This file is indexed.

/usr/share/snd/pvoc.scm is in snd 11.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
;;; versions of the Moore-Klingbeil-Trevisani-Edwards phase-vocoder

(provide 'snd-pvoc.scm)
(if (not (provided? 'snd-snd7.scm)) (load "snd7.scm"))

(define* (make-pvocoder fftsize overlap interp analyze edit synthesize)
  "(make-pvocoder fftsize overlap interp analyze edit synthesize) makes a new (Scheme-based, not CLM) phase-vocoder generator"

  (let* ((N (or fftsize 512))
	 (N2 (floor (/ N 2)))
	 (hop (or overlap 4))
	 (D (floor (/ N hop))))

    ;; basic: fftsize overlap
    ;;  everything else via closures (interp in particular)
    ;;  pv: counter ("output" here)
    ;;      interp
    ;;      fftsize ("N"), hop ("D")
    ;;      in-counter ("filptr")
    ;;      hamming window scaled
    ;;      slot for in-coming data ("in-data") (created on first call)
    ;;      vcts: ampinc amp freqinc phaseinc phase lastphase
    ;;      funcs: analysize, edit, resynthesize

    (list 
     interp                        ;output
     interp                        ;interp
     0                             ;filptr
     N                             ;N
     (let ((window (make-fft-window hamming-window fftsize)))
       (vct-scale! window (/ 2.0 (* 0.54 fftsize))) ;den = hamming window integrated
       window)                     ; window
     D                             ;D
     #f                            ;in-data (created in pvocoder gen)
     (make-vct fftsize)            ;ampinc
     (make-vct fftsize)            ;freqs
     (make-vct N2)                 ;amps
     (make-vct N2)                 ;phaseinc
     (make-vct N2)                 ;phases
     (make-vct N2)                 ;lastphaseinc
     analyze
     edit
     synthesize)))

;;; pvocoder generator: 
;;     input data func
;;     analysis func with fallback
;;     editing func with fallback 
;;     resynthesis func with fallback

(define (pvocoder pv input)
  "(pvocoder pv input) is the phase-vocoder generator associated with make-pvocoder"

  ;; pvocoder list accessors
  (define (pvoc-output pv) (list-ref pv 0))
  (define (set-pvoc-output pv val) (list-set! pv 0 val))
  (define (pvoc-interp pv) (list-ref pv 1))
  (define (set-pvoc-interp pv val) (list-set! pv 1 val))
  (define (pvoc-filptr pv) (list-ref pv 2))
  (define (set-pvoc-filptr pv val) (list-set! pv 2 val))
  (define (pvoc-N pv) (list-ref pv 3))
  (define (pvoc-window pv) (list-ref pv 4))
  (define (pvoc-D pv) (list-ref pv 5))
  (define (pvoc-in-data pv) (list-ref pv 6))
  (define (set-pvoc-in-data pv val) (list-set! pv 6 val))
  (define (pvoc-ampinc pv) (list-ref pv 7))
  (define (pvoc-freqs pv) (list-ref pv 8))
  (define (pvoc-amps pv) (list-ref pv 9))
  (define (pvoc-phaseinc pv) (list-ref pv 10))
  (define (pvoc-phases pv) (list-ref pv 11))
  (define (pvoc-lastphase pv) (list-ref pv 12))
  (define (pvoc-analyze pv) (list-ref pv 13))
  (define (pvoc-edit pv) (list-ref pv 14))
  (define (pvoc-synthesize pv) (list-ref pv 15))

  (let* ((pi2 (* 2 pi)))

    (if (>= (pvoc-output pv) (pvoc-interp pv))
	;; get next block of amp/phase info
	(let* ((N (pvoc-N pv))
	       (D (pvoc-D pv))
	       (amps (pvoc-ampinc pv))
	       (freqs (pvoc-freqs pv))
	       (filptr (pvoc-filptr pv)))

	  (if (pvoc-analyze pv)
	      ((pvoc-analyze pv) pv input)
	      ;; if no analysis func:
	      (begin
		(vct-fill! freqs 0.0)
		(set-pvoc-output pv 0)
		(if (not (pvoc-in-data pv))
		    (begin
		      (set-pvoc-in-data pv (make-vct N))
		      (vct-map! (pvoc-in-data pv) input))
		    (let ((indat (pvoc-in-data pv)))
		      ;; extra loop here since I find the optimized case confusing (we could dispense with the data move)
		      (vct-move! indat 0 D)
		      (do ((i (- N D) (+ 1 i)))
			  ((= i N))
			(vct-set! indat i (input)))))
		(let ((buf (modulo filptr N)))
		  (if (= buf 0)
		      (begin
			(vct-fill! amps 0.0)
			(vct-add! amps (pvoc-in-data pv))
			(vct-multiply! amps (pvoc-window pv)))
		      (begin
			(do ((k 0 (+ 1 k)))
			    ((= k N))
			  (vct-set! amps buf (* (vct-ref (pvoc-window pv) k) (vct-ref (pvoc-in-data pv) k)))
			  (set! buf (+ 1 buf))
			  (if (= buf N) (set! buf 0))))))
		(set-pvoc-filptr pv (+ filptr D))
		(mus-fft amps freqs N 1)
		(rectangular->polar amps freqs)))

	  (if (pvoc-edit pv)
	      ((pvoc-edit pv) pv)
	      (begin
		;; if no editing func:
		(do ((k 0 (+ 1 k))
		     (pscl (/ 1.0 D))
		     (kscl (/ pi2 N)))
		    ((= k (floor (/ N 2))))
		  (let ((phasediff (- (vct-ref freqs k) (vct-ref (pvoc-lastphase pv) k))))
		    (vct-set! (pvoc-lastphase pv) k (vct-ref freqs k))
		    (if (> phasediff pi) (do () ((<= phasediff pi)) (set! phasediff (- phasediff pi2))))
		    (if (< phasediff (- pi)) (do () ((>= phasediff (- pi))) (set! phasediff (+ phasediff pi2))))
		    (vct-set! freqs k (+ (* pscl phasediff) (* k kscl)))))))

	  (let ((scl (/ 1.0 (pvoc-interp pv))))
	    (vct-subtract! amps (pvoc-amps pv))
	    (vct-subtract! freqs (pvoc-phaseinc pv))
	    (vct-scale! amps scl)
	    (vct-scale! freqs scl)
	    )))

    (set-pvoc-output pv (+ 1 (pvoc-output pv)))

    (if (pvoc-synthesize pv)
	((pvoc-synthesize pv) pv)
        ;; if no synthesis func:
	;; synthesize next sample
	(begin
	  (vct-add! (pvoc-amps pv) (pvoc-ampinc pv))
	  (vct-add! (pvoc-phaseinc pv) (pvoc-freqs pv))
	  (vct-add! (pvoc-phases pv) (pvoc-phaseinc pv))
	  (sine-bank (pvoc-amps pv) (pvoc-phases pv))))
    ))

;;;   (let* ((ind (open-sound "oboe.snd"))
;;;	     (pv (make-pvocoder 256 4 64))
;;;	     (rd (make-sampler 0)))
;;;	(map-channel (lambda (y) (pvocoder pv (lambda () (rd)))))


#|
;;; ---------------- same thing using phase-vocoder gen

(define test-pv-1
  (lambda (freq)
    (let ((pv (make-phase-vocoder #f
				  512 4 128 1.0
				  #f ;no change to analysis
				  #f ;no change to edits
				  #f ;no change to synthesis
				  ))
	  (reader (make-sampler 0)))
      (map-channel (lambda (val)
		     (phase-vocoder pv (lambda (dir) 
					 (next-sample reader)))))
      (free-sampler reader))))

(define test-pv-2
  (lambda (freq)
    (let ((pv (make-phase-vocoder #f
				  512 4 128 freq
				  #f ;no change to analysis
				  #f
				  #f ; no change to synthesis
				  ))
	  (reader (make-sampler 0)))
      (map-channel (lambda (val)
		     (phase-vocoder pv (lambda (dir) 
					 (next-sample reader)))))
      (free-sampler reader))))

(define test-pv-3
  (lambda (time)
    (let* ((pv (make-phase-vocoder #f
				   512 4 (floor (* 128 time)) 1.0
				   #f ;no change to analysis
				   #f ;no change to edits
				   #f ;no change to synthesis
				   ))
	   (reader (make-sampler 0))
	   (len (floor (* time (frames))))
	   (data (make-vct len))
	   )
      (vct-map! data
		(lambda ()
		  (phase-vocoder pv (lambda (dir) (next-sample reader)))))
      (free-sampler reader)
      (vct->channel data 0 len))))

(define test-pv-4
  (lambda (gate)
    (let ((pv (make-phase-vocoder #f
				  512 4 128 1.0
				  #f ;no change to analysis
				  (lambda (v)
				    (let ((N (mus-length v)))
				      (do ((i 0 (+ 1 i)))
					  ((= i N))
					(if (< (vct-ref (phase-vocoder-amp-increments v) i) gate)
					    (vct-set! (phase-vocoder-amp-increments v) i 0.0)))
				      #t))
				  #f ;no change to synthesis
				  ))
	  (reader (make-sampler 0))
	  )
      (map-channel (lambda (val)
		     (phase-vocoder pv (lambda (dir) 
					 (next-sample reader)))))
      (free-sampler reader))))
|#


;;; -------- another version of the phase vocoder --------

(define pvoc
  (lambda* (:key
	   (fftsize 512) (overlap 4) (time 1.0)
	   (pitch 1.0) (gate 0.0) (hoffset 0.0)
	   (snd 0) (chn 0))
    "(pvoc &key fftsize overlap time pitch gate hoffset) applies the phase vocoder
  algorithm to the current sound (i.e. fft analysis, oscil bank resynthesis). 'pitch'
  specifies the pitch transposition ratio, 'time' - specifies the time dilation ratio,
  'gate' specifies a resynthesis gate in dB (partials with amplitudes lower than
  the gate value will not be synthesized), 'hoffset is a pitch offset in Hz."

    (let* ((len (frames))
	   (filptr 0)           ; index into the file
	   (pi2 (* 2 pi))       ; handy constant
	   (sr (srate))
	   (N fftsize)          ; fft size
	   (N2 (floor (/ N 2)))
	   ;; (Nw fftsize) ;; window size -- currently restricted to the fftsize
	   (D (floor (/ fftsize overlap))) ; decimation factor (how often do we take an fft)
	   (interp (* (floor (/ fftsize overlap)) time)) ; interpolation factor how often do we synthesize
	   ;; take a resynthesis gate specificed in dB, convert to linear amplitude
	   (syngate (if (= 0.0 gate) 0.0 (expt 10 (/ (- (abs gate)) 20))))
	   (poffset (hz->radians hoffset))
	   (window (make-fft-window hamming-window fftsize))
	   (fdr (make-vct N))     ; buffer for real fft data
	   (fdi (make-vct N))     ; buffer for imaginary fft data
	   (lastphase (make-vct N2)) ;; last phase change
	   (lastamp (make-vct N2)) ;; last sampled amplitude
	   (lastfreq (make-vct N2)) ;; last sampled frequency
	   (ampinc (make-vct N2)) ;; amplitude interpolation increment
	   (freqinc (make-vct N2)) ;; frequency interpolation increments
	   ;; expresses the fundamental in terms of radians per output sample
	   (fundamental (/ pi2 N))
	   (output interp)      ; count of samples that have been output
	   (resynth-oscils (make-vector N2))  ; synthesis oscillators
	   ;; (nextpct 10.0)       ; how often to print out the percentage complete message
	   (outlen (floor (* time len)))
	   (out-data (make-vct (max len outlen)))
	   (in-data (channel->vct 0 (* N 2) snd chn))
	   (in-data-beg 0))
      ;; setup oscillators
      (do ((i 0 (+ 1 i)))
	  ((= i N2))
	(vector-set! resynth-oscils i (make-oscil :frequency 0)))
      (vct-scale! window (/ 2.0 (* 0.54 fftsize))) ;den = hamming window integrated
      (call-with-exit
       (lambda (break)
	 (do ((i 0 (+ 1 i)))
	     ((>= i outlen))
	   (if (>= output interp) ;; if all the samples have been output then do the next frame
	       (let ((buffix (modulo filptr N)))
					; buffix is the index into the input buffer
					; it wraps around circularly as time increases in the input
		 (set! output 0)       ; reset the output sample counter
		 ;; save the old amplitudes and frequencies
		 (vct-fill! lastamp 0.0)
		 (vct-fill! lastfreq 0.0)
		 (vct-add! lastamp fdr)
		 (vct-add! lastfreq fdi)
		 (do ((k 0 (+ 1 k)))
		     ((= k N))
		   ;; apply the window and then stuff into the input array
		   (vct-set! fdr buffix (* (vct-ref window k) (vct-ref in-data (- filptr in-data-beg))))
		   (set! filptr (+ 1 filptr))
		   ;; increment the buffer index with wrap around
		   (set! buffix (+ 1 buffix))
		   (if (>= buffix N) (set! buffix 0)))
		 ;; rewind the file for the next hop
		 (set! filptr (- filptr (- N D)))
		 (if (> filptr (+ in-data-beg N))
		     (begin
		       (set! in-data-beg filptr)
		       (set! in-data (channel->vct in-data-beg (* N 2) snd chn))))
		 ;; no imaginary component input so zero out fdi
		 (vct-fill! fdi 0.0)
		 ;; compute the fft
		 (mus-fft fdr fdi N 1)
		 ;; now convert into magnitude and interpolated frequency
		 (do ((k 0 (+ 1 k)))
		     ((= k N2))
		   (let* ((a (vct-ref fdr k))
			  (b (vct-ref fdi k))
			  (mag (* (sqrt (+ (* a a) (* b b)))))
			  (phase 0)
			  (phasediff 0))
		     (vct-set! fdr k mag)    ;; current amp stored in fdr
		     ;; mag is always positive
		     ;; if it is zero then the phase difference is zero
		     (if (> mag 0)
			 (begin
			  (set! phase (- (atan b a)))
			  (set! phasediff (- phase (vct-ref lastphase k)))
			  (vct-set! lastphase k phase)
			  ;; frequency wrapping from Moore p. 254
			  (if (> phasediff pi) (do () ((<= phasediff pi)) (set! phasediff (- phasediff pi2))))
			  (if (< phasediff (- pi)) (do () ((>= phasediff (- pi))) (set! phasediff (+ phasediff pi2))))))
		     ;; current frequency stored in fdi
		     ;; scale by the pitch transposition
		     (vct-set! fdi k 
			       (* pitch (+ (/ (* phasediff sr) (* D sr))
					   (* k fundamental)
					   poffset)))
		     ;; resynthesis gating
		     (if (< (vct-ref fdr k) syngate) (vct-set! fdr k 0.0))
		     ;; take (vct-ref lastamp k) and count up to (vct-ref fdr k)
		     ;; interpolating by ampinc
		     (vct-set! ampinc k (/ (- (vct-ref fdr k) (vct-ref lastamp k)) interp))
		     ;; take (vct-ref lastfreq k) and count up to (vct-ref fdi k)
		     ;; interpolating by freqinc
		     (vct-set! freqinc k (/ (- (vct-ref fdi k) (vct-ref lastfreq k)) interp))))))
	   ;; loop over the partials interpolate frequency and amplitude
	   (vct-add! lastamp ampinc)
	   (vct-add! lastfreq freqinc)
	   (vct-set! out-data i (oscil-bank lastamp resynth-oscils lastfreq))
	   (set! output (+ 1 output)))
	 (vct->channel out-data 0 (max len outlen)))))))