translation and rotation
;;; Transform a path (scaling + translation + rotation)
(define* (transform-path path
scaling
translation
rotation
rotation-center
(rotation-axis '(0.0 0.0 1.0)))
;; Derive a rotation matrix from an axis vector and an angle
(define (rotation-matrix x y z angle)
;; translated from C routine by David Eberly
;; (http://www.magic-software.com/)
(define (normalize a b c)
(let* ((mag (sqrt (+ (* a a) (* b b) (* c c)))))
(list (/ a mag) (/ b mag) (/ c mag))))
(let* ((vals (normalize x y z))
(dx (car vals))
(dy (cadr vals))
(dz (caddr vals))
(rotate (vector (vector 0.0 0.0 0.0) (vector 0.0 0.0 0.0) (vector 0.0 0.0 0.0)))
(I (vector (vector 1.0 0.0 0.0) (vector 0.0 1.0 0.0) (vector 0.0 0.0 1.0)))
(A (vector (vector 0.0 dz (- dy)) (vector (- dz) 0.0 dx) (vector dy (- dx) 0.0)))
(AA (vector (vector 0.0 0.0 0.0) (vector 0.0 0.0 0.0) (vector 0.0 0.0 0.0)))
(sn (sin (- angle)))
(omcs (- 1 (cos (- angle)))))
(do ((row 0 (+ 1 row)))
((= row 3))
(do ((col 0 (+ 1 col)))
((= col 3))
(vector-set! (vector-ref AA row) col 0.0)
(do ((mid 0 (+ 1 mid)))
((= mid 3))
(vector-set! (vector-ref AA row) col
(+ (vector-ref (vector-ref AA row) col)
(* (vector-ref (vector-ref A row) mid)
(vector-ref (vector-ref A mid) col)))))))
;; rotation matrix is I+sin(angle)*A+[1-cos(angle)]*A*A
(do ((row 0 (+ 1 row)))
((= row 3))
(do ((col 0 (+ 1 col)))
((= col 3))
(vector-set! (vector-ref rotate row) col
(+ (vector-ref (vector-ref I row) col)
(* sn (vector-ref (vector-ref A row) col))
(* omcs (vector-ref (vector-ref AA row) col))))))
rotate))
(if (not-rendered path)
(render-path path))
(if (or scaling translation rotation)
;; there's at least one transformation to execute
(let* ((rotation (if rotation (* 2 pi (/ rotation dlocsig-one-turn)) #f))
(matrix (if rotation (rotation-matrix (car rotation-axis)
(cadr rotation-axis)
(third rotation-axis)
rotation)
#f))
(xc (path-x path))
(yc (path-y path))
(zc (path-z path)))
(if (and rotation-center (not (= (length rotation-center) 3)))
(error 'mus-error "ERROR: rotation center has to have all three coordinates~%"))
(if (and rotation-axis (not (= (length rotation-axis) 3)))
(error 'mus-error "ERROR: rotation axis has to have all three coordinates~%"))
(let ((len (length xc))
(xtr '())
(ytr '())
(ztr '()))
(do ((i 0 (+ 1 i)))
((= i len))
(let* ((x (list-ref xc i))
(y (list-ref yc i))
(z (list-ref zc i))
(xw x)
(yw y)
(zw z))
;; rotating around non-triple zero? translate first
(if (and rotation-center rotation)
(begin
(set! xw (- xw (car rotation-center)))
(set! yw (- yw (cadr rotation-center)))
(set! zw (- zw (third rotation-center)))))
;; rotation
(if rotation
(let* ((xr (+ (* (vector-ref (vector-ref matrix 0) 0) xw)
(* (vector-ref (vector-ref matrix 1) 0) yw)
(* (vector-ref (vector-ref matrix 2) 0) zw)))
(yr (+ (* (vector-ref (vector-ref matrix 0) 1) xw)
(* (vector-ref (vector-ref matrix 1) 1) yw)
(* (vector-ref (vector-ref matrix 2) 1) zw)))
(zr (+ (* (vector-ref (vector-ref matrix 0) 2) xw)
(* (vector-ref (vector-ref matrix 1) 2) yw)
(* (vector-ref (vector-ref matrix 2) 2) zw))))
(set! xw xr)
(set! yw yr)
(set! zw zr)))
;; rotating around non-triple zero? untranslate
(if (and rotation-center rotation)
(begin
(set! xw (+ xw (car rotation-center)))
(set! yw (+ yw (cadr rotation-center)))
(set! zw (+ zw (third rotation-center)))))
;; scaling
(if scaling
(begin
(set! xw (* xw (car scaling)))
(if (cadr scaling)
(set! yw (* yw (cadr scaling))))
(if (third scaling)
(set! zw (* zw (third scaling))))))
;; translating
(if translation
(begin
(set! xw (+ xw (car translation)))
(if (cadr translation)
(set! yw (+ yw (cadr translation))))
(if (third translation)
(set! zw (+ zw (third translation))))))
;; collect the points
(set! xtr (cons xw xtr))
(set! ytr (cons yw ytr))
(set! ztr (cons zw ztr))))
(set! (path-tx path) (reverse xtr))
(set! (path-ty path) (reverse ytr))
(set! (path-tz path) (reverse ztr))))
(begin
;; if there's no transformation just copy the rendered path
(set! (path-tt path) (copy-list (path-rt path)))
(set! (path-tx path) (copy-list (path-rx path)))
(set! (path-ty path) (copy-list (path-ry path)))
(set! (path-tz path) (copy-list (path-rz path)))))
path)
;;; Scale a path
(define (scale-path path)
(transform-path path :scaling scaling))
;;; Translate a path
(define (translate-path path)
(transform-path path :translation translation))
;;; Rotate a path
(define* (rotate-path path rotation
:key
rotation-center
(rotation-axis '(0.0 0.0 1.0)))
"rotate-path is a dlocsig function that rotates a dlocsig path"
(transform-path path
:rotation rotation
:rotation-center rotation-center
:rotation-axis rotation-axis))
;;; Mirror a path around an axis
(define* (mirror-path path (axis 'y) (around 0))
(if (not-transformed path)
(transform-path path))
(if (equal axis 'y)
(let ((val '()))
(for-each
(lambda (x)
(set! val (cons (- around x) val)))
(path-tx path))
(set! (path-tx path) (reverse val)))
(let ((val '()))
(for-each
(lambda (y)
(set! val (cons (- around y) val)))
(path-ty path))
(set! (path-ty path) (reverse val))))
path)
;;; Change the times of the rendered envelope so that the velocity is constant
(define (constant-velocity path)
"constant-velocity is a dlocsig function that changes the times of the rendered envelope so that the velocity is constant"
(if (not (path-rx path))
(render-path path))
(reset-transformation path)
(let* ((xcoords (path-x path))
(ycoords (path-y path))
(zcoords (path-z path))
(tcoords (path-time path))
(total-distance
(let* ((sum 0.0)
(len (length xcoords)))
(do ((i 0 (+ 1 i)))
((= i len))
(let ((x1 (list-ref xcoords i))
(x2 (list-ref xcoords (+ i 1)))
(y1 (list-ref ycoords i))
(y2 (list-ref ycoords (+ i 1)))
(z1 (list-ref zcoords i))
(z2 (list-ref zcoords (+ i 1))))
(set! sum (+ sum (distance (- x2 x1) (- y2 y1) (- z2 z1))))))
sum))
(start-time (car tcoords))
(end-time (list-ref tcoords (- (length tcoords) 1)))
(total-time (- end-time start-time))
(velocity (/ total-distance total-time)))
(let ((len (length xcoords))
(now '())
(dist 0.0))
(do ((i 0 (+ 1 i)))
((= i len))
(let* ((xp (list-ref xcoords i))
(x (list-ref xcoords (+ i 1)))
(yp (list-ref ycoords i))
(y (list-ref ycoords (+ i 1)))
(zp (list-ref zcoords i))
(z (list-ref zcoords (+ i 1))))
(set! dist (+ dist (distance (- x xp) (- y yp) (- z zp))))
(set! now (cons (/ dist velocity) now))))
(set! now (reverse now))
(set! (path-rt path) (append (list start-time) now))
(set! (path-tx path) (copy-list (path-rx path)))
(set! (path-ty path) (copy-list (path-ry path)))
(set! (path-tz path) (copy-list (path-rz path)))))
path)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Create a new dlocsig structure
(define* (make-dlocsig start-time
duration
(path dlocsig-path)
(scaler dlocsig-scaler)
(direct-power dlocsig-direct-power)
(inside-direct-power dlocsig-inside-direct-power)
(reverb-power dlocsig-reverb-power)
(inside-reverb-power dlocsig-inside-reverb-power)
(reverb-amount dlocsig-reverb-amount)
(initial-delay dlocsig-initial-delay)
(unity-gain-dist dlocsig-unity-gain-distance)
(inside-radius dlocsig-inside-radius)
(minimum-segment-length dlocsig-minimum-segment-length)
(render-using dlocsig-render-using)
(ambisonics-h-order dlocsig-ambisonics-h-order)
(ambisonics-v-order dlocsig-ambisonics-v-order)
out-channels
rev-channels)
(if (null? start-time)
(error 'mus-error "ERROR: a start time is required in make-dlocsig~%"))
(if (null? duration)
(error 'mus-error "ERROR: a duration has to be specified in make-dlocsig~%"))
;; check to see if we have the right number of channels for b-format ambisonics
(if (= render-using ambisonics)
(begin
(if (or (> ambisonics-h-order 2)
(> ambisonics-v-order 2))
(error 'mus-error "ERROR: ambisonics encoding is currently limited to second order components~%"))
(let* ((channels (ambisonics-channels ambisonics-h-order ambisonics-v-order)))
(if (< (or out-channels (mus-channels *output*)) channels)
(error 'mus-error "ERROR: ambisonics number of channels is wrong, dlocsig needs ~A output channels for h:~A, v:~A order (current number is ~A)~%"
channels ambisonics-h-order ambisonics-v-order (or out-channels (mus-channels *output*)))))))
(if (not out-channels)
(if *output*
(set! out-channels (channels *output*))
(begin
(format #t "WARNING: no *output*? Will set out-channels to 2~%~%")
(set! out-channels 2))))
(if (not rev-channels)
(set! rev-channels (if *reverb* (channels *reverb*) 0)))
(let* (;; speaker configuration for current number of channels
(speakers (if (= render-using ambisonics)
#f
(get-speaker-configuration out-channels)))
;; array of gains -- envelopes
(channel-gains (make-vector out-channels '()))
(channel-rev-gains (make-vector out-channels '()))
;; speaker output delays
(max-out-delay 0.0)
(out-delays (make-vector out-channels))
;; coordinates of rendered path
(xpoints (path-x path))
(ypoints (path-y path))
(zpoints (path-z path))
(tpoints (path-time path))
;; speed of sound expressed in terms of path time coordinates
(speed-limit (/ (* dlocsig-speed-of-sound
(- (car (last tpoints)) (car tpoints)))
duration))
(start 0)
(end 0)
(delay '())
(doppler '())
(real-dur 0)
(prev-time #f)
(prev-dist #f)
(prev-group #f)
(prev-x #f)
(prev-y #f)
(prev-z #f)
(first-dist #f)
(last-dist #f)
(min-dist #f)
(max-dist #f)
(min-delay #f)
;; without this the delay apparently stomps over something else in the structure
;; and we get artifacts in the output, probably a off-by-one error somewhere
(delay-hack 1)
(min-dist-unity #f)
(unity-gain 1.0)
(unity-rev-gain 1.0)
(run-beg #f)
(run-end #f)
;; channel offsets in output stream for ambisonics
;; (depends on horizontal and vertical order, default is h=1,v=1)
(w-offset 0)
(x-offset 1)
(y-offset 2)
(z-offset #f)
(r-offset #f)
(s-offset #f)
(t-offset #f)
(u-offset #f)
(v-offset #f))
(if (= render-using ambisonics)
;; calculate output channel offsets for ambisonics rendering
(let* ((offset 3))
;; the default is at least a horizontal order of 1
(if (>= ambisonics-v-order 1)
(begin
;; add Z
(set! z-offset offset)
(set! offset (+ offset 1))))
(if (>= ambisonics-v-order 2)
(begin
;; add R S T
(set! r-offset offset)
(set! s-offset (+ offset 1))
(set! t-offset (+ offset 2))
(set! offset (+ offset 3))))
(if (>= ambisonics-h-order 2)
(begin
;; add U V
(set! u-offset offset)
(set! v-offset (+ offset 1))
(set! offset (+ offset 2))))))
(define (equalp-intersection l1 l2)
(if (null? l2)
l2
(let loop1 ((l1 l1)
(result '()))
(cond ((null? l1)
(reverse! result))
((member (car l1) l2)
(loop1 (cdr l1)
(cons (car l1)
result)))
(else (loop1 (cdr l1)
result))))))
(define (dist->samples d) (inexact->exact (round (* d (/ (mus-srate) dlocsig-speed-of-sound)))))
(define (dist->seconds d) (/ d dlocsig-speed-of-sound))
(define (time->samples time) (inexact->exact (round (* time (mus-srate)))))
(define (transition-point-3 vert-a vert-b xa ya za xb yb zb)
(define (cross v1 v2)
(list (- (* (cadr v1) (third v2))
(* (third v1) (cadr v2)))
(- (* (third v1) (car v2))
(* (car v1) (third v2)))
(- (* (car v1) (cadr v2))
(* (cadr v1) (car v2)))))
(define (dot v1 v2)
(+ (* (car v1) (car v2))
(* (cadr v1) (cadr v2))
(* (third v1) (third v2))))
(define (sub v1 v2)
(list (- (car v1) (car v2))
(- (cadr v1) (cadr v2))
(- (third v1) (third v2))))
(define (add v1 v2)
(list (+ (car v1) (car v2))
(+ (cadr v1) (cadr v2))
(+ (third v1) (third v2))))
(define (scale v1 c)
(list (* (car v1) c)
(* (cadr v1) c)
(* (third v1) c)))
(let* ((tolerance 1.0e-6)
(line-b (list xa ya za))
(line-m (sub (list xb yb zb) line-b))
(normal (cross vert-a vert-b))
(denominator (dot normal line-m)))
(if (<= (abs denominator) tolerance)
#f
(add line-b (scale line-m (/ (- (dot normal line-b)) denominator))))))
;; calculate transition point between two adjacent two-speaker groups
;; original line intersection code from Graphic Gems III
(define (transition-point-2 vert xa ya xb yb)
(let* ((Ax (car vert))
(Bx (- xa xb))
(Ay (cadr vert))
(By (- ya yb))
(Cx (- xa))
(Cy (- ya))
(d (- (* By Cx) (* Bx Cy)))
(f (- (* Ay Bx) (* Ax By))))
(if (= f 0)
#f
(list (/ (* d Ax) f)
(/ (* d Ay) f)))))
;; calculate speaker gains for group
(define (calculate-gains x y z group)
(let* ((zero-coord 1.0e-10)
(zero-gain 1.0e-10)
(size (group-size group))
(mat (group-matrix group))) ; returns mixer
(if (and (< (abs x) zero-coord)
(< (abs y) zero-coord)
(< (abs z) zero-coord))
(list #t (list 1.0 1.0 1.0))
(if (= size 3)
(let* ((gain-a (+ (* (mixer-ref mat 0 0) x)
(* (mixer-ref mat 1 0) y)
(* (mixer-ref mat 2 0) z)))
(gain-b (+ (* (mixer-ref mat 0 1) x)
(* (mixer-ref mat 1 1) y)
(* (mixer-ref mat 2 1) z)))
(gain-c (+ (* (mixer-ref mat 0 2) x)
(* (mixer-ref mat 1 2) y)
(* (mixer-ref mat 2 2) z)))
(mag (sqrt (+ (* gain-a gain-a)
(* gain-b gain-b)
(* gain-c gain-c)))))
;; truncate to zero roundoff errors
(if (< (abs gain-a) zero-gain)
(set! gain-a 0.0))
(if (< (abs gain-b) zero-gain)
(set! gain-b 0.0))
(if (< (abs gain-c) zero-gain)
(set! gain-c 0.0))
(list (and (>= gain-a 0) (>= gain-b 0) (>= gain-c 0))
(list (/ gain-a mag) (/ gain-b mag) (/ gain-c mag))))
(if (= size 2)
(let* ((gain-a (+ (* (mixer-ref mat 0 0) x)
(* (mixer-ref mat 1 0) y)))
(gain-b (+ (* (mixer-ref mat 0 1) x)
(* (mixer-ref mat 1 1) y)))
(mag (sqrt (+ (* gain-a gain-a)
(* gain-b gain-b)))))
;; truncate to zero roundoff errors
(if (< (abs gain-a) zero-gain)
(set! gain-a 0.0))
(if (< (abs gain-b) zero-gain)
(set! gain-b 0.0))
(list (and (>= gain-a 0) (>= gain-b 0))
(list (/ gain-a mag) (/ gain-b mag))))
(if (= size 1)
(list #t (list 1.0))))))))
;; find the speaker group that contains a point
(define (find-group x y z)
(call-with-exit
(lambda (return)
(for-each
(lambda (group)
(let* ((vals (calculate-gains x y z group))
(inside (car vals))
(gains (cadr vals)))
(if inside
(return (list group gains)))))
(speaker-config-groups speakers))
(list #f #f))))
;; push zero gains on all channels
(define (push-zero-gains time)
(let ((len (speaker-config-number speakers)))
(do ((i 0 (+ 1 i)))
((= i len))
(vector-set! channel-gains i (cons time (vector-ref channel-gains i)))
(vector-set! channel-gains i (cons 0.0 (vector-ref channel-gains i)))))
(let ((len rev-channels))
(do ((i 0 (+ 1 i)))
((= i len))
(vector-set! channel-rev-gains i (cons time (vector-ref channel-rev-gains i)))
(vector-set! channel-rev-gains i (cons 0.0 (vector-ref channel-rev-gains i))))))
(define (position val lst)
(define (position-1 val lst pos)
(call-with-exit
(lambda (return)
(if (null? lst)
#f
(if (= val (car lst))
(return pos)
(position-1 val (cdr lst) (+ 1 pos)))))))
(position-1 val lst 0))
;; push gain and time into envelopes
(define (push-gains group gains dist time num)
(let* ((outputs (make-vector out-channels 0.0))
(rev-outputs (make-vector rev-channels 0.0))
;; attenuation with distance of direct signal
(att (if (>= dist inside-radius)
(/ (expt dist direct-power))
(- 1.0 (expt (/ dist inside-radius) (/ inside-direct-power)))))
;; attenuation with distance of reverberated signal
(ratt (if (>= dist inside-radius)
(/ (expt dist reverb-power))
(- 1.0 (expt (/ dist inside-radius) (/ inside-reverb-power))))))
(if (>= dist inside-radius)
;; outside the inner sphere, signal is sent to group
(let ((len (length gains)))
(do ((i 0 (+ 1 i)))
((= i len))
(let ((speaker (list-ref (group-speakers group) i))
(gain (list-ref gains i)))
(vector-set! outputs speaker (* gain att))
(if (and (> rev-channels 1)
(< speaker (length rev-outputs)))
(vector-set! rev-outputs speaker (* gain ratt))))))
(let ((gain 0.0)
(len (speaker-config-number speakers)))
(do ((speaker 0 (+ 1 speaker)))
((= speaker len))
;; inside the inner sphere, signal is sent to all speakers
(let ((found (position speaker (group-speakers group))))
(if found
;; speaker belongs to group, add to existing gain
(begin
(set! gain (list-ref gains found))
(vector-set! outputs speaker (+ gain (* (- 1.0 gain) att)))
(if (> rev-channels 1) (vector-set! rev-outputs speaker (+ gain (* (- 1.0 gain) ratt)))))
;; speaker outside of group
(begin
(vector-set! outputs speaker att)
(if (> rev-channels 1) (vector-set! rev-outputs speaker ratt))))))))
;; push all channel gains into envelopes
(let ((len (speaker-config-number speakers)))
(do ((i 0 (+ 1 i)))
((= i len))
(if (or (null? (vector-ref channel-gains i))
(> time (cadr (vector-ref channel-gains i))))
(begin
(vector-set! channel-gains i (cons time (vector-ref channel-gains i)))
(vector-set! channel-gains i (cons (vector-ref outputs i) (vector-ref channel-gains i)))))))
(if (> rev-channels 1)
(do ((i 0 (+ 1 i)))
((= i rev-channels))
(if (or (null? (vector-ref channel-rev-gains i))
(> time (cadr (vector-ref channel-rev-gains i))))
(begin
(vector-set! channel-rev-gains i (cons time (vector-ref channel-rev-gains i)))
(vector-set! channel-rev-gains i (cons (vector-ref rev-outputs i) (vector-ref channel-rev-gains i)))))))
;; push reverb gain into envelope for mono reverb
(if (= rev-channels 1)
(begin
(if (or (null? (vector-ref channel-rev-gains 0))
(> time (cadr (vector-ref channel-rev-gains 0))))
(begin
(vector-set! channel-rev-gains 0 (cons time (vector-ref channel-rev-gains 0)))
(vector-set! channel-rev-gains 0 (cons ratt (vector-ref channel-rev-gains 0)))))))))
;; Render a trajectory breakpoint through amplitude panning
(define (famplitude-panning x y z dist time q)
;; output gains for current point
(if prev-group
(let* ((vals (calculate-gains x y z prev-group))
(inside (car vals))
(gains (cadr vals)))
;; check that the source is not moving faster than sound
(if (not (= time prev-time))
(let* ((speed (/ (- dist prev-dist) (- time prev-time))))
(if (> speed speed-limit)
(format #t "WARNING: supersonic radial movement at [~F,~F,~F, ~F], speed=~F~%~%" x y z time speed))))
(if inside
;; still in the same group
(begin
(push-gains prev-group gains dist time 1)
(set! prev-x x)
(set! prev-y y)
(set! prev-z z))
;; left the group
(let* ((vals (find-group x y z))
(group (car vals))
(gains (cadr vals)))
(if group
;; we have to interpolate a new point that lies on the shared
;; edge of the adjacent groups so that the speakers opposite
;; the edge have zero gain when the trajectory switches groups
(let* ((edge (equalp-intersection (group-vertices group)
(group-vertices prev-group))))
(if (= (length edge) 2)
;; the groups have two shared points (ie: share an edge)
;; this must be a three speaker groups transition
(let* ((pint (transition-point-3 (car edge) (cadr edge) x y z prev-x prev-y prev-z)))
(if pint
(let* ((xi (car pint))
(yi (cadr pint))
(zi (third pint))
(di (distance xi yi zi))
(ti (+ prev-time (max .00001 (* (/ (distance (- xi prev-x)
(- yi prev-y)
(- zi prev-z))
(distance (- x prev-x)
(- y prev-y)
(- z prev-z)))
(- time prev-time))))))
;; see if we are inside the previous group
;; we can be on either side due to roundoff errors
(let* ((vals (calculate-gains xi yi zi prev-group))
(inside (car vals))
(gains (cadr vals)))
(if inside
(push-gains prev-group gains di ti 2)
(let* ((val1 (calculate-gains xi yi zi group))
(inside (car val1))
(gains (cadr val1)))
(if inside
(push-gains group gains di ti 3)
;; how did we get here?
(error 'mus-error "ERROR: Outside of both adjacent groups [~A:~A:~A @~A]~%~%" xi yi zi ti))))))))
(if (and (= (length edge) 1) (= (group-size group) 2))
;; two two-speaker groups share one point
;; z coordinates are silently ignored
(let* ((pint (transition-point-2 (car edge) x y prev-x prev-y)))
(if pint
(let* ((xi (car pint))
(yi (cadr pint))
(di (distance xi yi 0.0))
(ti (+ prev-time (max .00001 (* (/ (distance (- xi prev-x)
(- yi prev-y)
0.0)
(distance (- x prev-x)
(- y prev-y)
0.0))
(- time prev-time))))))
;; see if we are inside the previous group
;; we can be on either side due to roundoff errors
(let* ((vals (calculate-gains xi yi 0.0 prev-group))
(inside (car vals))
(gains (cadr vals)))
(if inside
(push-gains prev-group gains di ti 4)
(let* ((val1 (calculate-gains xi yi 0.0 group))
(inside (car val1))
(gains (cadr val1)))
(if inside
(push-gains group gains di ti 5)
;; how did we get here?
(format #t "Outside of both adjacent groups [~A:~A @~A]~%~%" xi yi ti))))))))
(if (= (length edge) 1)
;; groups share only one point... for now a warning
;; we should calculate two additional interpolated
;; points as the trajectory must be crossing a third
;; group
(begin
(for-each
(lambda (int-group)
(if (and (member (car edge) (group-vertices int-group))
(not (equal? int-group group))
(not (equal? int-group prev-group)))
(let* ((edge1 (equal-intersection (group-vertices int-group)
(group-vertices prev-group)))
(edge2 (equal-intersection (group-vertices int-group)
(group-vertices group))))
(format #t "e1=~A; e2=~A~%~%" edge1 edge2))))
(speaker-config-groups speakers))
(format #t "WARNING: crossing between groups with only one point in common~% prev=~A~% curr=~A~%~%" prev-group group))
;; groups don't share points... how did we get here?
(if (= (length edge) 0)
(format #t "WARNING: crossing between groups with no common points, ~A~A to ~A~A~%~%"
(group-id prev-group) (group-speakers prev-group)
(group-id group) (group-speakers group))))))
;; finally push gains for current group
(push-gains group gains dist time 6)
(set! prev-group group)
(set! prev-x x)
(set! prev-y y)
(set! prev-z z))
;; current point is outside all defined groups
;; we should send a warning at this point...
(begin
(push-zero-gains time)
(set! prev-group #f))))))
;; first time around
(let* ((vals (find-group x y z))
(group (car vals))
(gains (cadr vals)))
(if group
(begin
(push-gains group gains dist time 7)
(set! prev-group group)
(set! prev-x x)
(set! prev-y y)
(set! prev-z z))
(begin
(push-zero-gains time)
(set! prev-group #f))))))
;; Render a trajectory breakpoint for ambisonics b-format coding
;; http://www.york.ac.uk/inst/mustech/3d_audio/ambis2.htm
;;
;; Ambisonics b-format has four discrete channels encoded as follows:
;; W 0.707107 0.707107
;; X cos(A)cos(E) x
;; Y sin(A)cos(E) y
;; R 1.5sin(E)sin(E)-0.5 1.5zz-0.5
;; S cos(A)sin(2E) 2zx
;; T sin(A)sin(2E) 2yz
;; U cos(2A)cos(E)cos(E) xx-yy
;; V sin(2A)cos(E)cos(E) 2xy
;;
;; where:
;; A: counter-clockwise angle of rotation from the front center
;; E: the angle of elevation above the horizontal plane
;;
;; in our coordinate system (normalizing the vectors):
;; xy: (* dist (cos E))
;; (cos A): (/ y xy)
;; (sin A): (/ -x xy)
;; (cos E): (/ xy dist)
;; (sin E): (/ z dist)
;; so:
;; W: (* signal 0.707)
;; X: (* signal (/ y dist))
;; Y: (* signal (/ -x dist))
;; Z: (* signal (/ z dist))
;;
;; R: (* signal (- (* 1.5 z z 1/dist 1/dist) 0.5))
;; S: (* signal 2 z (- x) 1/dist 1/dist)
;; T: (* signal 2 z y 1/dist 1/dist)
;; U: (* signal (- (* x x 1/dist 1/dist) (* y y 1/dist 1/dist)))
;; V: (* signal 2 (- x) y 1/dist 1/dist)
;;
;; see also: http://wiki.xiph.org/index.php/Ambisonics
;; for mixed order systems
;;
(define (render-ambisonics x y z dist time)
(let* ((att (if (> dist inside-radius)
(expt (/ inside-radius dist) direct-power)
(expt (/ dist inside-radius) (/ inside-direct-power))))
(attW (if (> dist inside-radius)
(* point707 att)
(- 1 (* (- 1 point707) (expt (/ dist inside-radius) direct-power)))))
(ratt (if (> dist inside-radius)
(expt (/ inside-radius dist) reverb-power)
(expt (/ dist inside-radius) (/ inside-reverb-power))))
(rattW (if (> dist inside-radius)
(* point707 ratt)
(- 1 (* (- 1 point707) (expt (/ dist inside-radius) reverb-power))))))
;; output encoding gains for point
;; W: 0.707
(vector-set! channel-gains w-offset (cons time (vector-ref channel-gains w-offset)))
(vector-set! channel-gains w-offset (cons attW (vector-ref channel-gains w-offset)))
;; X: (* (cos A) (cos E))
(vector-set! channel-gains x-offset (cons time (vector-ref channel-gains x-offset)))
(vector-set! channel-gains x-offset (cons (* (if (zero? dist) 0 (/ y dist)) att) (vector-ref channel-gains x-offset)))
;; Y: (* (sin A) (cos E))
(vector-set! channel-gains y-offset (cons time (vector-ref channel-gains y-offset)))
(vector-set! channel-gains y-offset (cons (* (if (zero? dist) 0 (/ (- x) dist)) att) (vector-ref channel-gains y-offset)))
(if (>= ambisonics-v-order 1)
(begin
;; Z: (sin E)
(vector-set! channel-gains z-offset (cons time (vector-ref channel-gains z-offset)))
(vector-set! channel-gains z-offset (cons (* (if (zero? dist) 0 (/ z dist)) att) (vector-ref channel-gains z-offset)))))
(if (>= ambisonics-v-order 2)
(begin
;; R
(vector-set! channel-gains r-offset (cons time (vector-ref channel-gains r-offset)))
(vector-set! channel-gains r-offset (cons (* (if (zero? dist) 0 (- (* 1.5 z z (if (zerop dist) 1 (/ 1 (* dist dist)))) 0.5) att)
(vector-ref channel-gains r-offset))))
;; S
(vector-set! channel-gains s-offset (cons time (vector-ref channel-gains s-offset)))
(vector-set! channel-gains s-offset (cons (* (if (zero? dist) 0 2) z (- x) (if (zero? dist) 1 (/ 1 (* dist dist))) att)
(vector-ref channel-gains s-offset)))
;; T
(vector-set! channel-gains t-offset (cons time (vector-ref channel-gains t-offset)))
(vector-set! channel-gains t-offset (cons (* (if (zero? dist) 0 2) z y (if (zero? dist) 1 (/ 1 (* dist dist))) att)
(vector-ref channel-gains t-offset)))))
(if (>= ambisonics-h-order 2)
(begin
;; U
(vector-set! channel-gains u-offset (cons time (vector-ref channel-gains u-offset)))
(vector-set! channel-gains u-offset (cons (* (if (zero? dist) 0 1) (- (* x x (if (zero? dist) 1 (/ 1 (* dist dist))))
(* y y (if (zero? dist) 1 (/ 1 (* dist dist))))) att)
(vector-ref channel-gains u-offset)))
;; V
(vector-set! channel-gains v-offset (cons time (vector-ref channel-gains v-offset)))
(vector-set! channel-gains v-offset (cons (* (if (zero? dist) 0 2) (- x) y (if (zero? dist) 1 (/ 1 (* dist dist))) att)
(vector-ref channel-gains v-offset)))))
;; push reverb gain into envelope
(if (= rev-channels 1)
(begin
;; mono reverb output
(vector-set! channel-rev-gains 0 (cons time (vector-ref channel-rev-gains 0)))
(vector-set! channel-rev-gains 0 (cons (if (>= dist inside-radius)
(/ (expt dist reverb-power))
(- 1.0 (expt (/ dist inside-radius) (/ inside-reverb-power))))
(vector-ref channel-rev-gains 0)))))
(if (> rev-channels 1)
(begin
;; multichannel reverb, send ambisonics components
;; W: 0.707
(vector-set! channel-rev-gains w-offset (cons time (vector-ref channel-rev-gains w-offset)))
(vector-set! channel-rev-gains w-offset (cons rattW (vector-ref channel-rev-gains w-offset)))
;; X: (* (cos A)(cos E))
(vector-set! channel-rev-gains x-offset (cons time (vector-ref channel-rev-gains x-offset)))
(vector-set! channel-rev-gains x-offset (cons (* (if (zero? dist) 0 1) y (if (zerop dist) 1 (/ dist)) ratt)(vector-ref channel-rev-gains x-offset)))
;; Y: (* (sin A)(cos E))
(vector-set! channel-rev-gains y-offset (cons time (vector-ref channel-rev-gains y-offset)))
(vector-set! channel-rev-gains y-offset (cons (* (if (zero? dist) 0 1) (- x) (if (zerop dist) 1 (/ dist)) ratt)
(vector-ref channel-rev-gains y-offset)))
(if (>= ambisonics-v-order 1)
(begin
;; Z: (sin E)
(vector-set! channel-rev-gains z-offset (cons time (vector-ref channel-rev-gains z-offset)))
(vector-set! channel-rev-gains z-offset (cons (* (if (zero? dist) 0 1) z (if (zerop dist) 1 (/ dist)) ratt)
(vector-ref channel-rev-gains z-offset)))))
(if (>= ambisonics-v-order 2)
(begin
;; R
(vector-set! channel-rev-gains r-offset (cons time (vector-ref channel-rev-gains r-offset)))
(vector-set! channel-rev-gains r-offset (cons (* (if (zero? dist) 0 (- (* 1.5 z z (if (zero? dist) 1 (/ 1 (* dist dist)))) 0.5)) ho-ratt ratt)
(vector-ref channel-rev-gains r-offset)))
;; S
(vector-set! channel-rev-gains s-offset (cons time (vector-ref channel-rev-gains s-offset)))
(vector-set! channel-rev-gains s-offset (cons (* (if (zero? dist) 0 2) z (- x) (if (zero? dist) 1 (/ 1 (* dist dist))) ho-ratt ratt)
(vector-ref channel-rev-gains s-offset)))
;; T
(vector-set! channel-rev-gains t-offset (cons time (vector-ref channel-rev-gains t-offset)))
(vector-set! channel-rev-gains t-offset (cons (* (if (zero? dist) 0 2) z y (if (zero? dist) 1 (/ 1 (* dist dist))) ho-ratt ratt)
(vector-ref channel-rev-gains t-offset)))))
(if (>= ambisonics-h-order 2)
(begin
;; U
(vector-set! channel-rev-gains u-offset (cons time (vector-ref channel-rev-gains u-offset)))
(vector-set! channel-rev-gains u-offset (cons (* (if (zero? dist) 0 (- (* x x (if (zero? dist) 1 (/ 1 (* dist dist))))
(* y y (if (zero? dist) 1 (/ 1 (* dist dist)))))) ho-ratt ratt)
(vector-ref channel-rev-gains u-offset)))
;; V
(vector-set! channel-rev-gains v-offset (cons time (vector-ref channel-rev-gains v-offset)))
(vector-set! channel-rev-gains v-offset (cons (* (if (zero? dist) 0 2) (- x) y (if (zero? dist) 1 (/ 1 (* dist dist))) ho-ratt ratt)
(vector-ref channel-rev-gains v-offset)))))))))
;; Render a trajectory breakpoint to a room for decoded ambisonics
;;
;; for a given speaker located in 3d space in polar coordinates:
;; az: azimut angle, increments clockwise
;; el: elevation angle
;;
;; S: (+ W (* X (cos az) (cos el))
;; (* Y (sin az) (cos el))
;; (* Z (sin el)))
;;
(define (fdecoded-ambisonics x y z dist time)
(let* ((att (if (> dist inside-radius)
(expt (/ inside-radius dist) direct-power)
(expt (/ dist inside-radius) (/ inside-direct-power))))
(attW (if (> dist inside-radius)
(* point707 att)
(- 1 (* (- 1 point707) (expt (/ dist inside-radius) direct-power)))))
(ratt (if (> dist inside-radius)
(expt (/ inside-radius dist) reverb-power)
(expt (/ dist inside-radius) (/ inside-reverb-power))))
(rattW (if (> dist inside-radius)
(* point707 ratt)
(- 1 (* (- 1 point707) (expt (/ dist inside-radius) reverb-power))))))
;; output decoded gains for point
(let ((len (speaker-config-number speakers))
(spkrs (speaker-config-coords speakers)))
(do ((i 0 (+ 1 i)))
((= i len))
(let* ((s (list-ref spkrs i))
(signal (* dlocsig-ambisonics-scaler
(+
;; W
(* attW point707)
;; (* X (cos az) (cos el))
(* att (if (= dist 0) 0 (/ y dist)) (cadr s))
;; (* Y (sin az) (cos el))
(* att (if (= dist 0) 0 (/ x dist)) (car s))
;; (* Z (sin el)
(* att (if (= dist 0) 0 (/ z dist)) (third s))))))
(vector-set! channel-gains i (cons time (vector-ref channel-gains i)))
(vector-set! channel-gains i (cons signal (vector-ref channel-gains i))))))
;; push reverb gain into envelope
(if (= rev-channels 1)
(begin
;; mono reverberation
(vector-set! channel-rev-gains 0 (cons time (vector-ref channel-rev-gains 0)))
(vector-set! channel-rev-gains 0 (cons (if (>= dist inside-radius)
(/ (expt dist reverb-power))
(- 1.0 (expt (/ dist inside-radius) (/ inside-reverb-power))))
(vector-ref channel-rev-gains 0))))
;; multichannel reverb
(do ((i 0 (+ 1 i)))
((= i rev-channels))
(let* ((s (list-ref (speaker-config-coords speakers) i))
(signal (* dlocsig-ambisonics-scaler
(+
;; W
(* rattW point707)
;; (* X (cos az) (cos el))
(* ratt (if (zero? dist) 0 (/ y dist)) (cadr s))
;; (* Y (sin az) (cos el))
(* ratt (if (zero? dist) 0 (/ x dist)) (car s))
;; (* Z (sin el)
(* ratt (if (zero? dist) 0 (/ z dist)) (third s))))))
(vector-set! channel-rev-gains i (cons time (vector-ref channel-rev-gains i)))
(vector-set! channel-rev-gains i (cons signal (vector-ref channel-rev-gains i))))))))
;; Loop through all virtual rooms for one breakpoint in the trajectory
(define (walk-all-rooms x y z time num)
(let ((room 0)
(dist (distance x y z)))
;; remember first and last distances
(if (not first-dist) ; set to #f (far) above
(set! first-dist dist))
(set! last-dist dist)
;; remember maximum and minimum distances
(if (or (not min-dist) (< dist min-dist))
(set! min-dist dist))
(if (or (not max-dist) (> dist max-dist))
(set! max-dist dist))
;; push delay for current point (for doppler)
(if (or (null? delay)
(> time (cadr delay)))
(begin
(set! delay (cons time delay))
(set! delay (cons (dist->samples dist) delay))
;; doppler should be easy, yeah right. We use "relativistic" correction
;; as the sound object can be travelling close to the speed of sound.
;; http://www.mathpages.com/rr/s2-04/2-04.htm,
;; va = 0 (stationary listener)
;; ve = moving object
;; va = (* ve (/ 1 (+ 1 (/ ve c))) (sqrt (- 1 (* (/ ve c) (/ ve c)))))
(if prev-time
(let* ((ratio (/ (- dist prev-dist)
(* duration (- time prev-time) dlocsig-speed-of-sound))))
(set! doppler (cons (/ (+ prev-time time) 2) doppler))
(set! doppler (cons (* (/ 1 (+ 1 ratio)) (sqrt (- 1 (* ratio ratio)))) doppler))))))
;; do the rendering of the point
(if (= render-using amplitude-panning)
;; amplitude panning
(famplitude-panning x y z dist time 1)
(if (= render-using ambisonics)
;; ambisonics b format
(render-ambisonics x y z dist time)
(if (= render-using decoded-ambisonics)
;; ambisonics decoded
(fdecoded-ambisonics x y z dist time))))
(set! room (+ 1 room))
;; remember current time and distance for next point
(set! prev-time time)
(set! prev-dist dist)
;; return number of rooms processed
room))
;; Check to see if a segment changes radial direction:
;; a change in radial direction implies a change in
;; doppler shift that has to be reflected as a new
;; point in the rendered envelopes
(define (change-direction xa ya za ta xb yb zb tb num)
(walk-all-rooms xa ya za ta 1)
(if (or (not (= xa xb))
(not (= ya yb))
(not (= za zb))
(not (= ta tb)))
(let* ((vals (nearest-point xa ya za xb yb zb 0 0 0))
(xi (car vals))
(yi (cadr vals))
(zi (caddr vals)))
(if (and (if (< xa xb) (<= xa xi xb) (<= xb xi xa))
(if (< ya yb) (<= ya yi yb) (<= yb yi ya))
(if (< za zb) (<= za zi zb) (<= zb zi za)))
(walk-all-rooms xi yi zi
(+ tb (* (- ta tb)
(/ (distance (- xb xi) (- yb yi) (- zb zi))
(distance (- xb xa) (- yb ya) (- zb za)))))
2
)))))
;; Check to see if a segment intersects the inner sphere:
;; points inside are rendered differently so we need to
;; create additional envelope points in the boundaries
(define (intersects-inside-radius xa ya za ta xb yb zb tb)
(let* ((mag (distance (- xb xa) (- yb ya) (- zb za)))
(vx (/ (- xb xa) mag))
(vy (/ (- yb ya) mag))
(vz (/ (- zb za) mag))
(bsq (+ (* xa vx) (* ya vy) (* za vz)))
(u (- (+ (* xa xa) (* ya ya) (* za za))
(* inside-radius inside-radius)))
(disc (- (* bsq bsq) u))
(hit (>= disc 0.0)))
(if hit
;; ray defined by two points hits sphere
(let* ((root (sqrt disc))
(rin (- (- bsq) root))
(rout (+ (- bsq) root))
(xi #f) (yi #f) (zi #f) (ti #f) (xo #f) (yo #f) (zo #f) (to #f))
(if (and (> rin 0) (< rin mag))
;; intersects entering sphere
(begin
(set! xi (+ xa (* vx rin)))
(set! yi (+ ya (* vy rin)))
(set! zi (+ za (* vz rin)))
(set! ti (+ tb (* (- ta tb)
(/ (distance (- xb xi) (- yb yi) (- zb zi))
(distance (- xb xa) (- yb ya) (- zb za))))))))
(if (and (> rout 0) (< (abs rout) mag))
;; intersects leaving sphere
(begin
(set! xo (+ xa (* vx rout)))
(set! yo (+ ya (* vy rout)))
(set! zo (+ za (* vz rout)))
(set! to (+ tb (* (- ta tb)
(/ (distance (- xb xo) (- yb yo) (- zb zo))
(distance (- xb xa) (- yb ya) (- zb za))))))))
(if xi
(begin
(change-direction xa ya za ta xi yi zi ti 1)
(if xo
(begin
(change-direction xi yi zi ti xo yo zo to 2)
(change-direction xo yo zo to xb yb zb tb 3))
(change-direction xi yi zi ti xb yb zb tb 4)))
(if xo
(begin
(change-direction xa ya za ta xo yo zo to 5)
(change-direction xo yo zo to xb yb zb tb 6))
(change-direction xa ya za ta xb yb zb tb 7))))
(change-direction xa ya za ta xb yb zb tb 8))))
;; Recursively split segment if longer than minimum rendering distance:
;; otherwise long line segments that have changes in distance render
;; the amplitude envelope as a linear function that does not reflect
;; the chosen power function (1/d^n)
(define (fminimum-segment-length xa ya za ta xb yb zb tb)
(let* ((dist (distance (- xb xa) (- yb ya) (- zb za))))
(if (< dist minimum-segment-length)
(intersects-inside-radius xa ya za ta xb yb zb tb)
;; interpolate a new point half way thorugh the segment
(let* ((xi (/ (+ xa xb) 2))
(yi (/ (+ ya yb) 2))
(zi (/ (+ za zb) 2))
(ti (+ tb (* (- ta tb)
(/ (distance (- xb xi) (- yb yi) (- zb zi))
(distance (- xb xa) (- yb ya) (- zb za)))))))
(fminimum-segment-length xa ya za ta xi yi zi ti)
(fminimum-segment-length xi yi zi ti xb yb zb tb)))))
;; Loop for each pair of points in the position envelope and render them
(if (= (length xpoints) 1)
;; static source (we should check if this is inside the inner radius?)
(walk-all-rooms (car xpoints) (car ypoints) (car zpoints) (car tpoints) 3)
;; moving source
(let ((len (- (min (length xpoints) (length ypoints) (length zpoints) (length tpoints)) 1)))
(do ((i 0 (+ 1 i)))
((>= i len))
(let* ((xa (list-ref xpoints i))
(ya (list-ref ypoints i))
(za (list-ref zpoints i))
(ta (list-ref tpoints i))
(xb (list-ref xpoints (+ i 1)))
(yb (list-ref ypoints (+ i 1)))
(zb (list-ref zpoints (+ i 1)))
(tb (list-ref tpoints (+ i 1))))
(fminimum-segment-length xa ya za ta xb yb zb tb)
(if (= i len)
(walk-all-rooms xb yb zb tb 4))))))
;; returns the new duration of a sound after using an envelope for time-varying sampling-rate conversion
;; (from Bill's dsp.scm)
(define (src-duration e)
(let* ((len (length e))
(ex0 (car e))
(ex1 (list-ref e (- len 2)))
(all-x (- ex1 ex0))
(dur 0.0))
(do ((i 0 (+ i 2)))
((>= i (- len 2)) dur)
(let* ((x0 (list-ref e i))
(x1 (list-ref e (+ i 2)))
(y0 (list-ref e (+ i 1))) ; 1/x x points
(y1 (list-ref e (+ i 3)))
(area (if (< (abs (- y0 y1)) .0001)
(/ (- x1 x0) (* y0 all-x))
(* (/ (- (log y1) (log y0))
(- y1 y0))
(/ (- x1 x0) all-x)))))
(set! dur (+ dur (abs area)))))))
;; create delay lines for output channels that need them
(if speakers
(let* ((delays (speaker-config-delays speakers))
(len (length delays)))
(do ((channel 0 (+ 1 channel)))
((= channel len))
(let ((delayo (vct-ref delays channel)))
(vector-set! out-delays channel (if (not (= delayo 0.0))
(make-delay (time->samples delayo))
#f))
(set! max-out-delay (max max-out-delay delayo))))))
;; delay from the minimum distance to the listener
(set! min-delay (dist->samples min-dist))
;; duration of sound at listener's position after doppler src
;;
;; this does not work quite right but the error leads to a longer
;; run with zeroed samples at the end so it should be fine
(set! real-dur (* duration (src-duration (reverse doppler))))
;; end of the run according to the duration of the note
(set! end (time->samples duration))
;; start and end of the run loop in samples
(set! run-beg (time->samples start-time))
(set! run-end (inexact->exact (floor (- (+ (time->samples (+ start-time (max duration real-dur)))
(dist->samples last-dist)
(time->samples max-out-delay))
(if initial-delay 0.0 min-delay)))))
;; sample at which signal first arrives to the listener
(set! start (+ run-beg (dist->samples (- first-dist (if initial-delay 0.0 min-dist)))))
;; minimum distance for unity gain calculation
(set! min-dist-unity (if (< min-dist inside-radius)
inside-radius
min-dist))
;; unity-gain gain scalers
(set! unity-gain (* scaler
(if (number? unity-gain-dist)
(expt unity-gain-dist direct-power)
(if (not unity-gain-dist)
(expt min-dist-unity direct-power)
1.0))))
(set! unity-rev-gain (* scaler
(if (number? unity-gain-dist)
(expt unity-gain-dist reverb-power)
(if (not unity-gain-dist) ; defaults to #f above
(expt min-dist-unity reverb-power)
1.0))))
(list
(make-move-sound
(list
;; :start
start
;; :end
(time->samples (+ start-time (max duration real-dur)))
;; :out-channels
(if speakers (speaker-config-number speakers) out-channels)
;; :rev-channels
rev-channels
;; :path
(make-delay delay-hack :max-size (max 1 (+ (ceiling (dist->samples max-dist)) delay-hack)))
;; :delay
(make-env (reverse delay)
:offset (if initial-delay 0.0 (- min-delay))
:duration real-dur)
;; :rev
(make-env (if (number? reverb-amount) ; as opposed to an envelope I guess
(list 0 reverb-amount 1 reverb-amount)
reverb-amount)
:duration real-dur)
;; :out-delays
out-delays
;; :gains
(let ((v (make-vector out-channels)))
(do ((i 0 (+ 1 i)))
((= i out-channels))
(vector-set! v i (make-env (reverse (vector-ref channel-gains i))
:scaler (if (= render-using ambisonics) 1.0 unity-gain)
:duration real-dur)))
v)
;; :rev-gains
(if (> rev-channels 0)
(let ((v (make-vector rev-channels)))
(do ((i 0 (+ 1 i)))
((= i rev-channels))
(vector-set! v i (make-env (reverse (vector-ref channel-rev-gains i))
:scaler (if (= render-using ambisonics) 1.0 unity-rev-gain)
:duration real-dur)))
v)
#f)
;; :out-map
(if speakers
(speaker-config-map speakers)
(let ((v (make-vector out-channels)))
(do ((i 0 (+ i 1)))
((= i out-channels))
(vector-set! v i i))
v)))
*output*
*reverb*)
;; return start and end samples for the run loop
run-beg
run-end)))
;(with-sound(:channels 6 :play #f :statistics #t) (sinewave 0 10 440 0.5 :path (make-path '((-10 10) (0.5 0.5) (10 10)) :error 0.001)))
;
;(with-sound(:statistics #t :channels 4 :reverb-channels 4 :reverb freeverb :decay-time 3)
; (move 0 "/usr/ccrma/snd/nando/sounds/kitchen/bowl/small-medium-large-1.snd"
; :paths (list (make-spiral-path :start-angle 0 :turns 2.5)
; (make-spiral-path :start-angle 180 :turns 3.5))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Run macro to localize samples
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (dlocsig a b c)
"(dlocsig a b c) is the same as move-sound"
(move-sound a b c)) ; use this form for run's benefit
#|
;(define hi (make-path '((-10 10) (0.5 0.5) (10 10)) :3d #f :error 0.001))
;(make-dlocsig 0 1.0 :out-channels 2 :rev-channels 0 :path (make-path '((-10 10) (0.5 0.5) (10 10)) :3d #f))
(if (not (provided? 'snd-ws.scm)) (load "ws.scm"))
(define* (sinewave start-time duration freq amp
(amp-env '(0 1 1 1))
(path (make-path :path '(-10 10 0 5 10 10))))
(let* ((vals (make-dlocsig :start-time start-time
:duration duration
:path path))
(dloc (car vals))
(beg (cadr vals))
(end (caddr vals)))
(let* ((osc (make-oscil :frequency freq))
(aenv (make-env :envelope amp-env :scaler amp :duration duration)))
(run
(do ((i beg (+ 1 i)))
((= i end))
(dlocsig dloc i (* (env aenv) (oscil osc))))))))
(with-sound (:channels 2) (sinewave 0 1.0 440 .5 :path (make-path '((-10 10) (0.5 0.5) (10 10)) :3d #f)))
|#
|