/usr/share/snd/dsp.scm is in snd 11.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 | ;;; a DSP-related grabbag
(provide 'snd-dsp.scm)
(if (not (provided? 'snd-ws.scm)) (load "ws.scm"))
(if (not (provided? 'snd-generators.scm)) (load "generators.scm")) ; moving-*
(define (log10 a)
"(log10 a) returns the log base 10 of 'a'"
(log a 10))
;;; src-duration (see src-channel in extsnd.html)
(define (src-duration e)
"(src-duration envelope) returns the new duration of a sound after using 'envelope' for time-varying sampling-rate conversion"
(let* ((len (length e))
(ex0 (car e))
(ex1 (list-ref e (- len 2)))
(all-x (- ex1 ex0))
(dur 0.0))
(do ((i 0 (+ i 2)))
((>= i (- len 2)) dur)
(let* ((x0 (list-ref e i))
(x1 (list-ref e (+ i 2)))
(y0 (list-ref e (+ i 1))) ; 1/x x points
(y1 (list-ref e (+ i 3)))
(area (if (< (abs (- y0 y1)) .0001)
(/ (- x1 x0) (* y0 all-x))
(* (/ (- (log y1) (log y0))
(- y1 y0))
(/ (- x1 x0) all-x)))))
(set! dur (+ dur (abs area)))))))
(define (src-fit-envelope e target-dur)
(scale-envelope e (/ (src-duration e) target-dur))) ; scale-envelope is in env.scm
;;; -------- Dolph-Chebyshev window
;;;
;;; formula taken from Richard Lyons, "Understanding DSP"
;;; see clm.c for C version (using either GSL's or GCC's complex trig functions)
(define (dolph N gamma)
"(dolph n gamma) produces a Dolph-Chebyshev FFT data window of 'n' points using 'gamma' as the window parameter."
(let* ((alpha (cosh (/ (acosh (expt 10.0 gamma)) N)))
(den (/ 1.0 (cosh (* N (acosh alpha)))))
(freq (/ pi N))
(rl (make-vct N))
(im (make-vct N)))
(do ((i 0 (+ i 1))
(phase 0.0 (+ phase freq)))
((= i N))
(let ((val (* den (cos (* N (acos (* alpha (cos phase))))))))
(set! (rl i) (real-part val))
(set! (im i) (imag-part val)))) ;this is actually always essentially 0.0
(fft rl im -1) ;direction could also be 1
(let ((pk (vct-peak rl)))
(vct-scale! rl (/ 1.0 pk)))
(do ((i 0 (+ i 1))
(j (/ N 2)))
((= i N))
(set! (im i) (rl j))
(set! j (+ j 1))
(if (= j N) (set! j 0)))
im))
;;; this version taken from Julius Smith's "Spectral Audio..." with three changes
;;; it does the DFT by hand, and is independent of anything from Snd (fft, vcts etc)
(define (dolph-1 N gamma)
"(dolph-1 n gamma) produces a Dolph-Chebyshev FFT data window of 'n' points using 'gamma' as the window parameter."
(let* ((alpha (cosh (/ (acosh (expt 10.0 gamma)) N)))
(den (/ 1.0 (cosh (* N (acosh alpha)))))
(freq (/ pi N))
(vals (make-vector N))
(w (make-vector N))
(pk 0.0)
(mult -1))
(do ((i 0 (+ i 1))
(phase (- (/ pi 2)) (+ phase freq)))
((= i N))
(set! (vals i) (* mult den (cos (* N (acos (* alpha (cos phase)))))))
(set! mult (* -1 mult)))
;; now take the DFT
(do ((i 0 (+ i 1)))
((= i N))
(let ((sum 0.0))
(do ((k 0 (+ 1 k)))
((= k N))
(set! sum (+ sum (* (vals k) (exp (/ (* 2.0 0+1.0i pi k i) N))))))
(set! (w i) (magnitude sum))
(if (> (w i) pk) (set! pk (w i)))))
;; scale to 1.0 (it's usually pretty close already, that is pk is close to 1.0)
(do ((i 0 (+ i 1)))
((= i N))
(set! (w i) (/ (w i) pk)))
w))
;;; -------- move sound down by n (a power of 2)
(define* (down-oct n snd chn)
"(down-n n) moves a sound down by power of 2 n"
;; I think this is "stretch" in DSP jargon -- to interpolate in the time domain we're squeezing the frequency domain
;; the power-of-2 limitation is based on the underlying fft function's insistence on power-of-2 data sizes
;; see stretch-sound-via-dft below for a general version
(let* ((len (frames snd chn))
(pow2 (ceiling (/ (log len) (log 2))))
(fftlen (floor (expt 2 pow2)))
(fftscale (/ 1.0 fftlen))
(rl1 (channel->vct 0 fftlen snd chn))
(im1 (make-vct fftlen)))
(fft rl1 im1 1)
(vct-scale! rl1 fftscale)
(vct-scale! im1 fftscale)
(let ((rl2 (make-vct (* n fftlen)))
(im2 (make-vct (* n fftlen))))
(set! (rl2 0) (rl1 0))
(set! (im2 0) (im1 0))
(do ((i 1 (+ i 1)) ; lower half
(k (- fftlen 1) (- k 1))
(j (- (* n fftlen) 1) (- j 1)))
((= i (/ fftlen 2)))
(set! (rl2 i) (rl1 i))
(set! (rl2 j) (rl1 k))
(set! (im2 i) (im1 i))
(set! (im2 j) (im1 k)))
(fft rl2 im2 -1)
(vct->channel rl2 0 (* n len) snd chn #f (format #f "down-oct ~A" n)))))
(define* (stretch-sound-via-dft factor snd chn)
"(stretch-sound-via-dft factor snd chn) makes the given channel longer ('factor' should be > 1.0) by \
squeezing in the frequency domain, then using the inverse DFT to get the time domain result."
;; this is very slow! factor>1.0
(let* ((n (frames snd chn))
(n2 (floor (/ n 2.0)))
(out-n (round (* n factor)))
(in-data (channel->vct 0 n snd chn))
(out-data (make-vct out-n))
(fr (make-vector out-n 0.0))
(freq (/ (* 2 pi) n)))
(do ((i 0 (+ i 1)))
((or (c-g?) (= i n)))
;; DFT + split
(if (< i n2)
(set! (fr i) (edot-product (* freq 0.0-1.0i i) in-data))
(set! (fr (+ i (- out-n n 1))) (edot-product (* freq 0.0-1.0i i) in-data))))
(set! freq (/ (* 2 pi) out-n))
(do ((i 0 (+ i 1)))
((or (c-g?) (= i out-n)))
;; inverse DFT
(set! (out-data i) (real-part (/ (edot-product (* freq 0.0+1.0i i) fr) n))))
(vct->channel out-data 0 out-n snd chn #f (format #f "stretch-sound-via-dft ~A" factor))))
;;; -------- compute-uniform-circular-string
;;;
;;; this is a simplification of the underlying table-filling routine for "scanned synthesis".
;;; To watch the wave, open some sound (so Snd has some place to put the graph), turn off
;;; the time domain display (to give our graph all the window -- to do this in a much more
;;; elegant manner, see snd-motif.scm under scanned-synthesis).
(define compute-uniform-circular-string
(lambda (size x0 x1 x2 mass xspring damp)
(define circle-vct-ref
(lambda (v i)
(if (< i 0)
(v (+ size i))
(if (>= i size)
(v (- i size))
(v i)))))
(let* ((dm (/ damp mass))
(km (/ xspring mass))
(denom (+ 1.0 dm))
(p1 (/ (+ 2.0 (- dm (* 2.0 km))) denom))
(p2 (/ km denom))
(p3 (/ -1.0 denom)))
(do ((i 0 (+ i 1)))
((= i size))
(set! (x0 i) (+ (* p1 (x1 i))
(* p2 (+ (circle-vct-ref x1 (- i 1)) (circle-vct-ref x1 (+ i 1))))
(* p3 (x2 i)))))
(vct-fill! x2 0.0)
(vct-add! x2 x1)
(vct-fill! x1 0.0)
(vct-add! x1 x0))))
(define compute-string
;; this is the more general form
(lambda (size x0 x1 x2 masses xsprings esprings damps haptics)
(define circle-vct-ref
(lambda (v i)
(if (< i 0)
(v (+ size i))
(if (>= i size)
(v (- i size))
(v i)))))
(do ((i 0 (+ i 1)))
((= i size))
(let* ((dm (/ (damps i) (masses i)))
(km (/ (xsprings i) (masses i)))
(cm (/ (esprings i) (masses i)))
(denom (+ 1.0 dm cm))
(p1 (/ (+ 2.0 (- dm (* 2.0 km))) denom))
(p2 (/ km denom))
(p3 (/ -1.0 denom))
(p4 (/ (haptics i) (* (masses i) denom))))
(set! (x0 i) (+ (* p1 (x1 i))
(* p2 (+ (circle-vct-ref x1 (- i 1)) (circle-vct-ref x1 (+ i 1))))
(* p3 (x2 i))
p4))))
(do ((i 0 (+ i 1)))
((= i size))
(set! (x2 i) (x1 i))
(set! (x1 i) (x0 i)))))
;;; -------- "frequency division" -- an effect from sed_sed@my-dejanews.com
(define* (freqdiv n snd chn)
"(freqdiv n) repeats each nth sample n times (clobbering the intermediate samples): (freqdiv 8)"
(let ((div 0)
(curval 0.0))
(map-channel (lambda (val)
(if (= div 0)
(set! curval val))
(set! div (+ 1 div))
(if (= div n) (set! div 0))
curval)
0 #f snd chn #f (format #f "freqdiv ~A" n))))
;;; -------- "adaptive saturation" -- an effect from sed_sed@my-dejanews.com
;;;
;;; a more extreme effect is "saturation":
;;; (map-channel (lambda (val) (if (< (abs val) .1) val (if (>= val 0.0) 0.25 -0.25))))
(define* (adsat size beg dur snd chn)
"(adsat size) is an 'adaptive saturation' sound effect"
(let* ((mn 0.0)
(mx 0.0)
(n 0)
(vals (make-vct size)))
(map-channel (lambda (val)
(if (= n size)
(begin
(do ((i 0 (+ i 1)))
((= i size))
(if (>= (vals i) 0.0)
(set! (vals i) mx)
(set! (vals i) mn)))
(set! n 0)
(set! mx 0.0)
(set! mn 0.0)
vals)
(begin
(set! (vals n) val)
(if (> val mx) (set! mx val))
(if (< val mn) (set! mn val))
(set! n (+ 1 n))
#f)))
beg dur snd chn #f (format #f "adsat ~A ~A ~A" size beg dur))))
;;; -------- spike
;;;
;;; makes sound more spikey -- sometimes a nice effect
(define* (spike snd chn)
"(spike) multiplies successive samples together to make a sound more spikey"
(map-channel (let ((x1 0.0)
(x2 0.0)
(amp (maxamp snd chn))) ; keep resultant peak at maxamp
(lambda (x0)
(let ((res (* (/ x0 (* amp amp))
(abs x2)
(abs x1))))
(set! x2 x1)
(set! x1 x0)
res)))
0 #f snd chn #f "spike"))
;;; the more successive samples we include in the product, the more we
;;; limit the output to pulses placed at (just after) wave peaks
;;; -------- easily-fooled autocorrelation-based pitch tracker
(define spot-freq
(lambda args
"(spot-freq samp snd chn) tries to determine the current pitch: (spot-freq (left-sample))"
(let* ((s0 (car args))
(snd (if (> (length args) 1) (list-ref args 1) #f))
(chn (if (> (length args) 2) (list-ref args 2) #f))
(pow2 (ceiling (/ (log (/ (srate snd) 20.0)) (log 2))))
(fftlen (floor (expt 2 pow2)))
(data (autocorrelate (channel->vct s0 fftlen snd chn)))
(cor-peak (vct-peak data)))
(if (= cor-peak 0.0)
0.0
(call-with-exit
(lambda (return)
(do ((i 1 (+ i 1)))
((= i (- fftlen 2)) 0)
(if (and (< (data i) (data (+ i 1)))
(> (data (+ i 1)) (data (+ i 2))))
(begin
(let* ((logla (log10 (/ (+ cor-peak (data i)) (* 2 cor-peak))))
(logca (log10 (/ (+ cor-peak (data (+ i 1))) (* 2 cor-peak))))
(logra (log10 (/ (+ cor-peak (data (+ i 2))) (* 2 cor-peak))))
(offset (/ (* 0.5 (- logla logra))
(+ logla logra (* -2.0 logca)))))
(return (/ (srate snd)
(* 2 (+ i 1 offset))))))))))))))
;(add-hook! graph-hook
; (lambda (snd chn y0 y1)
; (report-in-minibuffer (format #f "~A" (spot-freq (left-sample))))))
;;; -------- chorus (doesn't always work and needs speedup)
(define chorus-size 5)
(define chorus-time .05)
(define chorus-amount 20.0)
(define chorus-speed 10.0)
(define (chorus)
"(chorus) tries to produce the chorus sound effect"
(define (make-flanger)
(let* ((ri (make-rand-interp :frequency chorus-speed :amplitude chorus-amount))
(len (floor (random (* 3.0 chorus-time (srate)))))
(gen (make-delay len :max-size (+ len chorus-amount 1))))
(list gen ri)))
(define (flanger dly inval)
(+ inval
(delay (car dly)
inval
(rand-interp (cadr dly)))))
(let ((dlys (make-vector chorus-size)))
(do ((i 0 (+ i 1)))
((= i chorus-size))
(set! (dlys i) (make-flanger)))
(lambda (inval)
(do ((sum 0.0)
(i 0 (+ i 1)))
((= i chorus-size)
(* .25 sum))
(set! sum (+ sum (flanger (dlys i) inval)))))))
;;; -------- chordalize (comb filters to make a chord using chordalize-amount and chordalize-base)
(define chordalize-amount .95)
(define chordalize-base 100)
(define chordalize-chord '(1 3/4 5/4))
(define (chordalize)
"(chordalize) uses harmonically-related comb-filters to bring out a chord in a sound"
;; chord is a list of members of chord such as '(1 5/4 3/2)
(let ((combs (map (lambda (interval)
(make-comb chordalize-amount (floor (* chordalize-base interval))))
chordalize-chord))
(scaler (/ 0.5 (length chordalize-chord)))) ; just a guess -- maybe this should rescale to old maxamp
(lambda (x)
(* scaler (apply + (map (lambda (c) (comb c x)) combs))))))
;;; -------- zero-phase, rotate-phase
;;; fft games (from the "phazor" package of Scott McNab)
(define* (zero-phase snd chn)
"(zero-phase) calls fft, sets all phases to 0, and un-ffts"
(let* ((len (frames snd chn))
(pow2 (ceiling (/ (log len) (log 2))))
(fftlen (floor (expt 2 pow2)))
(fftscale (/ 1.0 fftlen))
(rl (channel->vct 0 fftlen snd chn))
(old-pk (vct-peak rl))
(im (make-vct fftlen)))
(if (> old-pk 0.0)
(begin
(fft rl im 1)
(rectangular->magnitudes rl im)
(vct-scale! rl fftscale)
(vct-scale! im 0.0)
(fft rl im -1)
(let ((pk (vct-peak rl)))
(vct->channel (vct-scale! rl (/ old-pk pk)) 0 len snd chn #f "zero-phase"))))))
(define* (rotate-phase func snd chn)
"(rotate-phase func) calls fft, applies func to each phase, then un-ffts"
(let* ((len (frames snd chn))
(pow2 (ceiling (/ (log len) (log 2))))
(fftlen (floor (expt 2 pow2)))
(fftlen2 (floor (/ fftlen 2)))
(fftscale (/ 1.0 fftlen))
(rl (channel->vct 0 fftlen snd chn))
(old-pk (vct-peak rl))
(im (make-vct fftlen)))
(if (> old-pk 0.0)
(begin
(fft rl im 1)
(rectangular->magnitudes rl im)
(vct-scale! rl fftscale)
(set! (im 0) 0.0)
(do ((i 1 (+ i 1))
(j (- fftlen 1) (- j 1)))
((= i fftlen2))
;; rotate the fft vector by func, keeping imaginary part complex conjgate of real
(set! (im i) (func (im i)))
(set! (im j) (- (im i))))
(polar->rectangular rl im)
(fft rl im -1)
(let ((pk (vct-peak rl)))
(vct->channel (vct-scale! rl (/ old-pk pk)) 0 len snd chn #f
(format #f "rotate-phase ~A" (procedure-source func))))))))
;(rotate-phase (lambda (x) 0.0)) is the same as (zero-phase)
;(rotate-phase (lambda (x) (random pi))) randomizes phases
;(rotate-phase (lambda (x) x)) returns original
;(rotate-phase (lambda (x) (- x))) reverses original (might want to write fftlen samps here)
;(rotate-phase (lambda (x) (* x 2))) reverb-effect (best with voice)
;(rotate-phase (lambda (x) (* x 12)) "bruise blood" effect
(define (signum n)
;; in CL this returns 1.0 if n is float
(if (positive? n) 1
(if (zero? n) 0
-1)))
;;; -------- brighten-slightly
(define* (brighten-slightly amount snd chn)
"(brighten-slightly amount) is a form of contrast-enhancement ('amount' between ca .1 and 1)"
(let* ((mx (maxamp))
(brt (/ (* 2 pi amount) mx)))
(map-channel (lambda (y)
(* mx (sin (* y brt))))
0 #f snd chn #f (format #f "brighten-slightly ~A" amount))))
(define (brighten-slightly-1 coeffs)
"(brighten-slightly-1 coeffs) is a form of contrast-enhancement: (brighten-slightly-1 '(1 .5 3 1))"
(let ((pcoeffs (partials->polynomial coeffs))
(mx (maxamp)))
(map-channel
(lambda (y)
(* mx (polynomial pcoeffs (/ y mx)))))))
;; I think this could be a virtual op (ptree)
;;; -------- FIR filters
;;; Snd's (very simple) spectrum->coefficients procedure is:
(define (spectrum->coeffs order spectr)
"(spectrum->coeffs order spectr) returns FIR filter coefficients given the filter order and desired spectral envelope (a vct)"
(let* ((coeffs (make-vct order))
(n order)
(m (floor (/ (+ n 1) 2)))
(am (* 0.5 (+ n 1)))
(q (/ (* pi 2.0) n)))
(do ((j 0 (+ 1 j))
(jj (- n 1) (- jj 1)))
((= j m) coeffs)
(let ((xt (* 0.5 (spectr 0))))
(do ((i 1 (+ i 1)))
((= i m))
(set! xt (+ xt (* (spectr i) (cos (* q i (- am j 1)))))))
(let ((coeff (* 2.0 (/ xt n))))
(set! (coeffs j) coeff)
(set! (coeffs jj) coeff))))))
;; (filter-channel et al reflect around the midpoint, so to match exactly you need to take
;; the env passed and flip it backwards for the back portion -- that is to say, this function
;; needs a wrapper to make it act like anyone would expect)
(define (fltit-1 order spectr)
"(fltit-1 order spectrum) creates an FIR filter from spectrum and order and returns a closure that calls it:
(map-channel (fltit-1 10 (vct 0 1.0 0 0 0 0 0 0 1.0 0)))"
(let* ((flt (make-fir-filter order (spectrum->coeffs order spectr))))
(lambda (x)
(fir-filter flt x))))
;(map-channel (fltit-1 10 (vct 0 1.0 0 0 0 0 0 0 1.0 0)))
;
;(let ((notched-spectr (make-vct 40)))
; (set! (notched-spectr 2) 1.0)
; (set! (notched-spectr 37) 1.0)
; (map-channel (fltit-1 40 notched-spectr)))
;
;;; -------- Hilbert transform
(define* (make-hilbert-transform (len 30))
"(make-hilbert-transform (len 30) makes a Hilbert transform filter"
(let* ((arrlen (+ 1 (* 2 len)))
(arr (make-vct arrlen))
(lim (if (even? len) len (+ 1 len))))
(do ((i (- len) (+ i 1)))
((= i lim))
(let* ((k (+ i len))
(denom (* pi i))
(num (- 1.0 (cos (* pi i)))))
(if (or (= num 0.0)
(= i 0))
(set! (arr k) 0.0)
;; this is the "ideal" -- rectangular window -- version:
;; (set! (arr k) (/ num denom))
;; this is the Hamming window version:
(set! (arr k) (* (/ num denom)
(+ .54 (* .46 (cos (/ (* i pi) len)))))) ; window
)))
(make-fir-filter arrlen arr)))
(define (hilbert-transform f in)
"(hilbert-transform f in) is the generator corresponding to make-hilbert-transform"
(fir-filter f in))
#|
(let ((h (make-hilbert-transform 15)))
(map-channel (lambda (y)
(hilbert-transform h y))))
;;; this comes from R Lyons:
(define* (sound->amp-env snd chn)
(let ((hlb (make-hilbert-transform 40))
(d (make-delay 40)))
(map-channel
(lambda (y)
(let ((hy (hilbert-transform hlb y))
(dy (delay d y)))
(sqrt (+ (* hy hy) (* dy dy)))))
0 #f snd chn #f "sound->amp-env")))
(define* (hilbert-transform-via-fft snd chn)
;; same as FIR version but use FFT and change phases by hand
(let* ((size (frames snd chn))
(len (expt 2 (ceiling (/ (log size) (log 2.0)))))
(rl (make-vct len))
(im (make-vct len))
(rd (make-sampler 0 snd chn)))
(do ((i 0 (+ i 1)))
((= i size))
(set! (rl i) (rd)))
(mus-fft rl im len)
(do ((i 0 (+ i 1)))
((= i len))
(let* ((c (make-rectangular (rl i) (im i)))
(ph (angle c))
(mag (magnitude c)))
(if (< i (/ len 2))
(set! ph (+ ph (* 0.5 pi)))
(set! ph (- ph (* 0.5 pi))))
(set! c (make-polar mag ph))
(set! (rl i) (real-part c))
(set! (im i) (imag-part c))))
(mus-fft rl im len -1)
(vct-scale! rl (/ 1.0 len))
(vct->channel rl 0 len snd chn #f "hilbert-transform-via-fft")))
|#
;;; -------- highpass filter
(define* (make-highpass fc (len 30))
"(make-highpass fc (len 30)) makes an FIR highpass filter"
(let* ((arrlen (+ 1 (* 2 len)))
(arr (make-vct arrlen)))
(do ((i (- len) (+ i 1)))
((= i len))
(let* ((k (+ i len))
(denom (* pi i))
(num (- (sin (* fc i)))))
(if (= i 0)
(set! (arr k) (- 1.0 (/ fc pi)))
(set! (arr k) (* (/ num denom)
(+ .54 (* .46 (cos (/ (* i pi) len)))))))))
(make-fir-filter arrlen arr)))
(define (highpass f in)
"(highpass f in) is the generator corresponding to make-highpass"
(fir-filter f in))
#|
(let ((hp (make-highpass (* .1 pi))))
(map-channel (lambda (y)
(highpass hp y))))
|#
;;; -------- lowpass filter
(define* (make-lowpass fc (len 30))
"(make-lowpass fc (len 30)) makes an FIR lowpass filter"
(let* ((arrlen (+ 1 (* 2 len)))
(arr (make-vct arrlen)))
(do ((i (- len) (+ i 1)))
((= i len))
(let* ((k (+ i len))
(denom (* pi i))
(num (sin (* fc i))))
(if (= i 0)
(set! (arr k) (/ fc pi))
(set! (arr k) (* (/ num denom)
(+ .54 (* .46 (cos (/ (* i pi) len)))))))))
(make-fir-filter arrlen arr)))
(define (lowpass f in)
"(lowpass f in) is the generator corresponding to make-lowpass"
(fir-filter f in))
#|
(let ((hp (make-lowpass (* .2 pi))))
(map-channel (lambda (y)
(lowpass hp y))))
|#
;;; -------- bandpass filter
(define* (make-bandpass flo fhi (len 30))
"(make-bandpass flo fhi (len 30)) makes an FIR bandpass filter"
(let* ((arrlen (+ 1 (* 2 len)))
(arr (make-vct arrlen)))
(do ((i (- len) (+ i 1)))
((= i len))
(let* ((k (+ i len))
(denom (* pi i))
(num (- (sin (* fhi i)) (sin (* flo i)))))
(if (= i 0)
(set! (arr k) (/ (- fhi flo) pi))
(set! (arr k) (* (/ num denom)
(+ .54 (* .46 (cos (/ (* i pi) len)))))))))
(make-fir-filter arrlen arr)))
(define (bandpass f in)
"(bandpass f in) is the generator corresponding to make-bandpass"
(fir-filter f in))
#|
(let ((hp (make-bandpass (* .1 pi) (* .2 pi))))
(map-channel (lambda (y)
(bandpass hp y))))
;; for more bands, you can add the coeffs:
(define* (make-bandpass-2 flo1 fhi1 flo2 fhi2 (len 30))
(let* ((f1 (make-bandpass flo1 fhi1 len))
(f2 (make-bandpass flo2 fhi2 len)))
(vct-add! (mus-xcoeffs f1) (mus-xcoeffs f2))
f1))
(let ((ind (new-sound "test.snd")))
(map-channel (lambda (y) (- 1.0 (random 2.0))) 0 10000)
(let ((f2 (make-bandpass-2 (* .12 pi) (* .15 pi) (* .22 pi) (* .25 pi) 100)))
(map-channel (lambda (y) (fir-filter f2 y)))
))
|#
;;; -------- bandstop filter
(define* (make-bandstop flo fhi (len 30))
"(make-bandstop flo fhi (len 30)) makes an FIR bandstop (notch) filter"
(let* ((arrlen (+ 1 (* 2 len)))
(arr (make-vct arrlen)))
(do ((i (- len) (+ i 1)))
((= i len))
(let* ((k (+ i len))
(denom (* pi i))
(num (- (sin (* flo i)) (sin (* fhi i)))))
(if (= i 0)
(set! (arr k) (- 1.0 (/ (- fhi flo) pi)))
(set! (arr k) (* (/ num denom)
(+ .54 (* .46 (cos (/ (* i pi) len)))))))))
(make-fir-filter arrlen arr)))
(define (bandstop f in)
"(bandstop f in) is the generator corresponding to make-bandstop"
(fir-filter f in))
#|
(let ((hp (make-bandstop (* .1 pi) (* .3 pi))))
(map-channel (lambda (y)
(bandstop hp y))))
|#
;;; -------- differentiator
(define* (make-differentiator (len 30))
"(make-differentiator (len 30)) makes an FIR differentiator (highpass) filter"
(let* ((arrlen (+ 1 (* 2 len)))
(arr (make-vct arrlen)))
(do ((i (- len) (+ i 1)))
((= i len))
(let* ((k (+ i len)))
(if (= i 0)
(set! (arr k) 0.0)
(set! (arr k) (* (- (/ (cos (* pi i)) i) (/ (sin (* pi i)) (* pi i i)))
(+ .54 (* .46 (cos (/ (* i pi) len)))))))))
(make-fir-filter arrlen arr)))
(define (differentiator f in)
"(differentiator f in) is the generator corresponding to make-differentiator"
(fir-filter f in))
#|
(let ((hp (make-differentiator)))
(map-channel (lambda (y)
(differentiator hp y))))
|#
;;; -------- IIR filters
;;; see analog-filter.scm for the usual suspects
;;; -------- Butterworth filters (see also further below -- make-butter-lp et al)
;;;
;; translated from CLM butterworth.cl:
;;
;; Sam Heisz, January 1998
;; inspired by some unit generators written for Csound by Paris Smaragdis
;; who based his work on formulas from
;; Charles Dodge, Computer music: synthesis, composition, and performance.
(define (butter b sig) ; kinda pointless, but defined as a function here for run's sake (not (define butter filter))
"(butter b sig) is the generator side for the various make-butter procedure"
(filter b sig))
(define (make-butter-high-pass fq)
"(make-butter-high-pass freq) makes a Butterworth filter with high pass cutoff at 'freq'"
;; this is the same as iir-low-pass-2 below with 'din' set to (sqrt 2.0) -- similarly with the others
(let* ((r (tan (/ (* pi fq) (srate))))
(r2 (* r r))
(c1 (/ 1.0 (+ 1.0 (* r (sqrt 2.0)) r2)))
(c2 (* -2.0 c1))
(c3 c1)
(c4 (* 2.0 (- r2 1.0) c1))
(c5 (* (+ (- 1.0 (* r (sqrt 2.0))) r2) c1)))
(make-filter 3
(vct c1 c2 c3)
(vct 0.0 c4 c5))))
(define (make-butter-low-pass fq)
"(make-butter-low-pass freq) makes a Butterworth filter with low pass cutoff at 'freq'. The result
can be used directly: (filter-sound (make-butter-low-pass 500.0)), or via the 'butter' generator"
(let* ((r (/ 1.0 (tan (/ (* pi fq) (srate)))))
(r2 (* r r))
(c1 (/ 1.0 (+ 1.0 (* r (sqrt 2.0)) r2)))
(c2 (* 2.0 c1))
(c3 c1)
(c4 (* 2.0 (- 1.0 r2) c1))
(c5 (* (+ (- 1.0 (* r (sqrt 2.0))) r2) c1)))
(make-filter 3
(vct c1 c2 c3)
(vct 0.0 c4 c5))))
(define (make-butter-band-pass fq bw)
"(make-butter-band-pass freq band) makes a bandpass Butterworth filter with low edge at 'freq' and width 'band'"
(let* ((d (* 2.0 (cos (/ (* 2.0 pi fq) (srate)))))
(c (/ 1.0 (tan (/ (* pi bw) (srate)))))
(c1 (/ 1.0 (+ 1.0 c)))
(c2 0.0)
(c3 (- c1))
(c4 (* (- c) d c1))
(c5 (* (- c 1.0) c1)))
(make-filter 3
(vct c1 c2 c3)
(vct 0.0 c4 c5))))
(define (make-butter-band-reject fq bw)
"(make-butter-band-reject freq band) makes a band-reject Butterworth filter with low edge at 'freq' and width 'band'"
(let* ((d (* 2.0 (cos (/ (* 2.0 pi fq) (srate)))))
(c (tan (/ (* pi bw) (srate))))
(c1 (/ 1.0 (+ 1.0 c)))
(c2 (* (- d) c1))
(c3 c1)
(c4 c2)
(c5 (* (- 1.0 c) c1)))
(make-filter 3
(vct c1 c2 c3)
(vct 0.0 c4 c5))))
;;; simplest use is (filter-sound (make-butter-low-pass 500.0))
;;; see also effects.scm
;;; from "DSP Filter Cookbook" by Lane et al, Prompt Pubs, 2001
;;;
;;; use with the filter generator
;;; (define gen (make-iir-high-pass-2 1000))
;;; (filter gen 1.0)
;;; etc
(define (make-biquad a0 a1 a2 b1 b2)
"(make-biquad a0 a1 a2 b1 b2) returns a biquad filter (use with the CLM filter gen)"
(make-filter 3
(vct a0 a1 a2)
(vct 0.0 b1 b2)))
(define* (make-iir-low-pass-2 fc din) ; din=(sqrt 2.0) for example (suggested range 0.2.. 10)
(let* ((theta (/ (* 2 pi fc) (mus-srate)))
(d (or din (sqrt 2.0)))
(beta (* 0.5 (/ (- 1.0 (* (/ d 2) (sin theta)))
(+ 1.0 (* (/ d 2) (sin theta))))))
(gamma (* (+ 0.5 beta) (cos theta)))
(alpha (* 0.5 (+ 0.5 beta (- gamma)))))
(make-filter 3
(vct alpha (* 2.0 alpha) alpha)
(vct 0.0 (* -2.0 gamma) (* 2.0 beta)))))
(define* (make-iir-high-pass-2 fc din)
(let* ((theta (/ (* 2 pi fc) (mus-srate)))
(d (or din (sqrt 2.0)))
(beta (* 0.5 (/ (- 1.0 (* (/ d 2) (sin theta)))
(+ 1.0 (* (/ d 2) (sin theta))))))
(gamma (* (+ 0.5 beta) (cos theta)))
(alpha (* 0.5 (+ 0.5 beta gamma))))
(make-filter 3
(vct alpha (* -2.0 alpha) alpha)
(vct 0.0 (* -2.0 gamma) (* 2.0 beta)))))
(define (make-iir-band-pass-2 f1 f2)
(let* ((theta (/ (* 2 pi (sqrt (* f1 f2))) (mus-srate)))
(Q (/ (sqrt (* f1 f2)) (- f2 f1)))
(t2 (tan (/ theta (* 2 Q))))
(beta (* 0.5 (/ (- 1.0 t2)
(+ 1.0 t2))))
(gamma (* (+ 0.5 beta) (cos theta)))
(alpha (- 0.5 beta)))
(make-filter 3
(vct alpha 0.0 (- alpha))
(vct 0.0 (* -2.0 gamma) (* 2.0 beta)))))
(define (make-iir-band-stop-2 f1 f2)
(let* ((theta (/ (* 2 pi (sqrt (* f1 f2))) (mus-srate)))
(Q (/ (sqrt (* f1 f2)) (- f2 f1)))
(t2 (tan (/ theta (* 2 Q))))
(beta (* 0.5 (/ (- 1.0 t2)
(+ 1.0 t2))))
(gamma (* (+ 0.5 beta) (cos theta)))
(alpha (+ 0.5 beta)))
(make-filter 3
(vct alpha (* -2.0 gamma) alpha)
(vct 0.0 (* -2.0 gamma) (* 2.0 beta)))))
(define* (make-eliminate-hum (hum-freq 60.0) (hum-harmonics 5) (bandwidth 10))
(let ((gen (make-vector hum-harmonics)))
(do ((i 0 (+ i 1)))
((= i hum-harmonics))
(let ((center (* (+ i 1.0) hum-freq))
(b2 (* 0.5 bandwidth)))
(set! (gen i) (make-iir-band-stop-2 (- center b2) (+ center b2)))))
gen))
(define (eliminate-hum gen x0)
(let ((val x0))
(do ((i 0 (+ i 1)))
((= i (length gen)))
(set! val (filter (gen i) val))) ; "cascade" n filters
val))
;;; (let ((hummer (make-eliminate-hum))) (map-channel (lambda (x) (eliminate-hum hummer x))))
(define (make-peaking-2 f1 f2 m)
;; bandpass, m is gain at center of peak
;; use map-channel with this one (not clm-channel or filter)
(let* ((theta (/ (* 2 pi (sqrt (* f1 f2))) (mus-srate)))
(Q (/ (sqrt (* f1 f2)) (- f2 f1)))
(t2 (* (/ 4.0 (+ m 1)) (tan (/ theta (* 2 Q)))))
(beta (* 0.5 (/ (- 1.0 t2)
(+ 1.0 t2))))
(gamma (* (+ 0.5 beta) (cos theta)))
(alpha (- 0.5 beta))
(flt (make-filter 3
(vct alpha 0.0 (- alpha))
(vct 0.0 (* -2.0 gamma) (* 2.0 beta)))))
(lambda (x) (+ x (* (- m 1.0) (filter flt x))))))
(define (cascade->canonical A)
"(cascade->canonical A) converts a list of cascade coeffs (vcts with 3 entries) to canonical form"
;; from Orfanidis "Introduction to Signal Processing"
(define (conv M h L x y)
;; x * h -> y
(do ((n 0 (+ 1 n)))
((= n (+ L M)))
(set! (y n) 0.0)
(do ((m (max 0 (- n (+ 1 L))) (+ 1 m))) ; m always starts at 0 here since the other expression is always <= 0
((> m (min n M)))
(set! (y n) (+ (y n) (* (h m) (x (- n m))))))))
(let* ((K (length A))
(d (make-vct (+ 1 (* 2 K))))
(a1 (make-vct (+ 1 (* 2 K)))))
(set! (a1 0) 1.0)
(do ((i 0 (+ i 1)))
((= i K))
(conv 2 (list-ref A i) (+ 1 (* 2 i)) a1 d)
(do ((j 0 (+ 1 j)))
((= j (+ 3 (* 2 i))))
(set! (a1 j) (d j))))
a1))
(define (make-butter-lp M fc)
"(make-butter-lp M fc) returns a butterworth low-pass filter; its order is 'M' * 2, 'fc' is the cutoff frequency in Hz"
(let* ((xcoeffs '())
(ycoeffs '())
(theta (/ (* 2 pi fc) (mus-srate)))
(st (sin theta))
(ct (cos theta)))
(do ((k 1 (+ 1 k)))
((> k M))
(let* ((d (* 2 (sin (/ (* pi (- (* 2 k) 1)) (* 4 M)))))
(beta (* 0.5 (/ (- 1.0 (* 0.5 d st))
(+ 1.0 (* 0.5 d st)))))
(gamma (* ct (+ 0.5 beta)))
(alpha (* 0.25 (+ 0.5 beta (- gamma)))))
(set! xcoeffs (cons (vct (* 2 alpha) (* 4 alpha) (* 2 alpha)) xcoeffs))
(set! ycoeffs (cons (vct 1.0 (* -2.0 gamma) (* 2.0 beta)) ycoeffs))))
(make-filter (+ 1 (* 2 M))
(cascade->canonical xcoeffs)
(cascade->canonical ycoeffs))))
(define (make-butter-hp M fc)
"(make-butter-hp M fc) returns a butterworth high-pass filter; its order is 'M' * 2, 'fc' is the cutoff frequency in Hz"
(let* ((xcoeffs '())
(ycoeffs '())
(theta (/ (* 2 pi fc) (mus-srate)))
(st (sin theta))
(ct (cos theta)))
(do ((k 1 (+ 1 k)))
((> k M))
(let* ((d (* 2 (sin (/ (* pi (- (* 2 k) 1)) (* 4 M)))))
(beta (* 0.5 (/ (- 1.0 (* 0.5 d st))
(+ 1.0 (* 0.5 d st)))))
(gamma (* ct (+ 0.5 beta)))
(alpha (* 0.25 (+ 0.5 beta gamma))))
(set! xcoeffs (cons (vct (* 2 alpha) (* -4 alpha) (* 2 alpha)) xcoeffs))
(set! ycoeffs (cons (vct 1.0 (* -2.0 gamma) (* 2.0 beta)) ycoeffs))))
(make-filter (+ 1 (* 2 M))
(cascade->canonical xcoeffs)
(cascade->canonical ycoeffs))))
(define (make-butter-bp M f1 f2)
"(make-butter-bp M f1 f2) returns a butterworth band-pass filter; its order is 'M' * 2, 'f1' and 'f2' are the band edge frequencies in Hz"
(let* ((xcoeffs '())
(ycoeffs '())
(f0 (sqrt (* f1 f2)))
(Q (/ f0 (- f2 f1)))
(theta0 (/ (* 2 pi f0) (mus-srate)))
(de (/ (* 2 (tan (/ theta0 (* 2 Q)))) (sin theta0)))
(de2 (/ de 2))
(tn0 (tan (* theta0 0.5))))
(do ((i 1 (+ i 1))
(k 1)
(j 1))
((> i M))
(let* ((Dk (* 2 (sin (/ (* pi (- (* 2 k) 1)) (* 2 M)))))
(Ak (/ (+ 1 (* de2 de2)) (* Dk de2)))
(dk1 (sqrt (/ (* de Dk)
(+ Ak (sqrt (- (* Ak Ak) 1))))))
(Bk (* de2 (/ Dk dk1)))
(Wk (real-part (+ Bk (sqrt (- (* Bk Bk) 1.0))))) ; fp inaccuracies causing tiny (presumably bogus) imaginary part here
(thetajk (if (= j 1)
(* 2 (atan (/ tn0 Wk)))
(* 2 (atan (* tn0 Wk)))))
(betajk (* 0.5 (/ (- 1.0 (* 0.5 dk1 (sin thetajk)))
(+ 1.0 (* 0.5 dk1 (sin thetajk))))))
(gammajk (* (+ 0.5 betajk) (cos thetajk)))
(wk2 (/ (- Wk (/ 1.0 Wk)) dk1))
(alphajk (* 0.5 (- 0.5 betajk) (sqrt (+ 1.0 (* wk2 wk2))))))
(set! xcoeffs (cons (vct (* 2 alphajk) 0.0 (* -2 alphajk)) xcoeffs))
(set! ycoeffs (cons (vct 1.0 (* -2.0 gammajk) (* 2.0 betajk)) ycoeffs))
(if (= j 1)
(set! j 2)
(begin
(set! k (+ 1 k))
(set! j 1)))))
(make-filter (+ 1 (* 2 M))
(cascade->canonical xcoeffs)
(cascade->canonical ycoeffs))))
(define (make-butter-bs M f1 f2)
"(make-butter-bs M f1 f2) returns a butterworth band-stop filter; its order is 'M' * 2, 'f1' and 'f2' are the band edge frequencies in Hz"
(let* ((xcoeffs '())
(ycoeffs '())
(f0 (sqrt (* f1 f2)))
(Q (/ f0 (- f2 f1)))
(theta0 (/ (* 2 pi f0) (mus-srate)))
(de (/ (* 2 (tan (/ theta0 (* 2 Q)))) (sin theta0)))
(de2 (/ de 2))
(ct (cos theta0))
(tn0 (tan (* theta0 0.5))))
(do ((i 1 (+ i 1))
(k 1)
(j 1))
((> i M))
(let* ((Dk (* 2 (sin (/ (* pi (- (* 2 k) 1)) (* 2 M)))))
(Ak (/ (+ 1 (* de2 de2)) (* Dk de2)))
(dk1 (sqrt (/ (* de Dk)
(+ Ak (sqrt (- (* Ak Ak) 1))))))
(Bk (* de2 (/ Dk dk1)))
(Wk (real-part (+ Bk (sqrt (- (* Bk Bk) 1.0)))))
(thetajk (if (= j 1)
(* 2 (atan (/ tn0 Wk)))
(* 2 (atan (* tn0 Wk)))))
(betajk (* 0.5 (/ (- 1.0 (* 0.5 dk1 (sin thetajk)))
(+ 1.0 (* 0.5 dk1 (sin thetajk))))))
(gammajk (* (+ 0.5 betajk) (cos thetajk)))
(alphajk (* 0.5 (+ 0.5 betajk) (/ (- 1.0 (cos thetajk)) (- 1.0 ct)))))
(set! xcoeffs (cons (vct (* 2 alphajk) (* -4 ct alphajk) (* 2 alphajk)) xcoeffs))
(set! ycoeffs (cons (vct 1.0 (* -2.0 gammajk) (* 2.0 betajk)) ycoeffs))
(if (= j 1)
(set! j 2)
(begin
(set! k (+ 1 k))
(set! j 1)))))
(make-filter (+ 1 (* 2 M))
(cascade->canonical xcoeffs)
(cascade->canonical ycoeffs))))
;;; -------- notch filters
(define* (make-notch-frequency-response cur-srate freqs (notch-width 2))
(let ((freq-response (list 1.0 0.0)))
(for-each
(lambda (i)
(set! freq-response (cons (/ (* 2 (- i notch-width)) cur-srate) freq-response)) ; left upper y hz
(set! freq-response (cons 1.0 freq-response)) ; left upper y resp
(set! freq-response (cons (/ (* 2 (- i (/ notch-width 2))) cur-srate) freq-response)) ; left bottom y hz
(set! freq-response (cons 0.0 freq-response)) ; left bottom y resp
(set! freq-response (cons (/ (* 2 (+ i (/ notch-width 2))) cur-srate) freq-response)) ; right bottom y hz
(set! freq-response (cons 0.0 freq-response)) ; right bottom y resp
(set! freq-response (cons (/ (* 2 (+ i notch-width)) cur-srate) freq-response)) ; right upper y hz
(set! freq-response (cons 1.0 freq-response))) ; right upper y resp
freqs)
(set! freq-response (cons 1.0 freq-response))
(set! freq-response (cons 1.0 freq-response))
(reverse freq-response)))
(define* (notch-channel freqs (filter-order #f) beg dur snd chn edpos (truncate #t) (notch-width 2))
"(notch-channel freqs (filter-order #f) beg dur snd chn edpos (truncate #t) (notch-width 2)) -> notch filter removing freqs"
(filter-channel (make-notch-frequency-response (* 1.0 (srate snd)) freqs notch-width)
(or filter-order (expt 2 (ceiling (/ (log (/ (srate snd) notch-width)) (log 2.0)))))
beg dur snd chn edpos truncate
(format #f "notch-channel '~A ~A ~A ~A" freqs filter-order beg dur)))
(define* (notch-sound freqs filter-order snd chn (notch-width 2))
"(notch-sound freqs filter-order snd chn (notch-width 2)) -> notch filter removing freqs"
(filter-sound (make-notch-frequency-response (* 1.0 (srate snd)) freqs notch-width)
(or filter-order (expt 2 (ceiling (/ (log (/ (srate snd) notch-width)) (log 2.0)))))
snd chn #f
(format #f "notch-channel '~A ~A 0 #f" freqs filter-order)))
(define* (notch-selection freqs filter-order (notch-width 2))
"(notch-selection freqs filter-order (notch-width 2)) -> notch filter removing freqs"
(if (selection?)
(filter-selection (make-notch-frequency-response (* 1.0 (selection-srate)) freqs notch-width)
(or filter-order (expt 2 (ceiling (/ (log (/ (selection-srate) notch-width)) (log 2.0))))))))
;;; -------- fractional Fourier Transform, z transform
;;;
;;; translated from the fxt package of Joerg Arndt
(define (fractional-fourier-transform fr fi n v)
"(fractional-fourier-transform real imaginary n angle) performs a fractional Fourier transform on data; if angle=1.0, you get a normal Fourier transform"
;; this is the slow (dft) form
;; v=1 -> normal fourier transform
(let ((hr (make-vct n))
(hi (make-vct n))
(ph0 (/ (* v 2 pi) n)))
(do ((w 0 (+ 1 w)))
((= w n))
(let ((sr 0.0)
(si 0.0))
(do ((k 0 (+ 1 k)))
((= k n))
(let* ((phase (* ph0 k w))
(c (cos phase))
(s (sin phase))
(x (fr k))
(y (fi k))
(r (- (* x c) (* y s)))
(i (+ (* y c) (* x s))))
(set! sr (+ sr r))
(set! si (+ si i))))
(set! (hr w) sr)
(set! (hi w) si)))
(list hr hi)))
(define (z-transform f n z)
;; using vector to allow complex sums (z=e^2*pi*i/n -> fourier transform)
;; (z-transform data n (exp (make-rectangular 0.0 (* (/ 2.0 n) pi))))
"(z-transform data n z) performs a Z transform on data; if z=e^2*pi*j/n you get a Fourier transform; complex results in returned vector"
(let ((res (make-vector n)))
(do ((w 0 (+ 1 w)))
((= w n))
(let ((sum 0.0)
(t 1.0)
(m (expt z w)))
;; -w?? there seems to be confusion here -- slowzt.cc in the fxt package uses +w
(do ((k 0 (+ 1 k)))
((= k n))
(set! sum (+ sum (* (f k) t)))
(set! t (* t m)))
(set! (res w) sum)))
res))
;;; -------- slow Hartley transform
(define (dht data)
"(dht data) returns the Hartley transform of 'data'."
;; taken from Perry Cook's SignalProcessor.m (the slow version of the Hartley transform)
(let* ((len (length data))
(arr (make-vct len))
(w (/ (* 2.0 pi) len)))
(do ((i 0 (+ i 1)))
((= i len))
(do ((j 0 (+ 1 j)))
((= j len))
(set! (arr i) (+ (arr i)
(* (data j)
(+ (cos (* i j w))
(sin (* i j w))))))))
arr))
(define* (find-sine freq beg dur snd)
"(find-sine freq beg dur snd) returns the amplitude and initial-phase (for sin) at freq"
(let ((incr (/ (* freq 2 pi) (srate snd)))
(sw 0.0)
(cw 0.0)
(reader (make-sampler beg snd)))
(do ((i 0 (+ i 1))) ; this could also use edot-product
((= i dur))
(let ((samp (next-sample reader)))
(set! sw (+ sw (* samp (sin (* i incr)))))
(set! cw (+ cw (* samp (cos (* i incr)))))))
(list (* 2 (/ (sqrt (+ (* sw sw) (* cw cw))) dur))
(atan cw sw))))
;;; this is a faster version of find-sine using the "Goertzel algorithm" taken from R Lyons "Understanding DSP" p 529
;;; it returns the same result as find-sine above if you take (* 2 (/ (goertzel...) dur)) -- see snd-test.scm examples
(define* (goertzel freq beg dur snd)
"(goertzel freq beg dur snd) returns the amplitude of the 'freq' spectral component"
(let* ((sr (srate snd))
(y2 0.0)
(y1 0.0)
(y0 0.0)
(rfreq (/ (* 2.0 pi freq) sr))
(cs (* 2.0 (cos rfreq))))
(scan-channel (lambda (y)
(set! y2 y1)
(set! y1 y0)
(set! y0 (+ (- (* y1 cs) y2) y))
#f)
(or beg 0) (or dur (frames snd)) snd)
(magnitude (- y0 (* y1 (exp (make-rectangular 0.0 (- rfreq))))))))
(define (make-spencer-filter)
"(make-spencer-filter) is a version of make-fir-filter; it returns one of the standard smoothing filters from \
the era when computers were human beings"
(make-fir-filter 15 (apply vct (map (lambda (n) (/ n 320.0)) (list -3 -6 -5 3 21 46 67 74 67 46 21 3 -5 -6 -3)))))
;;; -------- any-random
;;;
;;; arbitrary random number distributions via the "rejection method"
(define* (any-random amount e)
(if (= amount 0.0)
0.0
(if (not e)
(random amount)
(letrec ((next-random
(lambda ()
(let* ((len (length e))
(x (random (* 1.0 (list-ref e (- len 2)))))
(y (random 1.0)))
(if (or (<= y (envelope-interp x e))
(c-g?))
x
(next-random))))))
(next-random)))))
(define (gaussian-distribution s)
(let ((e '())
(den (* 2.0 s s)))
(do ((i 0 (+ i 1))
(x 0.0 (+ x .05))
(y -4.0 (+ y .4)))
((= i 21))
(set! e (cons x e))
(set! e (cons (exp (- (/ (* y y) den))) e)))
(reverse e)))
(define (pareto-distribution a)
(let ((e '())
(scl (/ (expt 1.0 (+ a 1.0)) a)))
(do ((i 0 (+ i 1))
(x 0.0 (+ x .05))
(y 1.0 (+ y .2)))
((= i 21))
(set! e (cons x e))
(set! e (cons (* scl (/ a (expt y (+ a 1.0)))) e)))
(reverse e)))
;(map-channel (lambda (y) (any-random 1.0 '(0 1 1 1)))) ; uniform distribution
;(map-channel (lambda (y) (any-random 1.0 '(0 0 0.95 0.1 1 1)))) ; mostly toward 1.0
;(let ((g (gaussian-distribution 1.0))) (map-channel (lambda (y) (any-random 1.0 g))))
;(let ((g (pareto-distribution 1.0))) (map-channel (lambda (y) (any-random 1.0 g))))
;;; this is the inverse integration function used by CLM to turn a distribution function into a weighting function
(if (not (provided? 'snd-env.scm)) (load "env.scm"))
(define* (inverse-integrate dist (data-size 512) (e-size 50))
(let* ((e '())
(sum (cadr dist))
(first-sum sum)
(data (make-vct data-size))
(x0 (car dist))
(x1 (list-ref dist (- (length dist) 2)))
(xincr (/ (- x1 x0) e-size)))
(do ((i 0 (+ i 1))
(x x0 (+ x xincr)))
((> i e-size))
(set! e (cons sum e))
(set! e (cons x e))
(set! sum (+ sum (envelope-interp x dist))))
(let* ((incr (/ (- (cadr e) first-sum) (- data-size 1))))
(set! e (reverse e))
(do ((i 0 (+ i 1))
(x first-sum (+ x incr)))
((= i data-size))
(set! (data i) (envelope-interp x e)))
data)))
(define (gaussian-envelope s)
(let ((e '())
(den (* 2.0 s s)))
(do ((i 0 (+ i 1))
(x -1.0 (+ x .1))
(y -4.0 (+ y .4)))
((= i 21))
(set! e (cons x e))
(set! e (cons (exp (- (/ (* y y) den))) e)))
(reverse e)))
;;; (make-rand :envelope (gaussian-envelope 1.0))
;;; ---------------- Julius Smith stuff ----------------
;;;
;;; these are from "Mathematics of the DFT", W3K Pubs
(define* (channel-mean snd chn) ; <f, 1> / n
"(channel-mean snd chn) returns the average of the samples in the given channel: <f,1>/n"
(let ((sum 0.0)
(N (frames snd chn)))
(scan-channel (lambda (y) (set! sum (+ sum y)) #f) 0 N snd chn)
(/ sum N)))
(define* (channel-total-energy snd chn) ; <f, f>
"(channel-total-energy snd chn) returns the sum of the squares of all the samples in the given channel: <f,f>"
(let ((sum 0.0))
(scan-channel (lambda (y) (set! sum (+ sum (* y y))) #f) 0 (frames snd chn) snd chn)
sum))
(define* (channel-average-power snd chn) ; <f, f> / n
"(channel-average-power snd chn) returns the average power in the given channel: <f,f>/n"
(/ (channel-total-energy snd chn) (frames snd chn)))
(define* (channel-rms snd chn) ; sqrt(<f, f> / n)
"(channel-rms snd chn) returns the RMS value of the samples in the given channel: sqrt(<f,f>/n)"
(sqrt (channel-average-power snd chn)))
(define* (channel-variance snd chn) ; "sample-variance" might be better, <f, f> - (<f, 1> / n) ^ 2 with quibbles
"(channel-variance snd chn) returns the sample variance in the given channel: <f,f>-((<f,1>/ n)^2"
(let* ((N (frames snd chn))
(mu (* (/ N (- N 1)) (channel-mean snd chn))) ; avoid bias sez JOS
(P (channel-total-energy snd chn)))
(- P (* mu mu))))
(define* (channel-norm snd chn) ; sqrt(<f, f>)
"(channel-norm snd chn) returns the norm of the samples in the given channel: sqrt(<f,f>)"
(sqrt (channel-total-energy snd chn)))
(define* (channel-lp p snd chn)
"(channel-lp p snd chn) returns the Lp norm of the samples in the given channel"
(let ((sum 0.0)
(N (frames snd chn)))
(scan-channel (lambda (y) (set! sum (+ sum (expt (abs y) p))) #f) 0 N snd chn)
(expt sum (/ 1.0 p))))
(define* (channel-lp-inf snd chn)
"(channel-lp-inf snd chn) returns the maxamp in the given channel (the name is just math jargon for maxamp)"
(let ((mx 0.0)
(N (frames snd chn)))
(scan-channel (lambda (y) (set! mx (max mx (abs y))) #f) 0 N snd chn)
mx))
(define (channel2-inner-product s1 c1 s2 c2) ; <f, g>
"(channel2-inner-product s1 c1 s2 c2) returns the inner-product of the two channels: <f,g>"
(let ((N (frames s1 c1))
(sum 0.0)
(r1 (make-sampler 0 s1 c1))
(r2 (make-sampler 0 s2 c2)))
(do ((i 0 (+ i 1)))
((= i N))
(set! sum (+ sum (* (r1) (r2)))))
sum))
(define (channel2-angle s1 c1 s2 c2) ; acos(<f, g> / (sqrt(<f, f>) * sqrt(<g, g>)))
"(channel2-angle s1 c1 s2 c2) treats the two channels as vectors, returning the 'angle' between them: acos(<f,g>/(sqrt(<f,f>)*sqrt(<g,g>)))"
(let ((inprod (channel2-inner-product s1 c1 s2 c2))
(norm1 (channel-norm s1 c1))
(norm2 (channel-norm s2 c2)))
(acos (/ inprod (* norm1 norm2)))))
(define (channel2-orthogonal? s1 c1 s2 c2) ; <f, g> == 0
"(channel2-orthogonal? s1 c1 s2 c2) returns #t if the two channels' inner-product is 0: <f,g>==0"
(= (channel2-inner-product s1 c1 s2 c2) 0.0))
(define (channel2-coefficient-of-projection s1 c1 s2 c2) ; s1,c1 = x, s2,c2 = y, <f, g> / <f, f>
"(channel2-coefficient-of-projection s1 c1 s2 c2) returns <f,g>/<f,f>"
(/ (channel2-inner-product s1 c1 s2 c2)
(channel-total-energy s1 c1)))
;;; -------- end of JOS stuff --------
(define (channel-distance s1 c1 s2 c2) ; sqrt(<f - g, f - g>)
"(channel-distance s1 c1 s2 c2) returns the euclidean distance between the two channels: sqrt(<f-g,f-g>)"
(let* ((r1 (make-sampler 0 s1 c1))
(r2 (make-sampler 0 s2 c2))
(sum 0.0)
(N (min (frames s1 c1) (frames s2 c2))))
(do ((i 0 (+ i 1)))
((= i N))
(let ((diff (- (r1) (r2))))
(set! sum (+ sum (* diff diff)))))
(sqrt sum)))
(define (periodogram N)
"(periodogram N) displays an 'N' point Bartlett periodogram of the samples in the current channel"
(let* ((len (frames))
(average-data (make-vct N))
(rd (make-sampler 0))
(N2 (* 2 N))
(rl (make-vct N2))
(im (make-vct N2)))
(do ((i 0 (+ i N)))
((>= i len))
(vct-scale! rl 0.0)
(vct-scale! im 0.0)
(do ((k 0 (+ 1 k)))
((= k N))
(set! (rl k) (rd)))
(mus-fft rl im)
(do ((k 0 (+ 1 k)))
((= k N))
(set! (average-data k) (+ (average-data k)
(+ (* (rl k) (rl k))
(* (im k) (im k)))))))
(graph (vct-scale! average-data (/ 1.0 (ceiling (/ len N)))))))
;;; -------- ssb-am friends
(define* (shift-channel-pitch freq (order 40) (beg 0) dur snd chn edpos)
"(shift-channel-pitch freq (order 40) (beg 0) dur snd chn edpos) uses the ssb-am CLM generator to \
shift the given channel in pitch without changing its length. The higher 'order', the better usually."
;; higher order = better cancellation
(let* ((gen (make-ssb-am freq order)))
(map-channel (lambda (y)
(ssb-am gen y))
beg dur snd chn edpos
(format #f "shift-channel-pitch ~A ~A ~A ~A" freq order beg dur))))
(define (hz->2pi freq)
"(hz->2pi freq) is like hz->radians but uses the current sound's srate, not mus-srate"
(/ (* 2 pi freq) (srate)))
(define* (ssb-bank old-freq new-freq pairs (order 40) (bw 50.0) (beg 0) dur snd chn edpos)
(let* ((ssbs (make-vector pairs))
(bands (make-vector pairs))
(factor (/ (- new-freq old-freq) old-freq))
(mx (maxamp)))
(do ((i 1 (+ i 1)))
((> i pairs))
(let* ((aff (* i old-freq))
(bwf (* bw (+ 1.0 (/ i (* 2 pairs))))))
(set! (ssbs (- i 1)) (make-ssb-am (* i factor old-freq)))
(set! (bands (- i 1)) (make-bandpass (hz->2pi (- aff bwf))
(hz->2pi (+ aff bwf))
order))))
(as-one-edit
(lambda ()
(let ((nmx 0.0))
(map-channel
(lambda (y)
(let ((sum 0.0))
(do ((i 0 (+ i 1)))
((= i pairs))
(set! sum (+ sum (ssb-am (ssbs i)
(bandpass (bands i)
y)))))
(set! nmx (max nmx (abs sum)))
sum))
beg dur snd chn edpos)
(scale-channel (/ mx nmx) beg dur snd chn))) ; not edpos here -- we're scaling the new stuff
(format #f "ssb-bank ~A ~A ~A ~A ~A ~A ~A" old-freq new-freq pairs order bw beg dur))))
(define* (ssb-bank-env old-freq new-freq freq-env pairs (order 40) (bw 50.0) (beg 0) dur snd chn edpos)
;; this version adds a frequency envelope
;; (ssb-bank-env 557 880 '(0 0 1 100.0) 7)
(let* ((ssbs (make-vector pairs))
(bands (make-vector pairs))
(factor (/ (- new-freq old-freq) old-freq))
(frenvs (make-vector pairs))
(mx (maxamp)))
(do ((i 1 (+ i 1)))
((> i pairs))
(let* ((aff (* i old-freq))
(bwf (* bw (+ 1.0 (/ i (* 2 pairs))))))
(set! (ssbs (- i 1)) (make-ssb-am (* i factor old-freq)))
(set! (bands (- i 1)) (make-bandpass (hz->2pi (- aff bwf))
(hz->2pi (+ aff bwf))
order))
(set! (frenvs (- i 1)) (make-env freq-env
:scaler (hz->radians (* 1.0 i))
:length (frames)))))
(as-one-edit
(lambda ()
(let ((nmx 0.0))
(map-channel
(lambda (y)
(let ((sum 0.0))
(do ((i 0 (+ i 1)))
((= i pairs))
(set! sum (+ sum (ssb-am (ssbs i)
(bandpass (bands i)
y)
(env (frenvs i))))))
(set! nmx (max nmx (abs sum)))
sum))
beg dur snd chn edpos)
(scale-channel (/ mx nmx) beg dur snd chn)))
(format #f "ssb-bank-env ~A ~A '~A ~A ~A ~A ~A ~A" old-freq new-freq freq-env pairs order bw beg dur))))
#|
(define* (repitch-sound old-freq new-freq)
(ssb-bank old-freq new-freq 10))
(define* (retime-sound new-time)
(let* ((old-time (/ (frames) (srate)))
(factor (/ new-time old-time)))
(ssb-bank 557 (* 557 factor) 10)
(src-sound (/ 1.0 factor))))
;; echoes with each echo at a new pitch via ssb-am etc
(define* (make-transposer old-freq new-freq pairs (order 40) (bw 50.0))
(let* ((ssbs (make-vector pairs))
(bands (make-vector pairs))
(factor (/ (- new-freq old-freq) old-freq)))
(do ((i 1 (+ i 1)))
((> i pairs))
(let* ((aff (* i old-freq))
(bwf (* bw (+ 1.0 (/ i (* 2 pairs))))))
(set! (ssbs (- i 1)) (make-ssb-am (* i factor old-freq)))
(set! (bands (- i 1)) (make-bandpass (hz->radians (- aff bwf))
(hz->radians (+ aff bwf))
order))))
(list ssbs bands)))
(define (transpose transposer input)
(let* ((sum 0.0)
(ssbs (car transposer))
(bands (cadr transposer))
(pairs (length ssbs)))
(do ((i 0 (+ i 1)))
((= i pairs) sum)
(set! sum (+ sum (ssb-am (ssbs i)
(bandpass (bands i)
input)))))))
(define (fdelay gen input)
(gen input))
(define (make-fdelay len pitch scaler)
(let ((dly (make-delay len))
(ssb (make-transposer 440.0 (* 440.0 pitch) 10)))
(lambda (input)
(delay dly (+ input (* scaler (transpose ssb (tap dly))))))))
(define (transposed-echo pitch scaler secs)
(let ((del (make-fdelay (round (* secs (srate)))) pitch scaler))
(map-channel (lambda (y) (fdelay del y)))))
|#
#|
;;; a "bump function" (Stein and Shakarchi)
(define (bumpy)
(let* ((x 0.0)
(xi (/ 1.0 (frames)))
(start 0)
(end 1)
(scl (exp (/ 4.0 (- end start))))) ; normalize it
(map-channel (lambda (y)
(let ((val (if (or (<= x start) ; don't divide by zero
(>= x end))
0.0
(* (exp (/ -1.0 (- x start)))
(exp (/ -1.0 (- end x)))))))
(set! x (+ x xi))
(* scl val))))))
|#
;;; vct|channel|spectral-polynomial
(define (vct-polynomial v coeffs)
;; Horner's rule applied to entire vct
(let* ((v-len (length v))
(num-coeffs (length coeffs))
(new-v (make-vct v-len (coeffs (- num-coeffs 1)))))
(do ((i (- num-coeffs 2) (- i 1)))
((< i 0))
(vct-offset! (vct-multiply! new-v v) (coeffs i)))
new-v))
(define* (channel-polynomial coeffs snd chn)
(let ((len (frames snd chn)))
(vct->channel
(vct-polynomial
(channel->vct 0 len snd chn)
coeffs)
0 len snd chn #f (format #f "channel-polynomial ~A" (vct->string coeffs)))))
;;; (channel-polynomial (vct 0.0 .5)) = x*.5
;;; (channel-polynomial (vct 0.0 1.0 1.0 1.0)) = x*x*x + x*x + x
;;; convolution -> * in freq
(define* (spectral-polynomial coeffs snd chn)
(let* ((len (frames snd chn))
(sound (channel->vct 0 len snd chn))
(num-coeffs (length coeffs))
(fft-len (if (< num-coeffs 2)
len
(expt 2 (ceiling (/ (log (* (- num-coeffs 1) len)) (log 2))))))
(rl1 (make-vct fft-len 0.0))
(rl2 (make-vct fft-len 0.0))
(new-sound (make-vct fft-len)))
(if (> (coeffs 0) 0.0)
(let ((dither (coeffs 0)))
(do ((i 0 (+ i 1)))
((= i fft-len))
(set! (new-sound i) (mus-random dither)))))
(if (> num-coeffs 1)
(begin
(vct-add! new-sound (vct-scale! (vct-copy sound) (coeffs 1)))
(if (> num-coeffs 2)
(let ((peak (maxamp snd chn)))
(vct-add! (vct-scale! rl1 0.0) sound)
(do ((i 2 (+ i 1)))
((= i num-coeffs))
(convolution rl1 (vct-add! (vct-scale! rl2 0.0) sound) fft-len)
(let ((pk (vct-peak rl1)))
(vct-add! new-sound (vct-scale! (vct-copy rl1) (/ (* (coeffs i) peak) pk)))))
(let ((pk (vct-peak new-sound)))
(vct-scale! new-sound (/ peak pk)))))))
(vct->channel new-sound 0 (max len (* len (- num-coeffs 1))) snd chn #f (format #f "spectral-polynomial ~A" (vct->string coeffs)))))
;;; ----------------
;;; SCENTROID
;;;
;;; by Bret Battey
;;; Version 1.0 July 13, 2002
;;; translated to Snd/Scheme Bill S 19-Jan-05
;;;
;;; Returns the continuous spectral centroid envelope of a sound.
;;; The spectral centroid is the "center of gravity" of the spectrum, and it
;;; has a rough correlation to our sense of "brightness" of a sound.
;;;
;;; [Beauchamp, J., "Synthesis by spectral amplitude and 'brightness' matching
;;; analyzed musical sounds". Journal of Audio Engineering Society 30(6), 396-406]
;;;
;;; The formula used is:
;;; C = [SUM<n=1toj>F(n)A(n)] / [SUM<n=1toj>A(n)]
;;; Where j is the number of bins in the analysis,
;;; F(n) is the frequency of a given bin,
;;; A(n) is the magnitude of the given bin.
;;;
;;; If a pitch envelope for the analyzed sound is available, the results
;;; of SCENTROID can be used with the function NORMALIZE-CENTROID, below,
;;; to provide a "normalized spectral centroid".
;;;
;;; DB-FLOOR -- Frames below this decibel level (0 dB = max) will be discarded
;;; and returned with spectral centroid = 0
;;;
;;; RFREQ -- Rendering frequency. Number of measurements per second.
;;;
;;; FFTSIZE -- FFT window size. Must be a power of 2. 4096 is recommended.
(define* (scentroid file (beg 0.0) dur (db-floor -40.0) (rfreq 100.0) (fftsize 4096))
"(scentroid file (beg 0.0) dur (db-floor -40.0) (rfreq 100.0) (fftsize 4096)) returns the spectral centroid envelope of a sound; 'rfreq' is \
the rendering frequency, the number of measurements per second; 'db-floor' is the level below which data will be ignored"
(let* ((fsr (srate file))
(incrsamps (floor (/ fsr rfreq)))
(start (floor (* beg fsr)))
(end (+ start (if dur (floor (* dur fsr)) (- (frames file) beg))))
(fdr (make-vct fftsize))
(fdi (make-vct fftsize))
(windows (+ 1 (floor (/ (- end start) incrsamps))))
(results (make-vct windows))
(fft2 (floor (/ fftsize 2)))
(binwidth (* 1.0 (/ fsr fftsize)))
(rd (make-readin file)))
(run
(do ((i start (+ i incrsamps))
(loc 0 (+ 1 loc)))
((>= i end))
(set! (mus-location rd) i)
(let ((sum-of-squares 0.0))
(do ((j 0 (+ 1 j)))
((= j fftsize))
(let ((val (readin rd)))
(set! sum-of-squares (+ sum-of-squares (* val val)))
(set! (fdr j) val)))
(if (>= (linear->db (sqrt (/ sum-of-squares fftsize))) db-floor)
(let ((numsum 0.0)
(densum 0.0))
(clear-array fdi)
(mus-fft fdr fdi fftsize)
(rectangular->magnitudes fdr fdi)
(do ((k 0 (+ 1 k)))
((= k fft2))
(set! numsum (+ numsum (* k binwidth (fdr k))))
(set! densum (+ densum (fdr k))))
(set! (results loc) (/ numsum densum)))))))
results))
;;; ----------------
;;;
;;; invert-filter inverts an FIR filter
;;;
;;; say we previously filtered a sound via (filter-channel (vct .5 .25 .125))
;;; and we want to undo it without using (undo):
;;; (filter-channel (invert-filter (vct .5 .25 .125)))
;;;
;;; there are a million gotchas here. The primary one is that the inverse filter
;;; can "explode" -- the coefficients can grow without bound. For example, any
;;; filter returned by spectrum->coeffs above will be a problem (it always returns
;;; a "linear phase" filter). Could this be used to remove reverb?
(define (invert-filter fcoeffs)
"(invert-filter coeffs) tries to return an inverse filter to undo the effect of the FIR filter coeffs."
(let* ((flen (length fcoeffs))
(coeffs (make-vct (+ 32 flen))) ; add room for coeffs to die away
(order (length coeffs)))
(do ((i 0 (+ i 1)))
((= i flen))
(set! (coeffs i) (fcoeffs i)))
(let ((nfilt (make-vct order)))
(set! (nfilt 0) (/ 1.0 (coeffs 0)))
(do ((i 1 (+ i 1)))
((= i order))
(let ((sum 0.0))
(do ((j 0 (+ 1 j))
(k i (- k 1)))
((= j i))
(set! sum (+ sum (* (nfilt j) (coeffs k)))))
(set! (nfilt i) (/ sum (- (coeffs 0))))))
nfilt)))
;;; ----------------
;;;
;;; Volterra filter
;;;
;;; one of the standard non-linear filters
;;; this version is taken from Monson Hayes "Statistical DSP and Modeling"
;;; it is a slight specialization of the form mentioned by J O Smith and others
(define (make-volterra-filter acoeffs bcoeffs)
"(make-volterra-filter acoeffs bcoeffs) returns a list for use with volterra-filter, producing one of the standard non-linear filters"
(list acoeffs
bcoeffs
(make-vct (max (length acoeffs) (length bcoeffs)))))
(define (volterra-filter flt x)
"(volterra-filter flt x) takes 'flt', a list returned by make-volterra-filter, and an input 'x', and returns the (non-linear filtered) result"
(let* ((as (car flt))
(bs (cadr flt))
(xs (caddr flt))
(xlen (length xs))
(x1len (length as))
(x2len (length bs))
(sum 0.0))
(vct-move! xs (- xlen 1) (- xlen 2) #t)
(set! (xs 0) x)
(set! sum (dot-product as xs x1len))
(do ((i 0 (+ i 1)))
((= i x2len))
(do ((j i (+ 1 j)))
((= j x2len))
(set! sum (+ sum (* (bs j) (xs i) (xs j))))))
sum))
;;; (define flt (make-volterra-filter (vct .5 .1) (vct .3 .2 .1)))
;;; (map-channel (lambda (x) (volterra-filter flt x)))
;;; ----------------
;;;
;;; harmonicizer (each harmonic is split into a set of harmonics via Chebyshev polynomials)
;;; obviously very similar to ssb-bank above, but splits harmonics individually, rather than pitch-shifting them
(define* (harmonicizer freq coeffs pairs (order 40) (bw 50.0) (beg 0) dur snd chn edpos)
"(harmonicizer freq coeffs pairs (order 40) (bw 50.0) (beg 0) dur snd chn edpos) splits out each harmonic \
and replaces it with the spectrum given in coeffs"
(let* ((bands (make-vector pairs))
(pcoeffs (partials->polynomial coeffs))
(avgs (make-vector pairs))
(peaks (make-vector pairs))
(flt (make-filter 2 (vct 1 -1) (vct 0 -0.9)))
(old-mx (maxamp))
(new-mx 0.0)
(ctr 40))
(do ((i 1 (+ i 1)))
((> i pairs))
(let* ((aff (* i freq))
(bwf (* bw (+ 1.0 (/ i (* 2 pairs))))))
(set! (peaks (- i 1)) (make-moving-max 128))
(set! (avgs (- i 1)) (make-moving-average 128))
(set! (bands (- i 1)) (make-bandpass (hz->2pi (- aff bwf))
(hz->2pi (+ aff bwf))
order))))
(as-one-edit
(lambda ()
(map-channel
(lambda (y)
(let ((sum 0.0))
(do ((i 0 (+ i 1)))
((= i pairs))
(let* ((sig (bandpass (bands i) y))
(mx (moving-max (peaks i) sig)))
(let ((amp (moving-average (avgs i) (if (> mx 0.0) (min 100.0 (/ 1.0 mx)) 0.0))))
(if (> amp 0.0)
(set! sum (+ sum (* mx (polynomial pcoeffs (* amp sig)))))))))
(let ((val (filter flt sum))) ; get rid of DC
(set! new-mx (max new-mx (abs val)))
(if (= ctr 0) ; flush filter initial junk
val
(begin
(set! ctr (- ctr 1))
0.0)))))
beg dur snd chn edpos)
(if (> new-mx 0.0)
(scale-channel (/ old-mx new-mx) beg dur snd chn))))))
;;; ----------------
;;;
;;; linear sampling rate conversion
(define* (linear-src-channel sr snd chn)
"(linear-src-channel sr snd chn performs sampling rate conversion using linear interpolation."
(let* ((rd (make-sampler 0 snd chn))
(last (rd))
(next (rd))
(intrp 0.0)
(tempfile
(with-sound (:output (snd-tempnam) :srate (srate snd) :to-snd #f)
(run
(do ((samp 0 (+ 1 samp)))
((sampler-at-end? rd))
(out-any samp
(let ((pos intrp))
(if (>= pos 1.0)
(let ((num (floor pos)))
(do ((i 0 (+ i 1)))
((= i num))
(set! last next)
(set! next (rd)))
(set! pos (- pos num))))
(set! intrp (+ pos sr))
(+ last (* pos (- next last))))
0)))))
(len (frames tempfile)))
(set-samples 0 (- len 1) tempfile snd chn #t "linear-src" 0 #f #t)
;; first #t=truncate to new length, #f=at current edpos, #t=auto delete temp file
))
;;; -------- spectrum displayed in various frequency scales
(define display-bark-fft
;; click in lisp-graph to change the tick placement choice
(let ((snd-color-1 (lambda args
(if (defined? 'snd-color)
(apply snd-color args)
#f)))) ; no-gui case I guess
(let ((bark-fft-size 0)
(bark-tick-function 0)
(color1 (snd-color-1 8)) ; selected-data-color
(color2 (snd-color-1 2)) ; red
(color3 (snd-color-1 4))) ; blue
(define (bark f)
(let ((f2 (/ f 7500)))
(+ (* 13.5 (atan (* .00076 f))) (* 3.5 (atan (* f2 f2))))))
(define (mel f)
(* 1127 (log (+ 1.0 (/ f 700.0)))))
(define (erb f)
(+ 43.0 (* 11.17 (log (/ (+ f 312) (+ f 14675))))))
(define (display-bark-fft-1 snd chn)
(let* ((ls (left-sample snd chn))
(rs (right-sample snd chn))
(fftlen (floor (expt 2 (ceiling (/ (log (+ 1 (- rs ls))) (log 2)))))))
(if (> fftlen 0)
(let ((data (channel->vct ls fftlen snd chn))
(normalized (not (= (transform-normalization snd chn) dont-normalize)))
(linear #t)) ; can't currently show lisp graph in dB
;; snd-axis make_axes: WITH_LOG_Y_AXIS, but LINEAR currently in snd-chn.c 3250
(if (vct? data)
(let ((fft (snd-spectrum data ; returns fftlen / 2 data points
(fft-window snd chn) fftlen linear
(fft-window-beta snd chn) #f normalized)))
(if (vct? fft)
(let* ((sr (srate snd))
(mx (vct-peak fft))
(data-len (length fft))
;; bark settings
(bark-low (floor (bark 20.0)))
(bark-high (ceiling (bark (* 0.5 sr))))
(bark-frqscl (/ data-len (- bark-high bark-low)))
(bark-data (make-vct data-len))
;; mel settings
(mel-low (floor (mel 20.0)))
(mel-high (ceiling (mel (* 0.5 sr))))
(mel-frqscl (/ data-len (- mel-high mel-low)))
(mel-data (make-vct data-len))
;; erb settings
(erb-low (floor (erb 20.0)))
(erb-high (ceiling (erb (* 0.5 sr))))
(erb-frqscl (/ data-len (- erb-high erb-low)))
(erb-data (make-vct data-len)))
(set! bark-fft-size fftlen)
(run
(do ((i 0 (+ i 1)))
((= i data-len))
(let* ((val (fft i))
(frq (* sr (/ i fftlen)))
(bark-bin (round (* bark-frqscl (- (bark frq) bark-low))))
(mel-bin (round (* mel-frqscl (- (mel frq) mel-low))))
(erb-bin (round (* erb-frqscl (- (erb frq) erb-low)))))
(if (and (>= bark-bin 0)
(< bark-bin data-len))
(set! (bark-data bark-bin) (+ val (bark-data bark-bin))))
(if (and (>= mel-bin 0)
(< mel-bin data-len))
(set! (mel-data mel-bin) (+ val (mel-data mel-bin))))
(if (and (>= erb-bin 0)
(< erb-bin data-len))
(set! (erb-data erb-bin) (+ val (erb-data erb-bin))))))
(if normalized
(let ((bmx (vct-peak bark-data))
(mmx (vct-peak mel-data))
(emx (vct-peak erb-data)))
(if (> (abs (- mx bmx)) .01)
(vct-scale! bark-data (/ mx bmx)))
(if (> (abs (- mx mmx)) .01)
(vct-scale! mel-data (/ mx mmx)))
(if (> (abs (- mx emx)) .01)
(vct-scale! erb-data (/ mx emx))))))
(graph (list bark-data mel-data erb-data)
"ignored"
20.0 (* 0.5 sr)
0.0 (if normalized 1.0 (* data-len (y-zoom-slider snd chn)))
snd chn
#f show-bare-x-axis)))))))
(list color1 color2 color3))) ; tell lisp graph display what colors to use
(define (make-bark-labels snd chn)
;; at this point the x axis has no markings, but there is room for labels and ticks
(let ((old-foreground-color (foreground-color snd chn copy-context)))
(let* ((axinfo (axis-info snd chn lisp-graph))
(axis-x0 (list-ref axinfo 10))
(axis-x1 (list-ref axinfo 12))
(axis-y0 (list-ref axinfo 13))
(axis-y1 (list-ref axinfo 11))
(label-height 15)
(char-width 8)
(sr2 (* 0.5 (srate snd)))
(minor-tick-len 6)
(major-tick-len 12)
(tick-y0 axis-y1)
(minor-y0 (+ axis-y1 minor-tick-len))
(major-y0 (+ axis-y1 major-tick-len))
(bark-label-font (snd-font 3))
(bark-numbers-font (snd-font 2))
(label-pos (+ axis-x0 (* .45 (- axis-x1 axis-x0)))))
(define (scale-position scale f)
(let ((b20 (scale 20.0)))
(round (+ axis-x0
(/ (* (- axis-x1 axis-x0) (- (scale f) b20))
(- (scale sr2) b20))))))
(define (bark-position f) (scale-position bark f))
(define (mel-position f) (scale-position mel f))
(define (erb-position f) (scale-position erb f))
(define (draw-bark-ticks bark-function)
(if bark-numbers-font (set! (current-font snd chn copy-context) bark-numbers-font))
(draw-line axis-x0 tick-y0 axis-x0 major-y0 snd chn copy-context)
(let* ((i1000 (scale-position bark-function 1000.0))
(i10000 (scale-position bark-function 10000.0)))
(draw-line i1000 tick-y0 i1000 major-y0 snd chn copy-context)
(draw-line i10000 tick-y0 i10000 major-y0 snd chn copy-context)
(draw-string "20" axis-x0 major-y0 snd chn copy-context)
(draw-string "1000" (- i1000 (* 3 4)) major-y0 snd chn copy-context)
(draw-string "10000" (- i10000 (* 6 4)) major-y0 snd chn copy-context)
(draw-string (format #f "fft size: ~D" bark-fft-size) (+ axis-x0 10) axis-y0 snd chn copy-context)
(do ((i 100 (+ i 100)))
((= i 1000))
(let* ((i100 (scale-position bark-function i)))
(draw-line i100 tick-y0 i100 minor-y0 snd chn copy-context)))
(do ((i 2000 (+ i 1000)))
((= i 10000))
(let* ((i1000 (scale-position bark-function i)))
(draw-line i1000 tick-y0 i1000 minor-y0 snd chn copy-context)))))
;; bark label/ticks
(set! (foreground-color snd chn copy-context) color1)
(if (= bark-tick-function 0) (draw-bark-ticks bark-position))
(if bark-label-font (set! (current-font snd chn copy-context) bark-label-font))
(draw-string "bark," label-pos (+ axis-y1 label-height) snd chn copy-context)
;; mel label/ticks
(set! (foreground-color snd chn copy-context) color2)
(if (= bark-tick-function 1) (draw-bark-ticks mel-position))
(if bark-label-font (set! (current-font snd chn copy-context) bark-label-font))
(draw-string "mel," (+ (* char-width 6) label-pos) (+ axis-y1 label-height) snd chn copy-context)
;; erb label/ticks
(set! (foreground-color snd chn copy-context) color3)
(if (= bark-tick-function 2) (draw-bark-ticks erb-position))
(if bark-label-font (set! (current-font snd chn copy-context) bark-label-font))
(draw-string "erb" (+ (* char-width (+ 6 5)) label-pos) (+ axis-y1 label-height) snd chn copy-context))
(set! (foreground-color snd chn copy-context) old-foreground-color)))
;; mouse click = move to next scale's ticks
(define (choose-bark-ticks snd chn button state x y axis)
(if (= axis lisp-graph)
(begin
(set! bark-tick-function (+ 1 bark-tick-function))
(if (> bark-tick-function 2)
(set! bark-tick-function 0))
(update-lisp-graph snd chn))))
;; user's view of display-bark-fft function
(lambda* (off col1 col2 col3)
(if col1 (set! color1 col1))
(if col2 (set! color2 col2))
(if col3 (set! color3 col3))
(if (not off)
(begin
(add-hook! lisp-graph-hook display-bark-fft-1)
(add-hook! after-lisp-graph-hook make-bark-labels)
(add-hook! mouse-click-hook choose-bark-ticks)
(for-each (lambda (snd)
(do ((c 0 (+ 1 c)))
((= c (channels snd)))
(update-lisp-graph snd c)))
(sounds)))
(begin
(remove-hook! lisp-graph-hook display-bark-fft-1)
(remove-hook! after-lisp-graph-hook make-bark-labels)
(remove-hook! mouse-click-hook choose-bark-ticks)
(for-each (lambda (snd)
(do ((c 0 (+ 1 c)))
((= c (channels snd)))
(set! (lisp-graph? snd c) #f)))
(sounds))))))))
(define (undisplay-bark-fft) (display-bark-fft #t))
;;; -------- lpc-coeffs, lpc-predict
(define (lpc-coeffs data n m)
;; translated and changed to use 0-based arrays from memcof of NRinC
;; not vcts except incoming data here because we need double precision
"(lpc-coeffs data n m) returns 'm' LPC coeffients (in a vector) given 'n' data points in the vct 'data'"
(letrec ((sqr (lambda (x) (* x x))))
(let ((d (make-vector m 0.0))
(wk1 (make-vector n 0.0))
(wk2 (make-vector n 0.0))
(wkm (make-vector n 0.0)))
(set! (wk1 0) (data 0))
(set! (wk2 (- n 2)) (data (- n 1)))
(do ((j 1 (+ 1 j)))
((= j (- n 1)))
(set! (wk1 j) (data j))
(set! (wk2 (- j 1)) (data j)))
(do ((k 0 (+ 1 k)))
((= k m) d)
(let ((num 0.0)
(denom 0.0))
(do ((j 0 (+ 1 j)))
((= j (- n k 1)))
(set! num (+ num (* (wk1 j) (wk2 j))))
(set! denom (+ denom (sqr (wk1 j)) (sqr (wk2 j)))))
(if (not (= denom 0.0))
(set! (d k) (/ (* 2.0 num) denom)))
(do ((i 0 (+ i 1)))
((= i k)) ; 1st time is skipped presumably
(set! (d i) (- (wkm i) (* (d k) (wkm (- k i 1))))))
(if (< k (- m 1))
(begin
(do ((i 0 (+ i 1)))
((= i (+ 1 k)))
(set! (wkm i) (d i)))
(do ((j 0 (+ 1 j)))
((= j (- n k 2)))
(set! (wk1 j) (- (wk1 j) (* (wkm k) (wk2 j))))
(set! (wk2 j) (- (wk2 (+ 1 j)) (* (wkm k) (wk1 (+ 1 j)))))))))))))
(define* (lpc-predict data n coeffs m nf clipped)
;; translated and changed to use 0-based arrays from predic of NRinC
;; incoming coeffs are assumed to be in a vector (from lpc-coeffs)
"(lpc-predict data n coeffs m nf clipped) takes the output of lpc-coeffs ('coeffs', a vector) and the length thereof ('m'), \
'n' data points of 'data' (a vct), and produces 'nf' new data points (in a vct) as its prediction. If 'clipped' is #t, the new data \
is assumed to be outside -1.0 to 1.0."
(let ((future (make-vct nf 0.0))
(reg (make-vct m 0.0)))
(do ((i 0 (+ i 1))
(j (- n 1) (- j 1)))
((= i m))
(set! (reg i) (data j)))
(do ((j 0 (+ 1 j)))
((= j nf) future)
(let ((sum 0.0))
(do ((k 0 (+ 1 k)))
((= k m))
(set! sum (+ sum (* (coeffs k) (reg k)))))
(do ((k (- m 1) (- k 1)))
((= k 0))
(set! (reg k) (reg (- k 1))))
;; added this block
(if clipped
(if (> sum 0.0)
(if (< sum 1.0)
(set! sum 1.0))
(if (> sum -1.0)
(set! sum -1.0))))
(set! (reg 0) sum)
(set! (future j) sum)))))
;;; -------- unclip-channel
(define* (unclip-channel snd chn)
"(unclip-channel snd chn) looks for clipped portions and tries to reconstruct the original using LPC"
(let* ((clips 0) ; number of clipped portions * 2
(unclipped-max 0.0))
;; count clipped portions (this search split into two portions for the optimizer's benefit)
(let ((in-clip #f))
(scan-channel
(lambda (y)
(let ((absy (abs y)))
(if (> absy .9999) ; this sample is clipped
(if (not in-clip)
(set! in-clip #t))
(begin ; not clipped
(set! unclipped-max (max unclipped-max absy))
(if in-clip
(begin
(set! in-clip #f)
(set! clips (+ clips 2))))))
#f))
0 (frames snd chn) snd chn))
(if (> clips 0) ; we did find clipped portions
(let* ((clip-data (make-vector clips 0)) ; clipped portion begin and end points
(clip-beg 0)
(clip-end 0)
(in-clip #f)
(cur-clip 0)
(samp 0))
(scan-channel
(lambda (y)
(let ((absy (abs y)))
(if (> absy .9999)
(if (not in-clip)
(begin
(set! in-clip #t)
(set! clip-beg samp)))
(begin ; not clipped
(if in-clip ; if we were in a clipped portion
(begin ; save the bounds in clip-data
(set! in-clip #f)
(set! (clip-data cur-clip) clip-beg)
(set! (clip-data (+ 1 cur-clip)) (- samp 1))
(set! cur-clip (+ cur-clip 2))))))
(set! samp (+ 1 samp))
#f)))
;; try to restore clipped portions
(let ((min-data-len 32)
(max-diff 0.0)
(max-len 0))
(as-one-edit
(lambda ()
(do ((clip 0 (+ clip 2))) ; so go through all...
((>= clip clips))
(let* ((clip-beg (clip-data clip)) ; clip-beg to clip-end inclusive are clipped
(clip-end (clip-data (+ 1 clip)))
(clip-len (+ 1 (- clip-end clip-beg)))
(data-len (max min-data-len (* clip-len 4))))
(if (> clip-len max-len)
(set! max-len clip-len))
(let ((forward-data-len data-len)
(backward-data-len data-len)
(previous-end (if (= clip 0) 0 (clip-data (- clip 1))))
(next-beg (if (< clip (- clips 3)) (clip-data (+ clip 2)) (frames snd chn))))
(if (< (- clip-beg data-len) previous-end) ; current beg - data collides with previous
(begin
;; (snd-display ";[~A] collision at ~A -> [~A : ~A]" clip previous-end clip-beg clip-end)
(set! forward-data-len (max 4 (- clip-beg previous-end)))))
(if (> (+ clip-end data-len) next-beg) ; current end + data collides with next
(begin
;; (snd-display ";[~A] collision at [~A : ~A] -> ~A" clip clip-beg clip-end next-beg)
(set! backward-data-len (max 4 (- next-beg clip-end)))))
(let ((forward-predict-len (min (max clip-len (floor (/ forward-data-len 2))) forward-data-len))
(backward-predict-len (min (max clip-len (floor (/ backward-data-len 2))) backward-data-len)))
;; use LPC to reconstruct going both forwards and backwards
(let* ((data (channel->vct (- clip-beg forward-data-len) forward-data-len snd chn))
(future (lpc-predict
data forward-data-len
(lpc-coeffs data forward-data-len forward-predict-len)
forward-predict-len
clip-len #f))
(rdata (vct-reverse! (channel->vct (+ 1 clip-end) backward-data-len snd chn)))
(past (lpc-predict
rdata backward-data-len
(lpc-coeffs rdata backward-data-len backward-predict-len)
backward-predict-len
clip-len #f))
(new-data (make-vct clip-len 0.0)))
(if (> clip-len 1)
(do ((i 0 (+ i 1))
(j (- clip-len 1) (- j 1)))
((= i clip-len))
(let* ((sn (* 0.5 (+ 1.0 (cos (* pi (/ i (- clip-len 1))))))))
(set! (new-data i) (+ (* sn
(future i))
(* (- 1.0 sn)
(past j))))))
;; todo perhaps move this mix dependent on data-lens?
;; todo perhaps special case for 2 samps (what if both 1.0 for example?)
;; todo perhaps if multichannel and channels are correlated and one is not clipped -- use
;; its data to help reconstruct clipped case?
(set! (new-data 0) (if (> (future 0) 0.0)
(max (future 0) (past 0))
(min (future 0) (past 0)))))
;; write reconstruction
(vct->channel new-data clip-beg clip-len snd chn))))))))
(if (> unclipped-max .95) (set! unclipped-max .999))
(scale-channel (/ unclipped-max (maxamp snd chn)) 0 (frames snd chn) snd chn)
(list 'max unclipped-max 'clips (/ clips 2) 'max-len max-len)))
'no-clips)))
(define* (unclip-sound snd)
"(unclip-sound snd) applies unclip-channel to each channel of 'snd'."
(let ((index (or snd (selected-sound) (car (sounds)))))
(if (not (sound? index))
(throw 'no-such-sound (list "unclip-sound" snd))
(let ((chns (channels index)))
(do ((chn 0 (+ 1 chn)))
((= chn chns))
(unclip-channel index chn))))))
(define* (kalman-filter-channel (Q 1.0e-5))
;; translated from http://www.scipy.org/Cookbook/KalmanFiltering by Andrew Straw (but "R" here is a signal)
(let* ((size (frames))
(mx (maxamp))
(data (channel->vct 0))
(xhat 0.0)
(P 1.0) ; any non-zero value ok here
(R 0.01) ; first guess
(Pminus 0.0)
(frm (make-formant :radius (- 1.0 (/ 2000.0 (srate))) :frequency 1000))
(del (make-moving-average 256))
(K 0.0))
(run
(do ((k 1 (+ 1 k)))
((= k size))
(let ((datum (data k))
(xhatminus xhat))
(let* ((res (formant frm datum))
(avg (moving-average del (abs res))))
(set! R (/ .000001 (+ avg .001))))
;; K now goes between say .5 if avg large to almost 0 if avg 0 (R is inverse essentially)
;; so filter lp effect increases as apparent true signal decreases
;; "truth" here is based on vocal resonances
(set! (data k) xhatminus) ; filter output
(set! Pminus (+ P Q))
(set! K (/ Pminus (+ Pminus R)))
(set! xhat (+ xhatminus
(* K (- datum xhatminus))))
(set! P (* (- 1.0 K) Pminus)))))
(as-one-edit
(lambda ()
(vct->channel data)
(scale-to mx)))))
;;; -------- Savitzky-Golay filter coefficients (FIR filter -- returns vct of coeffs centered at vct midpoint)
;;;
;;; based on Numerical Recipes in C p 652
;;; needs mixer-solve in mixer.scm
(define* (make-savitzky-golay-filter size (order 2)) ;assuming symmetric filter (left = right)
(if (even? size)
(set! size (+ 1 size)))
(let* ((n (/ (- size 1) 2))
(a (make-mixer (+ 1 order))))
(do ((i 0 (+ i 1)))
((> i (* order 2)))
(let ((sum (if (= i 0) 1.0 0.0)))
(do ((k 1 (+ 1 k)))
((> k n))
(set! sum (+ sum (expt k i) (expt (- k) i))))
(let ((m i))
(if (> i (- (* 2 order) i))
(set! m (- (* 2 order) i)))
(do ((k (- m) (+ k 2)))
((> k m))
(mixer-set! a (/ (+ i k) 2) (/ (- i k) 2) sum)))))
(let ((b (mixer-solve a (let ((f (make-frame (+ order 1))))
(frame-set! f 0 1.0) ; set others instead for derivative
f)))
(result (make-vct size)))
(do ((k (- n) (+ 1 k))
(i 0 (+ i 1)))
((> k n))
(let ((sum (frame-ref b 0))
(fac 1.0))
(do ((m 1 (+ 1 m)))
((> m order))
(set! fac (* fac k))
(set! sum (+ sum (* (frame-ref b m) fac))))
(set! (result i) sum)))
(make-fir-filter :order size :xcoeffs result))))
(define savitzky-golay-filter fir-filter)
#|
;; NRinC examples (2nd ed, p651)
:(make-savitzky-golay-filter 5 2)
#<fir-filter: order: 5, xs: [-0.086 0.343 0.486 0.343 -0.086]>
:(make-savitzky-golay-filter 11 2)
#<fir-filter: order: 11, xs: [-0.084 0.021 0.103 0.161 0.196 0.207 0.196 0.161...(0: -0.084, 5: 0.207)]>
:(make-savitzky-golay-filter 11 4)
#<fir-filter: order: 11, xs: [0.042 -0.105 -0.023 0.140 0.280 0.333 0.280 0.140...(1: -0.105, 5: 0.333)]>
:(make-savitzky-golay-filter 25 2)
#<fir-filter: order: 25, xs: [-0.049 -0.027 -0.006 0.012 0.028 0.043 0.055 0.066...(0: -0.049, 12: 0.090)]>
|#
;;; -------- hard and soft clipping
;;;
;;; from Julius Smith's http://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html
(define (hard-clipped x)
(max -1.0 (min 1.0 x)))
(define (soft-clipped x)
(max -0.6667 (min 0.6667 (- x (* 0.3333 x x x)))))
;;; -------- parallel FM spectrum calculator
;(fm-parallel-component 200 2000.0 (list 2000.0 200.0) (list 0.5 1.0) '() '() #t)
(define (fm-parallel-component freq-we-want wc wms inds ns bs using-sine)
"(fm-parallel-component freq carrier modfreqs indices '() '() with-sines) returns the amplitude of \"freq\" in \
the multi-modulator FM case described by the list of modulator frequencies and indices"
(if (not (null? wms))
(let* ((sum 0.0)
(index (car inds))
(mx (ceiling (* 7 index)))
(wm (car wms)))
(do ((k (- mx) (+ 1 k)))
((>= k mx) sum)
(set! sum (+ sum (fm-parallel-component freq-we-want (+ wc (* k wm)) (cdr wms) (cdr inds)
(append ns (list k)) (append bs (list index))
using-sine)))))
(if (< (abs (- freq-we-want (abs wc))) .1)
(let ((bmult 1.0))
(for-each
(lambda (n index)
(set! bmult (* bmult (bes-jn n index))))
ns bs)
(if (and using-sine (< wc 0.0)) (set! bmult (- bmult)))
;(snd-display ";add ~A from ~A ~A" bmult ns bs)
bmult)
0.0)))
;;; this returns the component in FM with complex index (using-sine ignored for now)
(define (fm-complex-component freq-we-want wc wm a b interp using-sine)
(let* ((sum 0.0)
(mxa (ceiling (* 7 a)))
(mxb (ceiling (* 7 b))))
(do ((k (- mxa) (+ 1 k)))
((>= k mxa))
(do ((j (- mxb) (+ 1 j)))
((>= j mxb))
(if (< (abs (- freq-we-want (+ wc (* k wm) (* j wm)))) 0.1)
(let ((curJI (* (bes-jn k a)
(bes-in (abs j) b)
(expt 0.0+1.0i j))))
(set! sum (+ sum curJI))
(if (> (magnitude curJI) 0.001)
(snd-display ";add ~A from J~D(~A) = ~A and I~D(~A) = ~A"
curJI
k a (bes-jn k a)
j b (bes-in (abs j) b)))))))
(list sum
(+ (* (- 1.0 interp) (real-part sum))
(* interp (imag-part sum))))))
;(fm-complex-component 1200 1000 100 1.0 3.0 0.0 #f)
(define (fm-cascade-component freq-we-want wc wm1 a wm2 b)
(let* ((sum 0.0)
(mxa (ceiling (* 7 a)))
(mxb (ceiling (* 7 b))))
(do ((k (- mxa) (+ 1 k)))
((>= k mxa))
(do ((j (- mxb) (+ 1 j)))
((>= j mxb))
(if (< (abs (- freq-we-want (+ wc (* k wm1) (* j wm2)))) 0.1)
(let ((curJJ (* (bes-jn k a)
(bes-jn j (* k b)))))
(set! sum (+ sum curJJ))
(if (> (magnitude curJJ) 0.001)
(snd-display ";add ~A from J~D(~A) = ~A and I~D(~A) = ~A"
curJJ
k a (bes-jn k a)
j b (bes-jn j (* k b))))))))
sum))
;(fm-cascade-component 2000 2000 500 1.5 50 1.0)
;;; waveshaping harmonic amplitude at a given index
(define (cheby-hka k a coeffs) ; (coeff 0 = DC)
(let* ((sum 0.0)
(n (length coeffs)))
(do ((j 0 (+ 1 j)))
((= j n))
(let* ((dsum 0.0)
(p (+ k (* 2 j))))
(do ((i 0 (+ i 1)))
((>= (+ p (* 2 i)) n))
(set! dsum (+ dsum (* (expt -1 i)
(* (coeffs (+ p (* 2 i)))
(+ (binomial (+ p i) i)
(binomial (+ p i -1) (- i 1))))))))
(set! sum (+ sum (* dsum
(expt a p)
(binomial p j))))))
sum))
#|
(with-sound ()
(let ((gen (make-polyshape 1000.0 :partials (list 1 .5 2 .25 3 .125 4 .125))))
(do ((i 0 (+ i 1)))
((= i 88200))
(outa i (* .5 (polyshape gen 0.25))))))
(cheby-hka 1 0.25 (vct 0 .5 .25 .125 .125))
|#
;;; find not-so-spikey amps for waveshaping
(define* (flatten-partials any-partials (tries 32))
(define (cos-fft-to-max n cur-amps)
(let* ((size 1024)
(fft-rl (make-vct size))
(fft-im (make-vct size)))
(do ((i 0 (+ i 1))
(bin 2 (+ bin 2)))
((= i n))
(set! (fft-rl bin) (cur-amps i)))
(vct-peak (mus-fft fft-rl fft-im size -1))))
(let* ((partials (if (list? any-partials)
(list->vct any-partials)
any-partials))
(len (length partials))
(topk 0)
(DC 0.0)
(original-sum (let ((sum 0.0))
(do ((i 0 (+ i 2)))
((>= i len) sum)
(let ((hnum (partials i))
(amp (partials (+ i 1))))
(if (= hnum 0)
(set! DC amp)
(begin
(set! topk (max topk hnum))
(set! sum (+ sum amp))))))))
(min-sum original-sum)
(original-partials (let ((v (make-vct topk)))
(do ((i 0 (+ i 2)))
((>= i len) v)
(let ((hnum (partials i)))
(if (not (= hnum 0))
(set! (v (- hnum 1)) (partials (+ i 1))))))))
(min-partials (vct-copy original-partials)))
(if (<= topk (/ (log tries) (log 2)))
(set! tries (floor (expt 2 (- topk 1)))))
(do ((try 0 (+ 1 try)))
((= try tries))
(let ((new-partials (vct-copy original-partials)))
(do ((k 0 (+ 1 k)))
((= k topk))
(if (> (random 1.0) 0.5)
(set! (new-partials k) (- (new-partials k)))))
(let ((new-sum (cos-fft-to-max topk new-partials)))
(if (< new-sum min-sum)
(begin
(set! min-partials (vct-copy new-partials))
(set! min-sum new-sum))))))
(let ((new-amps (vct-scale! min-partials (/ original-sum min-sum)))
(new-partials (vct-copy partials)))
(do ((i 0 (+ i 2))
(k 0 (+ k 1)))
((>= i len))
(let ((hnum (new-partials i)))
(if (= hnum 0)
(set! (new-partials (+ i 1)) DC)
(set! (new-partials (+ i 1)) (new-amps (- hnum 1))))))
new-partials)))
#|
(with-sound (:clipped #f :statistics #t :channels 2)
(let* ((amps (normalize-partials (list 1 .25 2 .5 3 .25)))
(gen1 (make-polywave 400.0 amps))
(gen2 (make-polywave 400.0 (flatten-partials amps))))
(do ((i 0 (+ i 1)))
((= i 44100))
(outa i (polywave gen1))
(outb i (polywave gen2)))))
|#
#|
;;; these are standard FFTs for s7
(define* (fft! rl im n (dir 1))
(if (not im)
(let ((clear (copy rl)))
(fill! clear 0.0)
(set! im clear)))
(if (not n)
(set! n (length rl)))
(do ((i 0 (+ i 1))
(j 0))
((= i n))
(if (> j i)
(let ((tempr (rl j))
(tempi (im j)))
(set! (rl j) (rl i))
(set! (im j) (im i))
(set! (rl i) tempr)
(set! (im i) tempi)))
(let ((m (/ n 2)))
(do ()
((or (< m 2) (< j m)))
(set! j (- j m))
(set! m (/ m 2)))
(set! j (+ j m))))
(let ((ipow (floor (log n 2)))
(prev 1))
(do ((lg 0 (+ lg 1))
(mmax 2 (* mmax 2))
(pow (/ n 2) (/ pow 2))
(theta (* pi dir) (* theta 0.5)))
((= lg ipow))
(let ((wpr (cos theta))
(wpi (sin theta))
(wr 1.0)
(wi 0.0))
(do ((ii 0 (+ ii 1)))
((= ii prev))
(do ((jj 0 (+ jj 1))
(i ii (+ i mmax))
(j (+ ii prev) (+ j mmax)))
((>= jj pow))
(let ((tempr (- (* wr (rl j)) (* wi (im j))))
(tempi (+ (* wr (im j)) (* wi (rl j)))))
(set! (rl j) (- (rl i) tempr))
(set! (im j) (- (im i) tempi))
(set! (rl i) (+ (rl i) tempr))
(set! (im i) (+ (im i) tempi))))
(let ((wtemp wr))
(set! wr (- (* wr wpr) (* wi wpi)))
(set! wi (+ (* wi wpr) (* wtemp wpi)))))
(set! prev mmax))))
rl)
(define* (cfft! data n (dir 1))
(if (not n) (set! n (length data)))
(do ((i 0 (+ i 1))
(j 0))
((= i n))
(if (> j i)
(let ((temp (data j)))
(set! (data j) (data i))
(set! (data i) temp)))
(let ((m (/ n 2)))
(do ()
((or (< m 2) (< j m)))
(set! j (- j m))
(set! m (/ m 2)))
(set! j (+ j m))))
(let ((ipow (floor (log n 2)))
(prev 1))
(do ((lg 0 (+ lg 1))
(mmax 2 (* mmax 2))
(pow (/ n 2) (/ pow 2))
(theta (make-rectangular 0.0 (* pi dir)) (* theta 0.5)))
((= lg ipow))
(let ((wpc (exp theta))
(wc 1.0))
(do ((ii 0 (+ ii 1)))
((= ii prev))
(do ((jj 0 (+ jj 1))
(i ii (+ i mmax))
(j (+ ii prev) (+ j mmax)))
((>= jj pow))
(let ((tc (* wc (data j))))
(set! (data j) (- (data i) tc))
(set! (data i) (+ (data i) tc))))
(set! wc (* wc wpc)))
(set! prev mmax))))
data)
;;; > (cfft! (list 0.0 1+i 0.0 0.0))
;;; (1+1i -1+1i -1-1i 1-1i)
;;;
;;; > (cfft! (vector 0.0 1+i 0.0 0.0))
;;; #(1+1i -1+1i -1-1i 1-1i)
;;;
;;; ;; check against built-in FFT
;;; > (let ((rl (vct 0.0 1.0 0.0 0.0))
;;; (im (vct 0.0 1.0 0.0 0.0)))
;;; (mus-fft rl im)
;;; (map make-rectangular (vct->list rl) (vct->list im)))
;;; (1+1i -1+1i -1-1i 1-1i)
|#
|