/usr/share/pyshared/spambayes/storage.py is in spambayes 1.1a6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 | #! /usr/bin/env python
'''storage.py - Spambayes database management framework.
Classes:
PickledClassifier - Classifier that uses a pickle db
DBDictClassifier - Classifier that uses a shelve db
PGClassifier - Classifier that uses postgres
mySQLClassifier - Classifier that uses mySQL
CBDClassifier - Classifier that uses CDB
ZODBClassifier - Classifier that uses ZODB
ZEOClassifier - Classifier that uses ZEO
Trainer - Classifier training observer
SpamTrainer - Trainer for spam
HamTrainer - Trainer for ham
Abstract:
*Classifier are subclasses of Classifier (classifier.Classifier)
that add automatic state store/restore function to the Classifier class.
All SQL based classifiers are subclasses of SQLClassifier, which is a
subclass of Classifier.
PickledClassifier is a Classifier class that uses a cPickle
datastore. This database is relatively small, but slower than other
databases.
DBDictClassifier is a Classifier class that uses a database
store.
Trainer is concrete class that observes a Corpus and trains a
Classifier object based upon movement of messages between corpora When
an add message notification is received, the trainer trains the
database with the message, as spam or ham as appropriate given the
type of trainer (spam or ham). When a remove message notification
is received, the trainer untrains the database as appropriate.
SpamTrainer and HamTrainer are convenience subclasses of Trainer, that
initialize as the appropriate type of Trainer
To Do:
o Suggestions?
'''
# This module is part of the spambayes project, which is Copyright 2002-2007
# The Python Software Foundation and is covered by the Python Software
# Foundation license.
### Note to authors - please direct all prints to sys.stderr. In some
### situations prints to sys.stdout will garble the message (e.g., in
### hammiefilter).
__author__ = ("Neale Pickett <neale@woozle.org>,"
"Tim Stone <tim@fourstonesExpressions.com>")
__credits__ = "All the spambayes contributors."
import os
import sys
import time
import types
import tempfile
from spambayes import classifier
from spambayes.Options import options, get_pathname_option
import errno
import shelve
from spambayes import cdb
from spambayes import dbmstorage
from spambayes.safepickle import pickle_write, pickle_read
# Make shelve use binary pickles by default.
oldShelvePickler = shelve.Pickler
def binaryDefaultPickler(f, binary=1):
return oldShelvePickler(f, binary)
shelve.Pickler = binaryDefaultPickler
PICKLE_TYPE = 1
NO_UPDATEPROBS = False # Probabilities will not be autoupdated with training
UPDATEPROBS = True # Probabilities will be autoupdated with training
class PickledClassifier(classifier.Classifier):
'''Classifier object persisted in a pickle'''
def __init__(self, db_name):
classifier.Classifier.__init__(self)
self.db_name = db_name
self.load()
def load(self):
'''Load this instance from the pickle.'''
# This is a bit strange, because the loading process
# creates a temporary instance of PickledClassifier, from which
# this object's state is copied. This is a nuance of the way
# that pickle does its job.
# Tim sez: that's because this is an unusual way to use pickle.
# Note that nothing non-trivial is actually copied, though:
# assignment merely copies a pointer. The actual wordinfo etc
# objects are shared between tempbayes and self, and the tiny
# tempbayes object is reclaimed when load() returns.
if options["globals", "verbose"]:
print >> sys.stderr, 'Loading state from', self.db_name, 'pickle'
try:
tempbayes = pickle_read(self.db_name)
except:
tempbayes = None
if tempbayes:
# Copy state from tempbayes. The use of our base-class
# __setstate__ is forced, in case self is of a subclass of
# PickledClassifier that overrides __setstate__.
classifier.Classifier.__setstate__(self,
tempbayes.__getstate__())
if options["globals", "verbose"]:
print >> sys.stderr, ('%s is an existing pickle,'
' with %d ham and %d spam') \
% (self.db_name, self.nham, self.nspam)
else:
# new pickle
if options["globals", "verbose"]:
print >> sys.stderr, self.db_name,'is a new pickle'
self.wordinfo = {}
self.nham = 0
self.nspam = 0
def store(self):
'''Store self as a pickle'''
if options["globals", "verbose"]:
print >> sys.stderr, 'Persisting', self.db_name, 'as a pickle'
pickle_write(self.db_name, self, PICKLE_TYPE)
def close(self):
# we keep no resources open - nothing to do
pass
# Values for our changed words map
WORD_DELETED = "D"
WORD_CHANGED = "C"
STATE_KEY = 'saved state'
class DBDictClassifier(classifier.Classifier):
'''Classifier object persisted in a caching database'''
def __init__(self, db_name, mode='c'):
'''Constructor(database name)'''
classifier.Classifier.__init__(self)
self.statekey = STATE_KEY
self.mode = mode
self.db_name = db_name
self.load()
def close(self):
# Close our underlying database. Better not assume all databases
# have close functions!
def noop():
pass
getattr(self.db, "close", noop)()
getattr(self.dbm, "close", noop)()
# should not be a need to drop the 'dbm' or 'db' attributes.
# but we do anyway, because it makes it more clear what has gone
# wrong if we try to keep using the database after we have closed
# it.
if hasattr(self, "db"):
del self.db
if hasattr(self, "dbm"):
del self.dbm
if options["globals", "verbose"]:
print >> sys.stderr, 'Closed', self.db_name, 'database'
def load(self):
'''Load state from database'''
if options["globals", "verbose"]:
print >> sys.stderr, 'Loading state from', self.db_name, 'database'
self.dbm = dbmstorage.open(self.db_name, self.mode)
self.db = shelve.Shelf(self.dbm)
if self.db.has_key(self.statekey):
t = self.db[self.statekey]
if t[0] != classifier.PICKLE_VERSION:
raise ValueError("Can't unpickle -- version %s unknown" % t[0])
(self.nspam, self.nham) = t[1:]
if options["globals", "verbose"]:
print >> sys.stderr, ('%s is an existing database,'
' with %d spam and %d ham') \
% (self.db_name, self.nspam, self.nham)
else:
# new database
if options["globals", "verbose"]:
print >> sys.stderr, self.db_name,'is a new database'
self.nspam = 0
self.nham = 0
self.wordinfo = {}
self.changed_words = {} # value may be one of the WORD_ constants
def store(self):
'''Place state into persistent store'''
if options["globals", "verbose"]:
print >> sys.stderr, 'Persisting', self.db_name,
print >> sys.stderr, 'state in database'
# Iterate over our changed word list.
# This is *not* thread-safe - another thread changing our
# changed_words could mess us up a little. Possibly a little
# lock while we copy and reset self.changed_words would be appropriate.
# For now, just do it the naive way.
for key, flag in self.changed_words.iteritems():
if flag is WORD_CHANGED:
val = self.wordinfo[key]
self.db[key] = val.__getstate__()
elif flag is WORD_DELETED:
assert key not in self.wordinfo, \
"Should not have a wordinfo for words flagged for delete"
# Word may be deleted before it was ever written.
try:
del self.db[key]
except KeyError:
pass
else:
raise RuntimeError, "Unknown flag value"
# Reset the changed word list.
self.changed_words = {}
# Update the global state, then do the actual save.
self._write_state_key()
self.db.sync()
def _write_state_key(self):
self.db[self.statekey] = (classifier.PICKLE_VERSION,
self.nspam, self.nham)
def _post_training(self):
"""This is called after training on a wordstream. We ensure that the
database is in a consistent state at this point by writing the state
key."""
self._write_state_key()
def _wordinfoget(self, word):
if isinstance(word, unicode):
word = word.encode("utf-8")
try:
return self.wordinfo[word]
except KeyError:
ret = None
if self.changed_words.get(word) is not WORD_DELETED:
r = self.db.get(word)
if r:
ret = self.WordInfoClass()
ret.__setstate__(r)
self.wordinfo[word] = ret
return ret
def _wordinfoset(self, word, record):
# "Singleton" words (i.e. words that only have a single instance)
# take up more than 1/2 of the database, but are rarely used
# so we don't put them into the wordinfo cache, but write them
# directly to the database
# If the word occurs again, then it will be brought back in and
# never be a singleton again.
# This seems to reduce the memory footprint of the DBDictClassifier by
# as much as 60%!!! This also has the effect of reducing the time it
# takes to store the database
if isinstance(word, unicode):
word = word.encode("utf-8")
if record.spamcount + record.hamcount <= 1:
self.db[word] = record.__getstate__()
try:
del self.changed_words[word]
except KeyError:
# This can happen if, e.g., a new word is trained as ham
# twice, then untrained once, all before a store().
pass
try:
del self.wordinfo[word]
except KeyError:
pass
else:
self.wordinfo[word] = record
self.changed_words[word] = WORD_CHANGED
def _wordinfodel(self, word):
if isinstance(word, unicode):
word = word.encode("utf-8")
del self.wordinfo[word]
self.changed_words[word] = WORD_DELETED
def _wordinfokeys(self):
wordinfokeys = self.db.keys()
del wordinfokeys[wordinfokeys.index(self.statekey)]
return wordinfokeys
class SQLClassifier(classifier.Classifier):
def __init__(self, db_name):
'''Constructor(database name)'''
classifier.Classifier.__init__(self)
self.statekey = STATE_KEY
self.db_name = db_name
self.load()
def close(self):
'''Release all database resources'''
# As we (presumably) aren't as constrained as we are by file locking,
# don't force sub-classes to override
pass
def load(self):
'''Load state from the database'''
raise NotImplementedError, "must be implemented in subclass"
def store(self):
'''Save state to the database'''
self._set_row(self.statekey, self.nspam, self.nham)
def cursor(self):
'''Return a new db cursor'''
raise NotImplementedError, "must be implemented in subclass"
def fetchall(self, c):
'''Return all rows as a dict'''
raise NotImplementedError, "must be implemented in subclass"
def commit(self, c):
'''Commit the current transaction - may commit at db or cursor'''
raise NotImplementedError, "must be implemented in subclass"
def create_bayes(self):
'''Create a new bayes table'''
c = self.cursor()
c.execute(self.table_definition)
self.commit(c)
def _get_row(self, word):
'''Return row matching word'''
try:
c = self.cursor()
c.execute("select * from bayes"
" where word=%s",
(word,))
except Exception, e:
print >> sys.stderr, "error:", (e, word)
raise
rows = self.fetchall(c)
if rows:
return rows[0]
else:
return {}
def _set_row(self, word, nspam, nham):
c = self.cursor()
if self._has_key(word):
c.execute("update bayes"
" set nspam=%s,nham=%s"
" where word=%s",
(nspam, nham, word))
else:
c.execute("insert into bayes"
" (nspam, nham, word)"
" values (%s, %s, %s)",
(nspam, nham, word))
self.commit(c)
def _delete_row(self, word):
c = self.cursor()
c.execute("delete from bayes"
" where word=%s",
(word,))
self.commit(c)
def _has_key(self, key):
c = self.cursor()
c.execute("select word from bayes"
" where word=%s",
(key,))
return len(self.fetchall(c)) > 0
def _wordinfoget(self, word):
if isinstance(word, unicode):
word = word.encode("utf-8")
row = self._get_row(word)
if row:
item = self.WordInfoClass()
item.__setstate__((row["nspam"], row["nham"]))
return item
else:
return self.WordInfoClass()
def _wordinfoset(self, word, record):
if isinstance(word, unicode):
word = word.encode("utf-8")
self._set_row(word, record.spamcount, record.hamcount)
def _wordinfodel(self, word):
if isinstance(word, unicode):
word = word.encode("utf-8")
self._delete_row(word)
def _wordinfokeys(self):
c = self.cursor()
c.execute("select word from bayes")
rows = self.fetchall(c)
return [r[0] for r in rows]
class PGClassifier(SQLClassifier):
'''Classifier object persisted in a Postgres database'''
def __init__(self, db_name):
self.table_definition = ("create table bayes ("
" word bytea not null default '',"
" nspam integer not null default 0,"
" nham integer not null default 0,"
" primary key(word)"
")")
SQLClassifier.__init__(self, db_name)
def cursor(self):
return self.db.cursor()
def fetchall(self, c):
return c.dictfetchall()
def commit(self, _c):
self.db.commit()
def load(self):
'''Load state from database'''
import psycopg
if options["globals", "verbose"]:
print >> sys.stderr, 'Loading state from', self.db_name, 'database'
self.db = psycopg.connect('dbname=' + self.db_name)
c = self.cursor()
try:
c.execute("select count(*) from bayes")
except psycopg.ProgrammingError:
self.db.rollback()
self.create_bayes()
if self._has_key(self.statekey):
row = self._get_row(self.statekey)
self.nspam = row["nspam"]
self.nham = row["nham"]
if options["globals", "verbose"]:
print >> sys.stderr, ('%s is an existing database,'
' with %d spam and %d ham') \
% (self.db_name, self.nspam, self.nham)
else:
# new database
if options["globals", "verbose"]:
print >> sys.stderr, self.db_name,'is a new database'
self.nspam = 0
self.nham = 0
class mySQLClassifier(SQLClassifier):
'''Classifier object persisted in a mySQL database
It is assumed that the database already exists, and that the mySQL
server is currently running.'''
def __init__(self, data_source_name):
self.table_definition = ("create table bayes ("
" word varchar(255) not null default '',"
" nspam integer not null default 0,"
" nham integer not null default 0,"
" primary key(word)"
");")
self.host = "localhost"
self.username = "root"
self.password = ""
db_name = "spambayes"
self.charset = None
source_info = data_source_name.split()
for info in source_info:
if info.startswith("host"):
self.host = info[5:]
elif info.startswith("user"):
self.username = info[5:]
elif info.startswith("pass"):
self.password = info[5:]
elif info.startswith("dbname"):
db_name = info[7:]
elif info.startswith("charset"):
self.charset = info[8:]
SQLClassifier.__init__(self, db_name)
def cursor(self):
return self.db.cursor()
def fetchall(self, c):
return c.fetchall()
def commit(self, _c):
self.db.commit()
def load(self):
'''Load state from database'''
import MySQLdb
if options["globals", "verbose"]:
print >> sys.stderr, 'Loading state from', self.db_name, 'database'
params = {
'host': self.host, 'db': self.db_name,
'user': self.username, 'passwd': self.password,
'charset': self.charset
}
self.db = MySQLdb.connect(**params)
c = self.cursor()
try:
c.execute("select count(*) from bayes")
except MySQLdb.ProgrammingError:
try:
self.db.rollback()
except MySQLdb.NotSupportedError:
# Server doesn't support rollback, so just assume that
# we can keep going and create the db. This should only
# happen once, anyway.
pass
self.create_bayes()
if self._has_key(self.statekey):
row = self._get_row(self.statekey)
self.nspam = int(row[1])
self.nham = int(row[2])
if options["globals", "verbose"]:
print >> sys.stderr, ('%s is an existing database,'
' with %d spam and %d ham') \
% (self.db_name, self.nspam, self.nham)
else:
# new database
if options["globals", "verbose"]:
print >> sys.stderr, self.db_name,'is a new database'
self.nspam = 0
self.nham = 0
def _wordinfoget(self, word):
if isinstance(word, unicode):
word = word.encode("utf-8")
row = self._get_row(word)
if row:
item = self.WordInfoClass()
item.__setstate__((row[1], row[2]))
return item
else:
return None
class CDBClassifier(classifier.Classifier):
"""A classifier that uses a CDB database.
A CDB wordinfo database is quite small and fast but is slow to update.
It is appropriate if training is done rarely (e.g. monthly or weekly
using archived ham and spam).
"""
def __init__(self, db_name):
classifier.Classifier.__init__(self)
self.db_name = db_name
self.statekey = STATE_KEY
self.load()
def _WordInfoFactory(self, counts):
# For whatever reason, WordInfo's cannot be created with
# constructor ham/spam counts, so we do the work here.
# Since we're doing the work, we accept the ham/spam count
# in the form of a comma-delimited string, as that's what
# we get.
ham, spam = counts.split(',')
wi = classifier.WordInfo()
wi.hamcount = int(ham)
wi.spamcount = int(spam)
return wi
# Stolen from sb_dbexpimp.py
# Heaven only knows what encoding non-ASCII stuff will be in
# Try a few common western encodings and punt if they all fail
def uunquote(self, s):
for encoding in ("utf-8", "cp1252", "iso-8859-1"):
try:
return unicode(s, encoding)
except UnicodeDecodeError:
pass
# punt
return s
def load(self):
if os.path.exists(self.db_name):
db = open(self.db_name, "rb")
data = dict(cdb.Cdb(db))
db.close()
self.nham, self.nspam = [int(i) for i in \
data[self.statekey].split(',')]
self.wordinfo = dict([(self.uunquote(k),
self._WordInfoFactory(v)) \
for k, v in data.iteritems() \
if k != self.statekey])
if options["globals", "verbose"]:
print >> sys.stderr, ('%s is an existing CDB,'
' with %d ham and %d spam') \
% (self.db_name, self.nham,
self.nspam)
else:
if options["globals", "verbose"]:
print >> sys.stderr, self.db_name, 'is a new CDB'
self.wordinfo = {}
self.nham = 0
self.nspam = 0
def store(self):
items = [(self.statekey, "%d,%d" % (self.nham, self.nspam))]
for word, wi in self.wordinfo.iteritems():
if isinstance(word, types.UnicodeType):
word = word.encode("utf-8")
items.append((word, "%d,%d" % (wi.hamcount, wi.spamcount)))
db = open(self.db_name, "wb")
cdb.cdb_make(db, items)
db.close()
def close(self):
# We keep no resources open - nothing to do.
pass
# If ZODB isn't available, then this class won't be useable, but we
# still need to be able to import this module. So we pretend that all
# is ok.
try:
from persistent import Persistent
except ImportError:
try:
from ZODB import Persistent
except ImportError:
Persistent = object
class _PersistentClassifier(classifier.Classifier, Persistent):
def __init__(self):
import ZODB
from BTrees.OOBTree import OOBTree
classifier.Classifier.__init__(self)
self.wordinfo = OOBTree()
class ZODBClassifier(object):
# Allow subclasses to override classifier class.
ClassifierClass = _PersistentClassifier
def __init__(self, db_name, mode='c'):
self.db_filename = db_name
self.db_name = os.path.basename(db_name)
self.closed = True
self.mode = mode
self.load()
def __getattr__(self, att):
# We pretend that we are a classifier subclass.
if hasattr(self, "classifier") and hasattr(self.classifier, att):
return getattr(self.classifier, att)
raise AttributeError("ZODBClassifier object has no attribute '%s'"
% (att,))
def __setattr__(self, att, value):
# For some attributes, we change the classifier instead.
if att in ("nham", "nspam") and hasattr(self, "classifier"):
setattr(self.classifier, att, value)
else:
object.__setattr__(self, att, value)
def create_storage(self):
from ZODB.FileStorage import FileStorage
try:
self.storage = FileStorage(self.db_filename,
read_only=self.mode=='r')
except IOError:
print >> sys.stderr, ("Could not create FileStorage from",
self.db_filename)
raise
def load(self):
'''Load state from database'''
import ZODB
if options["globals", "verbose"]:
print >> sys.stderr, "Loading state from %s (%s) database" % \
(self.db_filename, self.db_name)
# If we are not closed, then we need to close first before we
# reload.
if not self.closed:
self.close()
self.create_storage()
self.DB = ZODB.DB(self.storage, cache_size=10000)
self.conn = self.DB.open()
root = self.conn.root()
self.classifier = root.get(self.db_name)
if self.classifier is None:
# There is no classifier, so create one.
if options["globals", "verbose"]:
print >> sys.stderr, self.db_name, 'is a new ZODB'
self.classifier = root[self.db_name] = self.ClassifierClass()
else:
if options["globals", "verbose"]:
print >> sys.stderr, '%s is an existing ZODB, with %d ' \
'ham and %d spam' % (self.db_name, self.nham,
self.nspam)
self.closed = False
def store(self):
'''Place state into persistent store'''
try:
import ZODB.Transaction
except ImportError:
import transaction
commit = transaction.commit
abort = transaction.abort
else:
commit = ZODB.Transaction.get_transaction().commit
abort = ZODB.Transaction.get_transaction().abort
from ZODB.POSException import ConflictError
try:
from ZODB.POSException import TransactionFailedError
except:
from ZODB.POSException import TransactionError as TransactionFailedError
from ZODB.POSException import ReadOnlyError
assert not self.closed, "Can't store a closed database"
if options["globals", "verbose"]:
print >> sys.stderr, 'Persisting', self.db_name, 'state in database'
try:
commit()
except ConflictError:
# We'll save it next time, or on close. It'll be lost if we
# hard-crash, but that's unlikely, and not a particularly big
# deal.
if options["globals", "verbose"]:
print >> sys.stderr, "Conflict on commit", self.db_name
abort()
except TransactionFailedError:
# Saving isn't working. Try to abort, but chances are that
# restarting is needed.
print >> sys.stderr, "Storing failed. Need to restart.", \
self.db_name
abort()
except ReadOnlyError:
print >> sys.stderr, "Can't store transaction to read-only db."
abort()
def close(self, pack=True, retain_backup=True):
# Ensure that the db is saved before closing. Alternatively, we
# could abort any waiting transaction. We need to do *something*
# with it, though, or it will be still around after the db is
# closed and cause problems. For now, saving seems to make sense
# (and we can always add abort methods if they are ever needed).
if self.mode != 'r':
self.store()
# We don't make any use of the 'undo' capabilities of the
# FileStorage at the moment, so might as well pack the database
# each time it is closed, to save as much disk space as possible.
# Pack it up to where it was 'yesterday'.
if pack and self.mode != 'r':
self.pack(time.time()-60*60*24, retain_backup)
# Do the closing.
self.DB.close()
self.storage.close()
# Ensure that we cannot continue to use this classifier.
delattr(self, "classifier")
self.closed = True
if options["globals", "verbose"]:
print >> sys.stderr, 'Closed', self.db_name, 'database'
def pack(self, t, retain_backup=True):
"""Like FileStorage pack(), but optionally remove the .old
backup file that is created. Often for our purposes we do
not care about being able to recover from this. Also
ignore the referencesf parameter, which appears to not do
anything."""
if hasattr(self.storage, "pack"):
self.storage.pack(t, None)
if not retain_backup:
old_name = self.db_filename + ".old"
if os.path.exists(old_name):
os.remove(old_name)
class ZEOClassifier(ZODBClassifier):
def __init__(self, data_source_name):
source_info = data_source_name.split()
self.host = "localhost"
self.port = None
db_name = "SpamBayes"
self.username = ''
self.password = ''
self.storage_name = '1'
self.wait = None
self.wait_timeout = None
for info in source_info:
if info.startswith("host"):
try:
# ZEO only accepts strings, not unicode.
self.host = str(info[5:])
except UnicodeDecodeError, e:
print >> sys.stderr, "Couldn't set host", \
info[5:], str(e)
elif info.startswith("port"):
self.port = int(info[5:])
elif info.startswith("dbname"):
db_name = info[7:]
elif info.startswith("user"):
self.username = info[5:]
elif info.startswith("pass"):
self.password = info[5:]
elif info.startswith("storage_name"):
self.storage_name = info[13:]
elif info.startswith("wait_timeout"):
self.wait_timeout = int(info[13:])
elif info.startswith("wait"):
self.wait = info[5:] == "True"
ZODBClassifier.__init__(self, db_name)
def create_storage(self):
from ZEO.ClientStorage import ClientStorage
if self.port:
addr = self.host, self.port
else:
addr = self.host
if options["globals", "verbose"]:
print >> sys.stderr, "Connecting to ZEO server", addr, \
self.username, self.password
# Use persistent caches, with the cache in the temp directory.
# If the temp directory is cleared out, we lose the cache, but
# that doesn't really matter, and we should always be able to
# write to it.
try:
self.storage = ClientStorage(addr, name=self.db_name,
read_only=self.mode=='r',
username=self.username,
client=self.db_name,
wait=self.wait,
wait_timeout=self.wait_timeout,
storage=self.storage_name,
var=tempfile.gettempdir(),
password=self.password)
except ValueError:
# Probably bad cache; remove it and try without the cache.
try:
os.remove(os.path.join(tempfile.gettempdir(),
self.db_name + \
self.storage_name + ".zec"))
except OSError:
pass
self.storage = ClientStorage(addr, name=self.db_name,
read_only=self.mode=='r',
username=self.username,
wait=self.wait,
wait_timeout=self.wait_timeout,
storage=self.storage_name,
password=self.password)
def is_connected(self):
return self.storage.is_connected()
# Flags that the Trainer will recognise. These should be or'able integer
# values (i.e. 1, 2, 4, 8, etc.).
NO_TRAINING_FLAG = 1
class Trainer(object):
'''Associates a Classifier object and one or more Corpora, \
is an observer of the corpora'''
def __init__(self, bayes, is_spam, updateprobs=NO_UPDATEPROBS):
'''Constructor(Classifier, is_spam(True|False),
updateprobs(True|False)'''
self.bayes = bayes
self.is_spam = is_spam
self.updateprobs = updateprobs
def onAddMessage(self, message, flags=0):
'''A message is being added to an observed corpus.'''
if not (flags & NO_TRAINING_FLAG):
self.train(message)
def train(self, message):
'''Train the database with the message'''
if options["globals", "verbose"]:
print >> sys.stderr, 'training with ', message.key()
self.bayes.learn(message.tokenize(), self.is_spam)
message.setId(message.key())
message.RememberTrained(self.is_spam)
def onRemoveMessage(self, message, flags=0):
'''A message is being removed from an observed corpus.'''
# If a message is being expired from the corpus, we do
# *NOT* want to untrain it, because that's not what's happening.
# If this is the case, then flags will include NO_TRAINING_FLAG.
# There are no other flags we currently use.
if not (flags & NO_TRAINING_FLAG):
self.untrain(message)
def untrain(self, message):
'''Untrain the database with the message'''
if options["globals", "verbose"]:
print >> sys.stderr, 'untraining with', message.key()
self.bayes.unlearn(message.tokenize(), self.is_spam)
# self.updateprobs)
# can raise ValueError if database is fouled. If this is the case,
# then retraining is the only recovery option.
message.RememberTrained(None)
def trainAll(self, corpus):
'''Train all the messages in the corpus'''
for msg in corpus:
self.train(msg)
def untrainAll(self, corpus):
'''Untrain all the messages in the corpus'''
for msg in corpus:
self.untrain(msg)
class SpamTrainer(Trainer):
'''Trainer for spam'''
def __init__(self, bayes, updateprobs=NO_UPDATEPROBS):
'''Constructor'''
Trainer.__init__(self, bayes, True, updateprobs)
class HamTrainer(Trainer):
'''Trainer for ham'''
def __init__(self, bayes, updateprobs=NO_UPDATEPROBS):
'''Constructor'''
Trainer.__init__(self, bayes, False, updateprobs)
class NoSuchClassifierError(Exception):
def __init__(self, invalid_name):
Exception.__init__(self, invalid_name)
self.invalid_name = invalid_name
def __str__(self):
return repr(self.invalid_name)
class MutuallyExclusiveError(Exception):
def __str__(self):
return "Only one type of database can be specified"
# values are classifier class, True if it accepts a mode
# arg, and True if the argument is a pathname
_storage_types = {"dbm" : (DBDictClassifier, True, True),
"pickle" : (PickledClassifier, False, True),
"pgsql" : (PGClassifier, False, False),
"mysql" : (mySQLClassifier, False, False),
"cdb" : (CDBClassifier, False, True),
"zodb" : (ZODBClassifier, True, True),
"zeo" : (ZEOClassifier, False, False),
}
def open_storage(data_source_name, db_type="dbm", mode=None):
"""Return a storage object appropriate to the given parameters.
By centralizing this code here, all the applications will behave
the same given the same options.
"""
try:
klass, supports_mode, unused = _storage_types[db_type]
except KeyError:
raise NoSuchClassifierError(db_type)
try:
if supports_mode and mode is not None:
return klass(data_source_name, mode)
else:
return klass(data_source_name)
except dbmstorage.error, e:
if str(e) == "No dbm modules available!":
# We expect this to hit a fair few people, so warn them nicely,
# rather than just printing the trackback.
print >> sys.stderr, "\nYou do not have a dbm module available " \
"to use. You need to either use a pickle (see the FAQ)" \
", use Python 2.3 (or above), or install a dbm module " \
"such as bsddb (see http://sf.net/projects/pybsddb)."
sys.exit()
raise
# The different database types that are available.
# The key should be the command-line switch that is used to select this
# type, and the value should be the name of the type (which
# must be a valid key for the _storage_types dictionary).
_storage_options = { "-p" : "pickle",
"-d" : "dbm",
}
def database_type(opts, default_type=("Storage", "persistent_use_database"),
default_name=("Storage", "persistent_storage_file")):
"""Return the name of the database and the type to use. The output of
this function can be used as the db_type parameter for the open_storage
function, for example:
[standard getopts code]
db_name, db_type = database_type(opts)
storage = open_storage(db_name, db_type)
The selection is made based on the options passed, or, if the
appropriate options are not present, the options in the global
options object.
Currently supports:
-p : pickle
-d : dbm
"""
nm, typ = None, None
for opt, arg in opts:
if _storage_options.has_key(opt):
if nm is None and typ is None:
nm, typ = arg, _storage_options[opt]
else:
raise MutuallyExclusiveError()
if nm is None and typ is None:
typ = options[default_type]
try:
unused, unused, is_path = _storage_types[typ]
except KeyError:
raise NoSuchClassifierError(typ)
if is_path:
nm = get_pathname_option(*default_name)
else:
nm = options[default_name]
return nm, typ
def convert(old_name=None, old_type=None, new_name=None, new_type=None):
# The expected need is to convert the existing hammie.db dbm
# database to a hammie.fs ZODB database.
if old_name is None:
old_name = "hammie.db"
if old_type is None:
old_type = "dbm"
if new_name is None or new_type is None:
auto_name, auto_type = database_type({})
if new_name is None:
new_name = auto_name
if new_type is None:
new_type = auto_type
old_bayes = open_storage(old_name, old_type, 'r')
new_bayes = open_storage(new_name, new_type)
words = old_bayes._wordinfokeys()
try:
new_bayes.nham = old_bayes.nham
except AttributeError:
new_bayes.nham = 0
try:
new_bayes.nspam = old_bayes.nspam
except AttributeError:
new_bayes.nspam = 0
print >> sys.stderr, "Converting %s (%s database) to " \
"%s (%s database)." % (old_name, old_type, new_name, new_type)
print >> sys.stderr, "Database has %s ham, %s spam, and %s words." % \
(new_bayes.nham, new_bayes.nspam, len(words))
for word in words:
new_bayes._wordinfoset(word, old_bayes._wordinfoget(word))
old_bayes.close()
print >> sys.stderr, "Storing database, please be patient..."
new_bayes.store()
print >> sys.stderr, "Conversion complete."
new_bayes.close()
def ensureDir(dirname):
"""Ensure that the given directory exists - in other words, if it
does not exist, attempt to create it."""
try:
os.mkdir(dirname)
if options["globals", "verbose"]:
print >> sys.stderr, "Creating directory", dirname
except OSError, e:
if e.errno != errno.EEXIST:
raise
if __name__ == '__main__':
print >> sys.stderr, __doc__
|