/usr/share/tkgate/doc/gateHDL.html is in tkgate-doc 2.0~b10-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>TKGate User Documentation (HDL)</TITLE>
<META http-equiv="Content-Style-Type" content="text/css">
<link rel="stylesheet" href="tkgate.css" type="text/css">
</HEAD>
<BODY>
<H2><![section=4]>4. HDL Modules</H2>
<div class=rfig>
<a name=hdleditor>
<a href="fig/hdl_main.gif" type="image/gif" target=_blank><IMG SRC="fig/small-hdl_main.gif"><br>
(click to enlarge)</a><br><br>
<b>Figure <![figure:hdleditor]>4.1: HDL Editor Window</b>
</div>
Verilog is a widely-used textual language for specifying high-level
designs for simulation, synthesis and verification. It is an example
of a Hardware Description Language (HDL). It is quite versatile
allowing specification from CMOS transistor level, up to high-level
algorithmic specifications. TkGate supports a subset of the complete
Verilog specification. This chapter assumes that the reader is
already familiar with Verilog, and is not intended to be a complete
description of Verilog and its features. The reader is directed to
one of the many books on Verilog for this purpose. Instead, this
chapter is intended to document the features of Verilog that are
supported in TkGate's implementation.
<p>
The TkGate simulator, called Verga (VERilog simulator for GAte), is a
discrete time simulator with time advancing in discrete units called
"epochs". All delay must be an integer number of epochs. The Verga
simulator is normally used through the TkGate interface, but it can
also be run by itself directly on text Verilog files.
<a name=hdlmain>
<h3><![subsection]>4.1 HDL Editor Window</h3>
When you open a module that you have designated as an HDL module, the
HDL editor window will appear as shown in <a href="#hdleditor">Figure
<![#hdleditor]>4.1</a>. This window is essentially a text editor, and you can edit
the Verilog text directly in this window. The editing commands that
are available depend on which key-binding style you have selected
through the <a href="gateOptions.html#interface">Interface Options</a>
dialog box. Additional editor options controlling indentation and
colorization can be set through the <a href="gateOptions.html#hdl">HDL
Options</a> dialog box.
<h4><![subsubsection]>4.1.1 Net List</h4>
The nets in your module are shown in the "Nets" list in the lower left
corner. The nets list is updated when you open the module, but may
not display correctly if there are too many syntax errors in your
module.
<h4><![subsubsection]>4.1.2 Cut/Paste</h4>
<div class=rfig>
<a name=fullAdder>
<IMG SRC="fig/adder_circuit.gif"><br><br>
<b>Figure <![figure:fullAdder]>4.2: Full Adder</b>
</div>
You can use the cut <img class=tool src="fig/edit_cut.gif"> and paste
<img class=tool src="fig/edit_paste.gif"> tools to cut and paste
blocks of text that you select with the mouse. You can also drag the
selected block of text with the mouse to a new location if you have
that option enabled in the <a href="gateOptions.html#hdl">HDL
Options</a> dialog box.
<p>
It is also possible to paste chunks of gates that you have cut or
copied from a graphical module. When you paste such modules into a
text HDL module, TkGate will convert that chunk into Verilog netlist
format. For example, if you cut or copied the full adder shown in <a
href="#fullAdder">Figure 4.2</a>, pasting it into an HDL module would
result in the following Verilog code being generated:
<pre>
_GGOR2 #(6) g34 (.I0(w3), .I1(w4), .Z(co)); //: @(216,139) /sn:0 /w:[ 0 0 1 ] /eb:0
_GGAND2 #(6) g28 (.I0(a), .I1(b), .Z(w4)); //: @(150,141) /sn:0 /w:[ 5 5 1 ] /eb:0
//: joint g32 (w8) @(172, 65) /w:[ 1 -1 2 4 ]
//: SWITCH g27 (ci) @(56,26) /sn:0 /w:[ 0 ] /st:0
_GGAND2 #(6) g31 (.I0(w8), .I1(ci), .Z(w3)); //: @(175,110) /sn:0 /R:3 /w:[ 5 5 1 ] /eb:0
//: LED g15 (s) @(246,87) /sn:0 /R:2 /w:[ 0 ] /type:0
//: joint g29 (a) @(117, 62) /w:[ 2 -1 1 4 ]
//: SWITCH g25 (a) @(56,62) /sn:0 /w:[ 0 ] /st:0
//: LED g14 (co) @(245,122) /sn:0 /w:[ 0 ] /type:0
_GGXOR2 #(8) g24 (.I0(w8), .I1(ci), .Z(s)); //: @(213,68) /sn:0 /w:[ 0 3 1 ] /eb:0
_GGXOR2 #(8) g23 (.I0(a), .I1(b), .Z(w8)); //: @(138,65) /sn:0 /w:[ 3 3 3 ] /eb:0
//: SWITCH g26 (b) @(56,97) /sn:0 /w:[ 0 ] /st:1
//: joint g33 (ci) @(177, 70) /w:[ 2 1 -1 4 ]
//: joint g30 (b) @(111, 97) /w:[ -1 2 1 4 ]
</pre>
The generated code includes comments (positions starting with "//")
that are included as part of TkGate save files indicating the position
information for that circuit element. For circuit elements that do
not have direct Verilog counter-parts, such as the LEDs and switches,
pure comments are generated. In this example, the only actual Verilog
code generated is for the five gates. These are represented in terms
of TkGate cells with names beginning in "_GG".
<h4><![subsubsection]>4.1.3 Module Navigation</h4>
Just as you can open a module in the graphical editor by right
clicking on a module and selecting "<img class=tool
src=fig/blk_open.gif>Open", you can do the same thing with modules in
the Verilog text. Right click on the text with the name of the module
and select "<img class=tool src=fig/blk_open.gif>Open". Right click
and select "<img class=tool src=fig/blk_close.gif>Close" to close the
current module and reopen the next one on the stack. In TkGate, each
Verilog module should be opened individually. If you define more than
one module, or you change the name in the text description so that it
no longer matches the name of the module you have open, TkGate will
complain and give you options on how to resolve the problem.
<br style="clear: right;">
<a name=basics>
<h3><![subsection]>4.2 Verilog Basics</h3>
This section gives a very brief overview of Verilog.
<h4><![subsubsection]>4.2.1 Comments</h4>
Comments in Verilog follow the same rules as in C. Block comments are
enclosed between "<tt>/*</tt>" and "<tt>*/</tt>". Line comments begin with "<tt>//</tt>" and run
to the end of the line.
<h4><![subsubsection]>4.2.2 Literals</h4>
Verilog literals begin with a letter or a "<tt>_</tt>" character. The
subsequent characters can be letters, digits or "<tt>_</tt>" characters.
TkGate supports escaped literals, but their use is discouraged.
Escaped literals begin with a backslash "<tt>\</tt>" and continue to the next
white-space character. "<tt>\3+4jk</tt>", "<tt>\u8[]*9</tt>" and "<tt>\3342</tt>" are examples of
escaped literal.
<h4><![subsubsection]>4.2.3 Numbers and Values</h4>
<h5>Sized Numbers</h5>
Verilog numbers can be sized or unsized. Sized numbers have the
general form:<br><br>
<div>
<<i>size</i>>'<<i>base</i>><value>
</div><br>
where <<i>size</i>> is the number of bits, <<i>base</i>> is a
single letter indicating the number base, and <value> is the actual
value of the number. The possible bases are <tt>'d</tt> for decimal,
<tt>'h</tt> for hexadecimal, <tt>'o</tt> for octal and <tt>'b</tt> for
binary. Examples of sized numbers include:
<pre>
8'd42 // The 8-bit decimal number 42
16'h4fe3 // The 16-bit hexadecimal number 4fe3
8'b10010011 // The 8-bit binary number 10010011
</pre>
<h5>Unsized Numbers</h5>
Unsized numbers can be those that still include the base, or plain
numbers with an implied decimal base such as:
<pre>
83 // The decimal number 83
'd42 // The decimal number 42
'o53 // The octal number 53
'b11 // The binary number 11
</pre>
The actual size used to represent unsized numbers is machine
dependent, but is guaranteed to be at least 32 bit.
<h5>Special digit values</h5>
Binary, octal and hexadecimal number may also use a "<tt>z</tt>" digit
to indicate the floating or high impedance state in one or more
digits. Similarly an "<tt>x</tt>" or <tt>?</tt> digit can be used to
indicate an unknown value. Numbers including a base, may also contain
one or more "<tt>_</tt>" characters to help make the number more
readable. The "<tt>_</tt>" characters are ignore in interpreting the
value. Some examples are:
<pre>
12'b0101_0111_0010
16'h7zz3
1'bx
8'bx
</pre>
When the highest digit of a number is <tt>x</tt> or <tt>z</tt>, that
value is extended to the highest bit in the number. For example
<tt>8'bx</tt> is equivalent to <tt>8'bxxxxxxxx</tt> not
<tt>8'b0000000x</tt>. If you really mean the later, you should use
<tt>8'b0x</tt>.
<h5>Floating Point Numbers</h5>
Verilog specifications can also use floating point numbers. Examples
of floating point numbers are "<tt>42.0</tt>", "<tt>0.45</tt>" and
"<tt>3.14</tt>". The bit size of floating point numbers is machine
dependent, but is at least 32 bits.
<p>
<h5>Strings</h5>
Verilog strings are delimited by the double quote character. The
backspace character can be used to quote any double quote characters
used in the string. Some examples of string values are:
<pre>
"Hello world."
"Please push \"Enter\" to begin."
"Exterminate! Exterminate! Exterminate!"
</pre>
String values are essentially bit vectors with a size equal to eight
times the number of characters.
<A NAME="wiretypes"></A>
<h3><![subsection]>4.3 Data Types</h3>
Variables in Verilog can be used to represent registers, or nets
connecting components. Each bit in a variables can take on one of six
states:
<br><br>
<table class=display>
<tr><th>Value</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td>0</td><td>Logic 0 or false</td></tr>
<tr><td>1</td><td>Logic 1 or true</td></tr>
<tr><td>x</td><td>Unknown state (could be 0, 1 or z)</td></tr>
<tr><td>z</td><td>Floating state</td></tr>
<tr><td>H</td><td>High unknown state (could be 1 or z)</td></tr>
<tr><td>L</td><td>Low unknown state (could be 0 or z)</td></tr>
</table>
<br>
<h4>4.3.1 Net Types</h4>
Net data types are those that must be driven to have a value. The
difference between the types is primarily in how collisions are
handled. Collisions occur when two or more gates attempt to drive the
wire to different values. The supported net types are:
<br><br>
<table class=display>
<tr><th width=75 align=left>Type</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><tt>wire</tt></td><td>Basic net used to connect components. Collisions result in unknown value.</td></tr>
<tr><td><tt>wand</tt></td><td>Wired AND net. Collisions result in the AND of the values driven on the net.</td></tr>
<tr><td><tt>wor</tt></td><td>Wired OR net. Collisions result in the OR of the values driven on the net.</td></tr>
<tr><td><tt>tri</tt></td><td>Equivalent to "wire", but indicates to reader that tri state values will be used.</td></tr>
<tr><td><tt>tri1</tt></td><td>Net with resistive pull up. Takes on 1 value if nothing is driving it.</td></tr>
<tr><td><tt>tri0</tt></td><td>Net with resistive pull down. Takes on 0 value if nothing is driving it.</td></tr>
<tr><td><tt>triand</tt></td><td>Same as wand. Collisions result in the AND of the values driven on the net.</td></tr>
<tr><td><tt>trior</tt></td><td>Same as wor. Collisions result in the OR of the values driven on the net.</td></tr>
<tr><td><tt>trireg</tt></td><td>Net with capacitance store. Retains last value written if all drivers are floating.</td></tr>
</table>
<br>
Nets are declared by specifying the data type followed by a comma
separated list of variables, and terminated with a semicolon. Some
example net declarations are:
<pre>
wire w1;
wire a,b,c;
wor p;
trireg x;
</pre>
<h4>4.3.2 Supply Types</h4>
Supply types are used to model ground and supply signals fixed to a 0
or 1 value. The supply types are:
<br><br>
<table class=display>
<tr><th width=75 align=left>Type</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><tt>supply0</tt></td><td>Net fixed at logic 0.</td></tr>
<tr><td><tt>supply1</tt></td><td>Net fixed at logic 1.</td></tr>
</table>
<br>
Examples of supply types are:
<pre>
supply1 vdd;
supply0 gnd;
</pre>
<h4>4.3.3 Register Types</h4>
Register types retain their value until they are assigned again. The
behave similarly to variables in a C program.
<br><br>
<table class=display>
<tr><th width=75 align=left>Type</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><tt>reg</tt></td><td>One bit register variable.</td></tr>
<tr><td><tt>integer</tt></td><td>General purpose integer variable.</td></tr>
<tr><td><tt>real</tt></td><td>General purpose floating point variable.</td></tr>
<tr><td><tt>time</tt></td><td>64-bit simulation time variable.</td></tr>
</table>
<br>
Examples of register types are:
<pre>
reg r1, r2;
integer i, j;
time t;
real f;
</pre>
<h4>4.3.4 Port Types</h4>
Port types are used to declare the type of a port. Variables using
one of these types must also appear in the port list of a module.
<br><br>
<table class=display>
<tr><th width=75 align=left>Type</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><tt>input</tt></td><td>Module input port.</td></tr>
<tr><td><tt>output</tt></td><td>Module output port.</td></tr>
<tr><td><tt>inout</tt></td><td>Module inout (bidirectional) port.</td></tr>
</table>
<br>
The port types normally act like "wire" nets, but the output variables
may be also declared as <tt>reg</tt> in addition to <tt>output</tt>.
This can either be in two separate declarations such as:
<pre>
output z;
reg z;
</pre>
or in a combined declaration:
<pre>
output reg z;
</pre>
<h4>4.3.5 Event Types</h4>
Event variables do not take on a value per se. Instead, they can be
used in signaling from one portion of the design to another. They
are declared with the <tt>event</tt> keyword. For example:
<pre>
event e;
</pre>
<a name=parmtype>
<h4>4.3.6 Parameter Types</h4>
You may also use the <tt>parameter</tt> type to declare constant
variables. Constant variables must be assigned from constant value,
or an expression involving only constants and other parameter
variables. Examples of <tt>parameter</tt> declarations are:
<pre>
parameter delay1 = 9;
parameter delay2 = 2*delay1 + 7;
parameter myvalue = 8'h4e;
parameter mystring = "impudent moose";
</pre>
Parameters can be used both as values in expressions, and as the value
in a delay.
<h4>4.3.7 Bit Size Declaration</h4>
A bit size declaration can be used with any of the net, supply or port
data types. In addition they can be used with the <tt>reg</tt> data
type. The bit size is declared right after the keyword and before the
variable. The bit size specifier has the form
"<tt>[</tt><i>msb</i><tt>:</tt><i>lsb</i><tt>]</tt>" where <i>msb</i>
is the most significant bit and <i>msb</i> is the least significant
bit. Currently TkGate Verilog only supports bit ranges with a 0 least
significant bit, and a non-negative most significant bit.
Examples include:
<pre>
wire [7:0] w1, w2; // 8-bit wires
reg [11:0] r1, r2; // 12-bit registers
</pre>
<h4>4.3.8 Memories</h4>
Memories are declared by specifying an address range after the
variable name in a <tt>reg</tt> declaration. For example:
<pre>
reg [7:0] m[0:1023];
</pre>
Declares a memory with 1024 eight-bit values. TkGate Verilog only
supports memories that start at address 0.
<h4>4.3.9 String Variables</h4>
You can store strings in <tt>reg</tt> variables, but you must allocate
enough bits to store the string. For example:
<pre>
reg [8*11-1:0] s = "hello world";
</pre>
<A NAME="expressions"></A>
<h3>4.4 Expressions </h3>
Verilog uses an infix notation for expressions similar to expressions
in C. A wide range of arithmetic, logical, bit-wise and comparison
operators are supported. Operator precedence is similar to C, and
parenthesis may be used to group expressions. Some example
expressions are:
<pre>
x*u*(3 + j) + 1
z + 8'h5
(q*8'h2) < 8'h5
</pre>
When the bit sizes of operands in an expression do not match, the bit
size of the entire expression is expanded to the bit size of the
largest value. For example, when evaluating the expression
<tt>16'h3423 + 8'hff</tt>, both values are first extended to 16 bits
before performing the sum.
<h4>4.4.1 Operators</h4>
The operators supported in TkGate's implementation of Verilog are shown
in the table below. Operators are grouped by precedence from highest
to lowest.
<br><br>
<table class=display>
<tr><th width=100 align=left>Operator</th><th align=left>Description</th></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td valign=top><tt>{</tt><i>a</i><tt>,</tt> <i>b</i> <tt>,...}</tt></td><td valign=top>Concatenation - Concatenates the bits of two or more nets (or expressions) into a single expression. If all of the components are nets, the concatenation may be used as the target of an assignment.</td></tr>
<tr><td valign=top><tt>{</tt><i>n</i><tt>{</tt><i>a</i><tt>}}</tt></td><td valign=top>Bit Replications - Concatenates <i>n</i> copies of <i>a</i> together. <i>n</i> must be a constant. </td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><tt>!</tt> <i>a</i></td><td>Logic NOT - Returns zero if <i>a</i> is zero, one if <i>a</i> is non-zero.</td></tr>
<tr><td><tt>~</tt> <i>a</i></td><td>Bit-wise compliment - Reverses all bits in <i>a</i>.</td></tr>
<tr><td><tt>-</tt> <i>a</i></td><td>Negation - Performs an arithmetic negation of <i>a</i>.</td></tr>
<tr><td><tt>&</tt> <i>a</i></td><td>Reduction AND - ANDs together all the bits of <i>a</i> and returns the 1-bit result.</td></tr>
<tr><td><tt>|</tt> <i>a</i></td><td>Reduction OR - ORs together all the bits of <i>a</i> and returns the 1-bit result.</td></tr>
<tr><td><tt>^</tt> <i>a</i></td><td>Reduction XOR - XORs together all the bits of <i>a</i> and returns the 1-bit result.</td></tr>
<tr><td><tt>~&</tt> <i>a</i></td><td>Reduction NAND - NANDs together all the bits of <i>a</i> and returns the 1-bit result.</td></tr>
<tr><td><tt>~|</tt> <i>a</i></td><td>Reduction NOR - NORs together all the bits of <i>a</i> and returns the 1-bit result.</td></tr>
<tr><td><tt>~^</tt> <i>a</i></td><td>Reduction XNOR - XNORs together all the bits of <i>a</i> and returns the 1-bit result.</td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><i>a</i> <tt>*</tt> <i>b</i></td><td>Multiplication - Returns the product of <i>a</i> and <i>b</i>.</td></tr>
<tr><td><i>a</i> <tt>/</tt> <i>b</i></td><td>Division - Returns the quotient of <i>a</i> and <i>b</i>.</td></tr>
<tr><td><i>a</i> <tt>%</tt> <i>b</i></td><td>Remainder/Modulo - Returns the remainder of <i>a</i>/<i>b</i>.</td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><i>a</i> <tt>+</tt> <i>b</i></td><td>Addition - Returns the sum of <i>a</i> and <i>b</i>.</td></tr>
<tr><td><i>a</i> <tt>-</tt> <i>b</i></td><td>Subtraction - Returns the difference of <i>a</i> and <i>b</i>.</td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><i>a</i> >> <i>b</i></td><td>Right Shift - Shifts the bits in <i>a</i> to the right by <i>b</i> places.</td></tr>
<tr><td><i>a</i> <tt><<</tt> <i>b</i></td><td>Left Shift - Shifts the bits in <i>a</i> to the left by <i>b</i> places.</td></tr>
<tr><td><i>a</i> >>> <i>b</i></td><td>Arithmetic Right Shift - Shifts the bits in <i>a</i> to the right by <i>b</i> places arithmetically.</td></tr>
<tr><td><i>a</i> <tt><<<</tt> <i>b</i></td><td>Arithmetic Left Shift - Shifts the bits in <i>a</i> to the left by <i>b</i> places arithmetically.</td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><i>a</i> <tt>></tt> <i>b</i></td><td>Greater Than - Returns 1 if <i>a</i> is greater than <i>b</i>, otherwise returns 0.</td></tr>
<tr><td><i>a</i> <tt><</tt> <i>b</i></td><td>Less Than - Returns 1 if <i>a</i> is less than <i>b</i>, otherwise returns 0.</td></tr>
<tr><td><i>a</i> <tt>>=</tt> <i>b</i></td><td>Greater Than or Equal - Returns 1 if <i>a</i> is greater than or equal to <i>b</i>, otherwise returns 0.</td></tr>
<tr><td><i>a</i> <tt><=</tt> <i>b</i></td><td>Less Than r Equal - Returns 1 if <i>a</i> is less than or equal to <i>b</i>, otherwise returns 0.</td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td valign=top><i>a</i> <tt>==</tt> <i>b</i></td><td valign=top>
Equality - Returns 1 if <i>a</i> and <i>b</i> are equal and
0 if they are not equal. Returns unknown (<tt>x</tt>) if any bits in <i>a</i> or
<i>b</i> are unknown or floating.
<tr><td valign=top><i>a</i> <tt>!=</tt> <i>b</i></td><td valign=top>
Inequality - Returns 0 if <i>a</i> and <i>b</i> are equal and
1 if they are not equal. Returns unknown (<tt>x</tt>) if any bits in <i>a</i> or
<i>b</i> are unknown or floating.
<tr><td><i>a</i> <tt>===</tt> <i>b</i></td><td>Case Equality - Returns 1 if <i>a</i> and <i>b</i> match exactly
including unknown and floating bits. Returns 0 otherwise.</td></tr>
<tr><td><i>a</i> <tt>!==</tt> <i>b</i></td><td>Case Inequality - Returns 0 if <i>a</i> and <i>b</i> match exactly
including unknown and floating bits. Returns 1 otherwise.</td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><i>a</i> <tt>&</tt> <i>b</i></td><td>Bit-wise AND - Each bit of the result is the AND of the corresponding bits of <i>a</i> and <i>b</i>.</td></tr>
<tr><td><i>a</i> <tt>~&</tt> <i>b</i></td><td>Bit-wise NAND - Each bit of the result is the NAND of the corresponding bits of <i>a</i> and <i>b</i>.</td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><i>a</i> <tt>^</tt> <i>b</i></td><td>Bit-wise XOR - Each bit of the result is the XOR of the corresponding bits of <i>a</i> and <i>b</i>.</td></tr>
<tr><td><i>a</i> <tt>~^</tt> <i>b</i></td><td>Bit-wise XNOR - Each bit of the result is the XNOR of the corresponding bits of <i>a</i> and <i>b</i>.</td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td><i>a</i> <tt>|</tt> <i>b</i></td><td>Bit-wise OR - Each bit of the result is the OR of the corresponding bits of <i>a</i> and <i>b</i>.</td></tr>
<tr><td><i>a</i> <tt>~|</tt> <i>b</i></td><td>Bit-wise NOR - Each bit of the result is the NOR of the corresponding bits of <i>a</i> and <i>b</i>.</td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td valign=top><i>a</i> <tt>&&</tt> <i>b</i></td><td valign=top>Logical AND - If both <i>a</i> and <i>b</i> have non-zero bits, then return 1, otherwise return 0. However, unknown will be returned if unknown bits in the operands prevent determining the actual result. </td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td valign=top><i>a</i> <tt>||</tt> <i>b</i></td><td valign=top>Logical OR - If either <i>a</i> and <i>b</i> have non-zero bits, then return 1, otherwise return 0. However, unknown will be returned if unknown bits in the operands prevent determining the actual result. </td></tr>
<tr><td colspan=2><hr></td></tr>
<tr><td valign=top><i>a</i> <tt>?</tt> <i>b</i> <tt>:</tt> <i>c</i></td><td valign=top>Conditional Operator - If <tt>a</tt> is non-zero, then the result is <i>b</i>. If <i>a</i> is zero, then the result is <i>c</i>. If <tt>a</tt> is unknown or floating, then the result is the bit-wise XNOR of the bits in <i>b</i> and <i>c</i>. </td></tr>
</table>
<h4>4.4.2 Bit and Memory Addressing</h4>
Bits on sized multi-bit variables can be address using the syntax:
<br>
<br>
<i>name</i><tt>[</tt><i>bit</i><tt>]</tt>
<br>
<br>
For example, suppose we have the declaration:
<pre>
reg [7:0] r;
</pre>
The expression <tt>r[4]</tt> represents the single-bit expression for
the value of bit-4 in <tt>r</tt>. This syntax can be used either to
use its value in an expression, or in an assignment statement. The
bit address can be either a constant or an expression. For example,
<tt>r[i+1]</tt> will address the bit corresponding to the current
value of the expression <tt>i</tt>+1. A run-time error will result if
you attempt to simulate a circuit where <tt>i+1</tt> goes out of
bounds.
<p>
You can also address ranges of bits using the syntax:
<br>
<br>
<i>name</i><tt>[</tt><i>high</i><tt>:</tt><i>low</i><tt>]</tt>
<br>
<br>
For example, <tt>r[6:2]</tt> is a 5-bit value formed from bits 2 to
bit 6 of <tt>r</tt>. In this syntax, the <i>high</i> and <i>low</i>
values specified must be constants, although they can be constant
expressions that can be evaluated at compile time.
<p>
In order to get indexable ranges of bits, you can use the syntax:
<br>
<br>
<i>name</i><tt>[</tt><i>low</i><tt>+:</tt><i>num</i><tt>]</tt>
<br>
<br>
In this expression <i>low</i> is the bit number of the lowest bit, and
<i>num</i> is the number of bits. <i>num</i> must be a constant
expression, but <i>low</i> may be an expression evaluated at execution
time. For example <tt>r[i +: 3]</tt> will address a three bit
sub-range of <tt>r</tt> starting at the bit addressed by <tt>i</tt>.
<p>
Memories are addressed using the same syntax as bits. For example, if
you define the following memory of 1024 8-bit words:
<pre>
reg [7:0] mem[0:1023];
</pre>
then <tt>mem[45]</tt> will address word 45 of the memory and
<tt>mem[45][6]</tt> will address bit 6 of the word 45 of the memory.
<a name=directives>
<h3>4.5 Compiler Directives</h3>
Verilog compiler directives are similar to the <tt>#define</tt> and
<tt>#ifdef</tt> directives that are used in C programs. Verilog
compiler directives begin with the ` (back-quote) character.
<h4>4.5.1 The <tt>`define</tt> Directive</h4>
The <tt>`define</tt> directive is analogous to the <tt>#define</tt> directive in C.
It allows you to associate a value or piece of text with a symbolic
macro. For example:
<pre>
`define THEANSWER 42
</pre>
To use a macro that you have defined, you must use a back quote in
front of the name. For example, to use the value of the macro defined
in the example above you might write:
<pre>
x = y + `THEANSWER;
</pre>
<h4>4.5.3 The <tt>`ifdef</tt>, <tt>`ifndef</tt>, <tt>`else</tt> and <tt>`endif</tt> Directives</h4>
The <tt>`ifdef</tt>, <tt>`ifndef</tt>, <tt>`else</tt> and
<tt>`endif</tt> directives can be used to conditionally compile
Verilog code. They are analogous to the similarly named directives in
C. The <tt>`ifdef</tt> directive causes code to be compiled only if
the macro given after it is defined. The <tt>`ifndef</tt> directive
causes code to be compiled only if the macro given after it is not
defined. You can nest <tt>`ifdef</tt> and <tt>`ifndef</tt> directives
and use the <tt>`else</tt> directive to provide alternatives. The
<tt>`endif</tt> directive marks the end of the conditionally compiled
portion.
<p>
An example of conditionally compiled code is shown here:
<pre>
`ifdef INCBY2
x = x + 2;
`else
x = x + 1;
`endif
</pre>
<p>
In this example, if the macro <tt>INCBY2</tt> has been defined by a
<tt>`define</tt> then the <tt>x = x + 2;</tt> statement is compiled,
otherwise the <tt>x = x + 1;</tt> statement is compiled. Note that
when using macro names in an <tt>`ifdef</tt> you do not precede them
with a ` (backquote).
<h4>4.5.2 The <tt>`timescale</tt> Directive</h4>
The <tt>`timescale</tt> directive is used to set the time scale of a
module or modules for simulation. It must be followed by a units
value and a precision value. These values must be a 1, 10 or 100
followed by time units "s" (seconds), "ms" (milliseconds), "us"
(microseconds), "ns" (nanoseconds), "ps" (picoseconds) or "fs"
(femotoseconds). For example:
<pre>
`timescale 1ns / 100ps
</pre>
would set the time units to 1ns and the simulation precision to 100ps.
This would cause any delay specifications in modules defined after the
<tt>`timescale</tt> directive to be counted as 1ns. The simulator
itself would simulate in steps of 100ps. It is important not to set
the precision value lower than necessary (relative to the delay values
of components used in your design) since this can impact simulator
performance. If the <tt>`timescale</tt> directive is not uses, the
default time scale and precision is 1ns.
<a name=modules>
<h3><![subsection]>4.6 Module Declarations</h3>
Module declarations begin with the <tt>module</tt> keyword, and end
with the <tt>endmodule</tt> keyword. Consider the simple module:
<pre>
(1) module ANDOR(z, a, b, c);
(2) output z;
(3) input a,b,c;
(4) wire x;
(5)
(6) or o1(z,a,x);
(7) and a1(z,b,c);
(8)
(9) endmodule
</pre>
The literal <tt>ANDOR</tt> after the <tt>module</tt> keyword is the
name of the module. The module name is usually followed by a list of
the port names in parenthesis. The port list must be followed by a
";". Inside the body of the module are declarations for any nets used
in the module. The nets declared as ports for the module, should also
have declarations to indicate if they are <tt>input</tt>,
<tt>output</tt> or <tt>inout</tt> ports as shown on lines (2) and (3).
<p>
The port list may be omitted for a module as in this example:
<pre>
module main;
reg a,b,c;
wire x,y,z;
mycircuit m1(a,b,c,x,y,z);
endmodule
</pre>
This is typically done for top-level modules.
<a name=netlist>
<h3>4.7 Netlist Modules</h3>
Netlist modules are those that are defined as a collection of
connected components. The components can be built-in Verilog
primitives (such as "<tt>and</tt>" and "<tt>or</tt>"), library
modules, or user-defined modules. Here is a simple example of a
module for a 1-bit full adder circuit (the same basic circuit as shown
in <a href="#fullAdder">Figure 4.2</a>):
<pre>
(1) module ADD(s, co, a, b, ci);
(2) output s, co;
(3) input a,b,ci;
(4) wire w1,w2,w3 ;
(5)
(6) or (co, w1, w2);
(7) and (w2, a, b);
(8) and (w1, w3, ci);
(9) xor (s, w3, ci);
(10) xor (w3, a, b);
(11)
(12) endmodule
</pre>
The names "<tt>or</tt>", "<tt>and</tt>" and "<tt>xor</tt>" are
built-in Verilog primitives for computing the OR, AND and XOR of one
or more signals. The first parameter of each of these primitives is
the output signal, and the remaining parameters are the inputs. In
gate-level descriptions like this, it is easy to see the mapping
between the description and the hardware.
<p>
Input ports may be driven by any type of variable, but the outputs of
primitives must be a "Net" type variable such as <tt>wire</tt>,
<tt>tri</tt> or <tt>wand</tt>.
<p>
It is also possible to give names to the instances of each of the
gates. We do this by inserting an instance name after the name of the
primitive. For example, we could replace the body of the example
above with:
<pre>
(6) or g1 (co, w1, w2);
(7) and g2 (w2, a, b);
(8) and g3 (w1, w3, ci);
(9) xor g4 (s, w3, ci);
(10) xor g5 (w3, a, b);
</pre>
In this new body, "<tt>g1</tt>", "<tt>g2</tt>", etc. are the instance
names of the gates and can be used to refer to those gates when
necessary. You can also specify more than one instance in a single
statement. For example, an alternative way of specifying the above
design is:
<pre>
(6) or g1 (co, w1, w2);
(7) and g2 (w2, a, b), g3 (w1, w3, ci);
(8) xor g4 (s, w3, ci), g5 (w3, a, b);
</pre>
<p>
In addition to primitives, netlist modules can also combine other
modules. For example, we can connect four of the adders shown above
to create a module of a 4-bit adder as shown below:
<pre>
(1) module ADD4(s, co, a, b, ci);
(2) output [3:0] s;
(3) output co;
(4) input [3:0] a,b;
(5) input ci;
(6) wire c1,c2,c3;
(7)
(8) ADD a1 (s[0], c1, a[0], b[0]);
(9) ADD a2 (s[1], c2, a[1], b[1]);
(10) ADD a3 (s[2], c3, a[2], b[2]);
(11) ADD a4 (s[3], co, a[3], b[3]);
(12)
(13) endmodule
</pre>
In this example, we create four instances of our <tt>ADD</tt> module
named <tt>a1</tt> through <tt>a4</tt>. Ports connections are made in
the order in which they appear in the port list of the module
definition. Alternative, you can explicitly specify the port
connections using the syntax:
<br>
<br>
<tt>.</tt><i>port</i><tt>(</tt><i>net</i><tt>)</tt>
<br>
<br>
For example, you could replace line (8) with:
<pre>
(8) ADD a1 (.a(a[0]), .b(b[0]), .s(s[0]), .co(c1));
</pre>
Since the ports for each connection are explicitly specified, you can
list the connections in any order. However, you must either specify
no ports or all ports in this manner. You must also ensure that all
ports have exactly one connection.
<h4> 4.7.1 Verilog Primitives</h4>
This section will introduce the primitive gates that are supported in
TkGate's implementation of Verilog. By default, all primitives are
single bit and all inputs and outputs must be single bit. You can
declare arrays of primitives by using a bit range after the instance
name. For example:
<pre>
and a1[3:0] (x, a, b);
</pre>
will perform a bit-wise AND on the four-bit signals <tt>a</tt> and
<tt>b</tt> and drive the four-bit result to <tt>x</tt>. The following
subsections describe the various types primitives.
<h5>Logic Primitives</h5>
The logic primitives include <tt>and</tt>, <tt>or</tt>, <tt>xor</tt>,
<tt>nand</tt>, <tt>nor</tt> and <tt>xnor</tt>. The first parameter is
always the output, and the remaining parameters are the inputs. You
can specify anywhere from one to an arbitrary number of inputs. The
primitives are defined in terms of their truth tables shown below.
<table>
<tr><td style="padding: 20; ">
<table class=truthtable>
<tr><td class=tttopleft>and</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
<tr><td class=ttleft>1</td><td>0</td><td>1</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>x</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
</table>
</td><td style="padding: 20; ">
<table class=truthtable>
<tr><td class=tttopleft>or</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
<tr><td class=ttleft>1</td><td>0</td><td>1</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>x</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
</table>
</td><td style="padding: 20; ">
<table class=truthtable>
<tr><td class=tttopleft>xor</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
<tr><td class=ttleft>1</td><td>0</td><td>1</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>x</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
</table>
</td></tr>
<tr><td style="padding: 20; ">
<table class=truthtable>
<tr><td class=tttopleft>nand</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
<tr><td class=ttleft>1</td><td>0</td><td>1</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>x</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
</table>
</td><td style="padding: 20; ">
<table class=truthtable>
<tr><td class=tttopleft>nor</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
<tr><td class=ttleft>1</td><td>0</td><td>1</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>x</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
</table>
</td><td style="padding: 20; ">
<table class=truthtable>
<tr><td class=tttopleft>xnor</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
<tr><td class=ttleft>1</td><td>0</td><td>1</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>x</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>0</td><td>x</td><td>x</td><td>x</td></tr>
</table>
</td></tr>
</table>
<h5>Buffer Primitives</h5>
The buffer primitives include <tt>buf</tt> and <tt>not</tt>. The last
parameter of these primitives is the input, and all of the preceding
parameters are outputs being driven with the same value. The
<tt>buf</tt> primitive simply drives its input to the output, while
the <tt>not</tt> primitive drives the compliment logic value.
However, if the input is unknown or floating, the output will be
unknown for both primitives.
<p>
Consider the example:
<pre>
buf b1 (w1, w2, w3, a);
not n1 (w4, w5, b);
</pre>
This will drive the value of <tt>a</tt> to <tt>w1</tt>, <tt>w2</tt>
and <tt>w3</tt>. The compliment of <tt>b</tt> will be driven to
<tt>w4</tt> and <tt>w5</tt>.
<h5>Conditional Buffer Primitives</h5>
The conditional buffer primitives include <tt>bufif1</tt>,
<tt>bufif0</tt>, <tt>notif1</tt> and <tt>notif0</tt>. These primitives
have exactly three ports as shown below:
<pre>
bufif0 b1 (out, in, ctl);
bufif1 b2 (out, in, ctl);
notif0 n1 (out, in, ctl);
notif1 n2 (out, in, ctl);
</pre>
The first parameter is the output of the primitive, the second
parameter is the input, and the third parameter is the control. The
<tt>bufif1</tt> and <tt>notif1</tt> gates act like <tt>buf</tt> and
<tt>not</tt>, respectively, when the control signal is 1. They output
floating when the control line is 0. Conversely, the <tt>bufif0</tt>
and <tt>notif0</tt> gates act like <tt>buf</tt> and <tt>not</tt>,
respectively, when the control signal is 0. They output floating when
the control line is 1. The truth tables for these primitives are
shown in the tables below.
<table>
<tr><td style="padding: 20; ">
<table class=truthtable>
<tr><td colspan=2></td><td align=center colspan=4>ctl</td></tr>
<tr><td rowspan=5>in</td><td class=tttopleft>bufif0</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>0</td><td>z</td><td>L</td><td>L</td></tr>
<tr><td class=ttleft>1</td><td>1</td><td>z</td><td>H</td><td>H</td></tr>
<tr><td class=ttleft>x</td><td>x</td><td>z</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>x</td><td>z</td><td>x</td><td>x</td></tr>
</table>
</td><td style="padding: 20; ">
<table class=truthtable>
<tr><td colspan=2></td><td align=center colspan=4>ctl</td></tr>
<tr><td rowspan=5>in</td><td class=tttopleft>bufif1</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>z</td><td>0</td><td>L</td><td>L</td></tr>
<tr><td class=ttleft>1</td><td>z</td><td>1</td><td>H</td><td>H</td></tr>
<tr><td class=ttleft>x</td><td>z</td><td>x</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>z</td><td>x</td><td>x</td><td>x</td></tr>
</table>
</td></tr>
<tr><td style="padding: 20; ">
<table class=truthtable>
<tr><td colspan=2></td><td align=center colspan=4>ctl</td></tr>
<tr><td rowspan=5>in</td><td class=tttopleft>notif0</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>1</td><td>z</td><td>H</td><td>H</td></tr>
<tr><td class=ttleft>1</td><td>0</td><td>z</td><td>L</td><td>L</td></tr>
<tr><td class=ttleft>x</td><td>x</td><td>z</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>x</td><td>z</td><td>x</td><td>x</td></tr>
</table>
</td><td style="padding: 20; ">
<table class=truthtable>
<tr><td colspan=2></td><td align=center colspan=4>ctl</td></tr>
<tr><td rowspan=5>in</td><td class=tttopleft>notif1</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>z</td><td>1</td><td>H</td><td>H</td></tr>
<tr><td class=ttleft>1</td><td>z</td><td>0</td><td>L</td><td>L</td></tr>
<tr><td class=ttleft>x</td><td>z</td><td>x</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>z</td><td>x</td><td>x</td><td>x</td></tr>
</table>
</td></tr>
</table>
<h5>MOS Transistor Primitives</h5>
Transistor primitives model simple nmos and pmos devices. However,
TkGate does not do true transistor-level simulation in the sense of
Spice and other such tools. Instead, they are simulated in the same
way as the gate primitives, driving an output depending on the value
of the input and control signals. Examples of these primitives are:
<pre>
nmos n (out, in, ctl);
pmos p (out, in, ctl);
</pre>
The truth tables for determining the value driven to <tt>out</tt> from
the values on the input <tt>in</tt> and the control line (or gate)
<tt>ctl</tt> are shown in the table below.
<table>
<tr><td style="padding: 20; ">
<table class=truthtable>
<tr><td colspan=2></td><td align=center colspan=4>ctl</td></tr>
<tr><td rowspan=5>in</td><td class=tttopleft>nmos</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>z</td><td>0</td><td>L</td><td>L</td></tr>
<tr><td class=ttleft>1</td><td>z</td><td>1</td><td>H</td><td>H</td></tr>
<tr><td class=ttleft>x</td><td>z</td><td>x</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>z</td><td>z</td><td>z</td><td>z</td></tr>
</table>
</td><td style="padding: 20; ">
<table class=truthtable>
<tr><td colspan=2></td><td align=center colspan=4>ctl</td></tr>
<tr><td rowspan=5>in</td><td class=tttopleft>pmos</td><td class=tttop>0</td><td class=tttop>1</td><td class=tttop>x</td><td class=tttop>z</td></tr>
<tr><td class=ttleft>0</td><td>0</td><td>z</td><td>L</td><td>L</td></tr>
<tr><td class=ttleft>1</td><td>1</td><td>z</td><td>H</td><td>H</td></tr>
<tr><td class=ttleft>x</td><td>z</td><td>z</td><td>x</td><td>x</td></tr>
<tr><td class=ttleft>z</td><td>z</td><td>z</td><td>z</td><td>z</td></tr>
</table>
</td></tr>
</table>
This level of modeling is generally good enough to create CMOS
circuits out of nmos and pmos components. For example:
<pre>
nmos n1 (out, gnd, a);
nmos n2 (out, gnd, b);
pmos p1 (x, vdd, a);
pmos p2 (out, x, b);
</pre>
will implement a 2-input OR gate.
<h4> 4.7.2 Specifying Delay Values</h4>
In the examples presented so far, all of the primitives had zero
delay. In a real circuit, there is propagation delay over a gate.
The delay is specified with the syntax <tt>#</tt><i>delay</i>. For
example, if we add delays to our full adder circuit we get:
<pre>
(1) module ADD(s, co, a, b, ci);
(2) output s, co;
(3) input a,b,ci;
(4) wire w1,w2,w3 ;
(5)
(6) or #5 g1 (co, w1, w2);
(7) and #5 g2 (w2, a, b);
(8) and #5 g3 (w1, w3, ci);
(9) xor #7 g4 (s, w3, ci);
(10) xor #7 g5 (w3, a, b);
(11)
(12) endmodule
</pre>
The <tt>or</tt> and <tt>and</tt> gates will have delays of 5 time
units (or whatever was specified as the units in the
<tt>`timescale</tt> directive).
<h4> 4.7.3 <tt>assign</tt> Statements</h4>
Rather than defining complex expression in terms of primitives, you
can use an <tt>assign</tt> statement to assign an expression to an
output, with much the same behavior as if you defined it in terms of
gates. The general syntax is:
<br>
<br>
<tt>assign</tt> <i>wire</i> <tt>=</tt> <i>expression</i><tt>;</tt>
<br>
<br>
The <i>wire</i> must be a net type variable (<tt>wire</tt>,
<tt>tri</tt>, <tt>wand</tt>, etc.), but the expression may contain both
net and register type variables. The value driven to <i>wire</i>
changes whenever the value of the expression changes. You can can
also specify a delay value for the <tt>assign</tt> statement using the
syntax:
<br>
<br>
<tt>assign #</tt><i>delay</i> <i>wire</i> <tt>=</tt> <i>expression</i><tt>;</tt>
<br>
<br>
An example of an <tt>assign</tt> statement with a delay is:
<pre>
assign #5 x = a & (b + c);
</pre>
<a name=behavioral>
<h3>4.8 Behavioral Modules</h3>
In behavioral models, the design is specified algorithmically, more
like a C program. Unlike most C programs, however, Verilog
specifications tend to be highly parallel with many threads.
<h4> 4.8.1 <tt>initial</tt> and <tt>always</tt> Statements</h4>
All behavioral Verilog is defined inside an <tt>initial</tt> or
<tt>always</tt> statement. Both of these statements create a new
parallel thread for each statement occurring in the design. The
<tt>initial</tt> statement creates a thread that executes once and
terminates, while the <tt>always</tt> statement creates a thread that
repeats in an infinite loop. An example of a clock-generator module
defined in behavioral Verilog is shown below:
<pre>
(1) module myclock(x);
(2) output reg x;
(3)
(4) initial
(5) x = 1'b0;
(6)
(7) always
(8) #100 x = ~x;
(9)
(10) endmodule
</pre>
When the simulation starts, both the <tt>initial</tt> statement and
the <tt>always</tt> statement begin execution in parallel. The thread
started by the <tt>initial</tt> statement sets the output register
<tt>x</tt> to 0 as soon as the simulator starts. The <tt>always</tt>
thread waits for 100 simulation time steps, then inverts the value if
<tt>x</tt>. Since <tt>always</tt> statements repeat, control will go
back to the top of the <tt>always</tt> statement, and after another
100 time units, <tt>x</tt> will be inverted again. The result is that
<tt>x</tt> will be 0 for the first 100 time units, 1 for time units
100 to 199, 0 again for time units 200 to 299, and so on.
<h4> 4.8.2 Blocking Assignments</h4>
Blocking assignments are assignments that use the <tt>=</tt> operator,
and are the most similar to assignments in a C program. Each
blocking assignment is executed and the new value assigned to the
left-hand side before the next statement is executed. The left-hand
side of blocking assignments must be a register type variable.
<p>
An example use of blocking assignments is in the module shown below:
<pre>
(1) module foo(z,a,b,c)
(2) output reg [15:0] z;
(3) input [15:0] a,b,c;
(4) reg [15:0] r1,r2;
(5)
(6) always
(7) begin
(8) r1 = a + b;
(9) r2 = r1 *(b + c);
(10) #5 z = r2 / r1;
(11) end
(12)
(13) endmodule
</pre>
The statements at Lines (8) and (9) are executed sequentially. The
value of <tt>r1</tt> used in Line (9) is the value computed at Line
(8). The <tt>#5</tt> at Line (10) cause execution of the thread to be
suspended for 5 time units. After the 5 unit delay has elapsed, the
expression <tt>r2 / r1</tt> is evaluated and assigned to <tt>z</tt>.
Once the statement at Line (10) has completed, execution of the thread
goes back to the top and Lines (8) and (9) are executed again.
<p>
The delay on Line (10) causes evaluation of the left-hand side to wait
until the statement after the delay period has elapsed. If some other
thread were to change the values of <tt>r1</tt> or <tt>r2</tt> during
the 5 time units Line (10) was delayed, the new values would be used
instead. If you wish to ensure that the values at the beginning of
the delay period are used, you can use an intra-statement delay such as:
<pre>
z = #5 r2 / r1;
</pre>
This will cause <tt>r2 / r1</tt> to be evaluated immediately, but the
statement will delay 5 time units before assigning <tt>z</tt>.
<h4> 4.8.3 Non-Blocking Assignments</h4>
Non-Blocking assignments use the <tt><=</tt> operator and are
executed in parallel. The right-hand side expressions are evaluated
immediately, but the assignment is deferred until the end of the
current time step. Like with blocking assignments, the left-hand side
of non-blocking assignments must also be a register type variable.
<p>
An example of using non-blocking assignments to swap the values of two
registers are:
<pre>
(1) always
(2) begin
(3) # 10;
(4) a <= b;
(5) b <= a;
(6) end
</pre>
The statement at Line (3) is a delay statement. It waits 10 time
units before continuing execution. The next two statements at Lines
(4) and (5) are executed in parallel. The current values of
<tt>b</tt> and <tt>a</tt> are read, then when the next time unit
starts, the new values are written to <tt>a</tt> and <tt>b</tt>.
<p>
You can specify a delay in non-blocking assignments using a statement
such as:
<pre>
a <= #5 b + x;
</pre>
This statement will evaluate <tt>b + x</tt>, and schedule the
assignment of that value to <tt>a</tt> five time units in the future.
Execution of statements after this non-blocking assignment will
continue immediately.
<p>
While you can place the delay before a non-blocking assignment as in:
<pre>
#5 a <= b + x; // A usually incorrect usage of non-blocking assignment
</pre>
This usage will result in the thread blocking for 5 time units, then
executing the non-blocking assignment. It is equivalent to writing:
<pre>
#5;
a <= b + x;
</pre>
<h4> 4.8.4 Fully Qualified Path Names</h4>
You can reference variables in other modules of your design by using
fully qualified path names. Fully qualified path names start with the
name of the top level module, followed by the names of the path of
instances down to the level in which the variable you wish to
reference is. The "<tt>.</tt>" character is used between each part of
the name. Consider the following example:
<pre>
module top;
wire [15:0] x;
reg [15:0] a,b;
foo g1(x,a,b);
initial
begin
$monitor("x=%h a=%h b=%h",x,a,b);
#1 a = 16'h45;
#1 b = 16'h24;
#1 top.g1.i = 16'h100;
end
endmodule
module foo(x,a,b);
output [15:0] x;
input [15:0] a,b;
reg [15:0] i = 0;
assign #1 x = a + b + i;
endmodule
</pre>
The variable name "<tt>top.g1.i</tt>" used in <tt>top</tt> references
the variable <tt>i</tt> in the instance <tt>g1</tt> of module
<tt>foo</tt>. When this example is simulated, it produces the output:
<pre>
x=x a=45 b=x
x=x a=45 b=24
x=69 a=45 b=24
x=169 a=45 b=24
</pre>
Fully qualified path names allow any module to access variables of any
other module in your design. Normally, they should only be used in
simulation scripts and for debugging.
<h4> 4.8.5 System Tasks</h4>
There are a number of system tasks supported in TkGate. They are used
somewhat like function calls and are built into the simulator. System
tasks begin with a <tt>$</tt>. One useful system task is the
<tt>$display</tt> task. It is similar to a <tt>printf()</tt> in a C
program. Here is an example of a behavioral description using the
<tt>$display</tt> task:
<pre>
reg [7:0] x;
initial
begin
x = 8'hf;
$display("Hello world. The value of x is %d",x);
end
</pre>
Simulating this description will produce the output:
<pre>
Hello world. The value of x is 15
</pre>
The <tt>$display</tt> task appends a newline to the end of the output.
When simulating through the TkGate graphical interface, the output
will be directed to the <a
href="gateSiml.html#simOutputConsole">simulator output console</a>.
When using the TkGate simulator stand-alone, output will go to
standard output. Like C, the <tt>%</tt> symbol is used to denote
conversions for output. For example:
<pre>
$display("x=%d x=%o x=%h x=%04h",x,x,x,x);
</pre>
will produce:
<pre>
x=15 x=17 x=f x=000f
</pre>
Another useful system task is the <tt>$monitor</tt> task. It has the
same calling conventions as <tt>$display</tt>, except that instead of
displaying immediately, it sets a watch on all the nets that are
referenced in the statement. Any time a variable referenced by the
<tt>$monitor</tt> task changes value, output will be produced using the
rules as in a <tt>$display</tt>. For example, the module:
<pre>
module top;
reg [7:0] x, y, z;
initial
$monitor("%t: x=%02h y=%02h z=%02h",$time,x,y,z);
initial
begin
x = 8'h42; y = 8'h23; z = 8'hfe;
#5 x = 8'h94;
#73 y = 8'h6d;
#21 z = 8'h88;
end
endmodule
</pre>
will produce the output:
<pre>
0: x=42 y=23 z=fe
5: x=94 y=23 z=fe
78: x=94 y=6d z=fe
99: x=94 y=6d z=88
</pre>
The <tt>$monitor</tt> task produces output at most once per simulation
time unit. The output is produced at the end of the epoch if the
simulator has detected a change on any of the variables references in
the <tt>$monitor</tt> task.
<p>
You may have noticed that we also used the system task <tt>$time</tt>
in this example. This system task returns the current simulation time
in simulation time units. You should use the <tt>%t</tt> conversion
when printing out time values. The output produced when using the
<tt>%t</tt> conversion is influenced by the current
<tt>`timescale</tt> in force for the module in which it is used.
<p>
These are only a small fraction of the system tasks supported in
TkGate. For a complete list of all the system tasks, see <a
href=systemTasks.html>Appendix D. List of System Tasks</a>.
<h4> 4.8.6 Delay Triggering</h4>
The delay operator "<tt>#</tt><i>delay</i>" has already been touched
upon in the previous sections. This operator can be used to
suspend/delay execution of a thread for a specified period of time.
It can be placed at the beginning of a statement, in-line in a
assignment statement, or by itself as a pure delay.
<p>
If a <tt>timescale</tt> directive has been used, the delay value may
be fractional. For example when the module:
<pre>
(1) `timescale 1ns / 100ps
(2)
(3) module top;
(4)
(5) initial
(6) begin
(7) $display("%t: starting simulation",$time);
(8) # 1.5;
(9) $display("%t: after delay",$time);
(10) end
(11)
(12) endmodule
</pre>
is simulated, the following output is produced:
<pre>
0.0: starting simulation
1.5: after delay
</pre>
You can also use a zero delay to ensure that a statement is executed
at the end of an epoch. For example:
<pre>
initial
i = 9;
initial
i = 7;
initial
#0 i = 42;
</pre>
will set <tt>i</tt> to <tt>42</tt> because the <tt>#0</tt> delay
ensures that the <tt>i = 42;</tt> assignment is executed last. If the
<tt>#0</tt> were not used, then the value of <tt>i</tt> would be
non-deterministic.
<h4> 4.8.7 Event-Based Triggering</h4>
Event-based triggering is another way to introduce blocking into your
design. Event-based triggers have the syntax:
<br>
<br>
<tt>@(</tt> <i>event-expr</i> <tt>)</tt><i>statement</i><tt>;</tt>
<br>
<br>
They cause the execution of the statement to block until the event
described by <i>event-expr</i> occurs. An example use of a
event-based trigger is in the following example of a D-flip-flop:
<pre>
(1) module dff(q, d, clock);
(2) input d, clock;
(3) output reg q;
(4)
(5) always @(posedge clock)
(6) q = d;
(7)
(8) endmodule
</pre>
The <tt>@(posedge clock)</tt> expression will cause the execution of
the always block to be suspended until the rising edge of the
<tt>clock</tt> signal. The <tt>posedge</tt> and <tt>negedge</tt>
operators indicate that we should wait for the rising/positive or
falling/negative edge of the signal that follows it. If we had
instead written Lines (5) and (6) as:
<pre>
(5) always @(clock)
(6) q = d;
</pre>
The design would have loaded <tt>q</tt> with the value of <tt>d</tt>
on both the rising and falling edges of the <tt>clock</tt> signal.
<p>
You can use the <tt>or</tt> operator to trigger on the change of one
or more signals. For example:
<pre>
(5) always @(posedge clock or load)
(6) q = d;
</pre>
would result in the assignment being executed on either the rising
edge of <tt>clock</tt> or any change in the value of <tt>load</tt>.
<p>
You can also use the event-based trigger with <tt>event</tt>
variables. Event variables are declared with the <tt>event</tt>
keyword. The <tt>-></tt> operator is used to raise an event on an
event variable. The following example declares and uses an event
variable:
<pre>
(1) module top;
(2) event e;
(3)
(4) initial
(5) @ (e) $display($time,": got event");
(6)
(7) initial
(8) #24 -> e;
(9)
(10) endmodule
</pre>
when simulated, this example produces:
<pre>
24: got event
</pre>
The event variable <tt>e</tt> is declared at Line 2. The
<tt>initial</tt> statement at Line 4 executes and uses an event
trigger to wait for a signal on <tt>e</tt>. A parallel
<tt>initial</tt> statement at Line 7 waits for 24 time units, then
uses the <tt>-></tt> operator to raise an event on <tt>e</tt>. The
raise event operator only has an effect if there are other threads
that are blocked waiting for an event.
<h4> 4.8.8 The <tt>wait</tt> Statement</h4>
The <tt>wait</tt> statement block until a condition is true, then
executes its statement. The general syntax is:
<br>
<br>
<tt>wait (</tt> <i>expr</i> <tt>)</tt><i>statement</i><tt>;</tt>
<br>
<br>
The <i>expr</i> is evaluated any time a variable in it changes, and if
the expression is not satisfied, it continued to block, otherwise it
executes its statement. As an example, consider the simple latch:
<pre>
(1) module latch(q, d, load)
(2) input d,load;
(3) output reg q;
(4)
(5) always
(6) wait (load == 1'b0)
(7) #10 q = d;
(8)
(9) endmodule
</pre>
When the <tt>load</tt> signal becomes zero, the <tt>q</tt> register is
loaded with the value of <tt>d</tt> after a delay of 10 time units.
It is important to include a delay in here to avoid locking up the
simulator. With no delay, the statement would continue executing
forever without advancing simulation time. This is because simulation
time is advanced only after all statements in the current time period
(epoch) have been executed.
<h4> 4.8.9 Conditional Statements</h4>
Conditional statements are similar to C <tt>if</tt> statements and use
essentially the same syntax. For example:
<pre>
if (load == 1'b0)
q = d;
else
q = q + 1;
</pre>
will load the value of <tt>d</tt> into <tt>q</tt> if <tt>load</tt> is
zero, otherwise it will increment the value of <tt>q</tt>. If the
value of the expression is unknown (for example, if <tt>load</tt> had
any unknown bits), then the <tt>else</tt> branch will be taken.
<tt>if</tt> statements may be nested, and the <tt>else</tt> branch is
optional. You may also use a <tt>begin...end</tt> block in the body
as in the example:
<pre>
if (u > x)
begin
u = u - 1;
x = j + k;
end
</pre>
<h4> 4.8.10 Case Statements</h4>
There are three variants of multi-way branching or <tt>case</tt>
statements: <tt>case</tt>, <tt>casex</tt> and <tt>casez</tt>. They
all have the same basic syntax except for which keyword is used. They
are similar in purpose to the C <tt>switch</tt> statement, but have
some important differences. An example of a <tt>case</tt> statement
is:
<pre>
case (r)
2'b00: u = 3;
2'b0x, 2'b0z: u = 4;
2'b10, 2'b11, 2'bx1: u = 5;
2'bxx: u = 6;
default: u = 7;
endcase
</pre>
This statement will compare <tt>r</tt> against each of the branches in
order until a match is found. Comparison is done with case equality
(<tt>===</tt>) meaning that there must be an exact bit-by-bit match
including any unknown (x) or floating (z) bits. You may also specify
more than one value for each branch of the case.
<p>
The <tt>casez</tt> statement differs from <tt>case</tt> in that any
floating (z) bits in the case values or in the expression are treated
as don't cares. You may also use a "?" in the case values in place of
"z". The <tt>casex</tt> statement differs in that both floating (z)
and unknown (x) bits are treated as don't cares. An example of a
<tt>casex</tt> statement is:
<pre>
casez (r)
8'b1101????: u = 3;
8'b1001????: u = 4;
8'b00????01: u = 5;
default: u = 7;
endcase
</pre>
Like conditional statements, you may nest <tt>case</tt> and
<tt>if</tt> statements and use <tt>begin...end</tt> block in the body
of a branch.
<p>
Another difference between the Verilog <tt>case</tt>, <tt>casez</tt>
and <tt>casex</tt> statements compared to the C <tt>switch</tt>
statement is that the case values need not be constants. For example,
you can write:
<pre>
reg [7:0] r, v1, v2,v3;
case (r)
v1: $display("r matched v1");
(v2+1): $display("r matched v2+1");
v3: $display("r matched v3");
default: $display("r didn't match anything");
endcase
</pre>
The case expressions are evaluated as the simulator tries <tt>r</tt>
against each expression looking for the first match.
<h4> 4.8.11 Loops</h4>
There are four types of looping statements in Verilog that will be
described in this section.
<h5><tt>while</tt> Loops</h5>
<tt>while</tt> loops look and behave similarly to <tt>while</tt> loops
in C programs. An example use of a <tt>while</tt> loop is shown below:
<pre>
always
begin
count = 0;
while (count < 10)
#12 count = count + 1;
end
</pre>
This description will set <tt>count</tt> to 0, then increment
<tt>count</tt> ten times with a 12 epoch delay between each time it is
incremented.
<h5><tt>for</tt> Loops</h5>
<tt>for</tt> loops also look and behave similarly to <tt>for</tt>
loops in C programs. An example use of a <tt>for</tt> loop is shown below:
<pre>
reg [7:0] r;
integer i;
always @(r)
for (i = 0;i < 8;i = i + 1)
$display("Bit %d of r is %b.",i,r[i]);
</pre>
This code would wait or the value of <tt>r</tt> to change, then print
out each bit of it individually.
<h5><tt>repeat</tt> Loops</h5>
<tt>repeat</tt> loops can be used to repeat a statement a specified
number of times. For example:
<pre>
repeat (10)
#12 count = count + 1;
</pre>
would increment <tt>count</tt> ten times with a 12 time unit delay
between each increment.
<h5><tt>forever</tt> Loops</h5>
<tt>forever</tt> loops can be used to repeat a statement indefinitely
. For example:
<pre>
forever
#12 count = count + 1;
</pre>
would increment <tt>count</tt> every 12 time units. Control would
never pass to any statements after the <tt>forever</tt> statement.
<h4> 4.8.12 <tt>fork...join</tt> Blocks</h4>
<tt>fork...join</tt> blocks can be used to execute two or more
statements in parallel. A new thread is started for each statement in
the fork, and the threads are executed in parallel. Execution of the
parent thread is suspended until all statements in the <tt>fork</tt>
have completed. The statements in the <tt>fork</tt> may be
<tt>begin...end</tt> blocks in which case the statements enclosed
within each <tt>begin...end</tt> block will be executed sequentially.
Here is an example of a module using a <tt>fork...join</tt>.
<pre>
(1) module top;
(2) reg [31:0] a,b,c;
(3)
(4) initial
(5) begin
(6) fork
(7) @(a) $display("%t: got a",$time);
(8) @(b) $display("%t: got b",$time);
(9) @(c) $display("%t: got c",$time);
(10) join
(11) $display("%t: done with fork",$time);
(12) end
(13)
(14) initial
(15) begin
(16) #1 a = 1;
(17) #1 b = 1;
(18) #1 c = 1;
(19) end
(20)
(21) endmodule
</pre>
When simulated, this example would produce the output:
<pre>
1: got a
2: got b
3: got c
3: done with fork
</pre>
The three threads at Lines (7), (8) and (9) are started in parallel.
Each of those threads immediately suspend waiting for changes in
<tt>a</tt>, <tt>b</tt> and <tt>c</tt>, respectively. The
<tt>initial</tt> block at Line (14) also begins executing at time 0,
then sets <tt>a</tt>, <tt>b</tt> and <tt>c</tt> in order with a 1 time
unit delay between each assignment. As each assignment occurs, one of
the forks in the <tt>fork...join</tt> sees the change, prints its
message and terminates. When all three forks of the
<tt>fork...join</tt> have terminated, execution continues in the main
thread after the <tt>fork...join</tt> and the "done with fork" message
is displayed.
<h4> 4.8.13 Tasks</h4>
Tasks are similar to function calls in C. Tasks are defined in the
context of a module. They begin with the <tt>task</tt> keyword, and
are followed by the task name, an optional parameter list, a body, and
the <tt>endtask</tt> keyword. The body can contain any of the
statements that may appear of the behavioral Verilog statements
described in this section. Tasks may address both local variables
defined within them and variables in the parent module. Here is
example of a module that defines and uses a task:
<pre>
(1) module top;
(2) reg [15:0] s1,s2;
(3)
(4) task domult(input [15:0] a, input [15:0] b, output [15:0] z);
(5) begin
(6) #1 z = a * b;
(7) end
(8) endtask
(9)
(10) initial
(11) begin
(12) domult(3,5,s1);
(13) $display("%t: s1=%d",$time,s1);
(14) domult(7,11,s2);
(15) $display("%t: s2=%d",$time,s2);
(16) end
(17)
(18) endmodule
</pre>
The task <tt>domul</tt> take two inputs <tt>a</tt> and <tt>b</tt>,
delays for one epoch, then stores their product in the output
<tt>z</tt>. We make two calls in to <tt>domul</tt> in the main body
of the module, assigning values to <tt>s1</tt> and <tt>s2</tt>. When
simulated, this module will produce the output:
<pre>
1: s1=15
2: s2=77
</pre>
Tasks can use <tt>input</tt>, <tt>output</tt> and <tt>inout</tt> ports
declared in their parameter list as shown on Line (4) of the example.
These ports can either be declared in a port list as shown in the
example, or they may be declared in separate declarations as in:
<pre>
task domult;
input [15:0] a, b;
output [15:0] z;
begin
#1 z = a * b;
end
endtask
</pre>
It is also possible to have tasks with no ports as in this example:
<pre>
(1) module myclock(x);
(2) output reg x;
(3)
(4) task initialize_clock;
(5) begin
(6) x = 1'b0;
(7) end
(8) endtask
(9)
(10) initial
(11) initialize_clock();
(12)
(13) always
(14) #100 x = ~x;
(15)
(16) endmodule
</pre>
In this example, the <tt>initialize_clock</tt> task sets the register
<tt>x</tt> to 0. By placing all the initialization code in a task, we
have made our design more general. If future versions of our module
become more complex, we have a place to put any additional
initialization code.
<p>
Additional local variables can be declared before the
<tt>begin...end</tt> block inside the task. For example:
<pre>
task printbits(input [7:0] a);
integer i;
begin
$display("Here are the bits in %d:",a);
for (i = 0;i < 8;i = i + 1)
$display(" bit %d is %b.",i,a[i]);
end
endtask
</pre>
will print out:
<pre>
Here are the bits in 184:
bit 0 is 0
bit 1 is 0
bit 2 is 0
bit 3 is 1
bit 4 is 1
bit 5 is 1
bit 6 is 0
bit 7 is 1
</pre>
when invoked with <tt>printbits(184)</tt>.
<p>
One important difference between Verilog tasks, and C functions is
that local variables are shared across all invocations of the task.
This can cause problems when a task is invoked concurrently on two
different threads. For example, consider this module in which
<tt>domult</tt> is invoked concurrently in two different threads of a
<tt>fork...join</tt> block:
<pre>
(1) module top;
(2) reg [15:0] s1,s2;
(3)
(4) task domult(input [15:0] a, input [15:0] b, output [15:0] z);
(5) begin
(6) #1 z = a * b;
(7) end
(8) endtask
(9)
(10) initial
(11) fork
(12) begin
(13) domult(3,5,s1);
(14) $display("%t: s1=%d",$time,s1);
(15) end
(16) begin
(17) domult(7,11,s2);
(18) $display("%t: s2=%d",$time,s2);
(19) end
(20) join
(21)
(22) endmodule
</pre>
When this module was simulated,the following seemingly incorrect
output was produced:
<pre>
1: s1=77
1: s2=77
</pre>
The problem is that since, the local variables <tt>a</tt> and
<tt>b</tt> are shared between the two invocations, which ever
invocation gets invoked second, will overwrite those values. In this
case, the invocation at Line (17) was invoked second, so by the time
Line (6) is called, <tt>a</tt> and <tt>b</tt> have been set to 7 and
11 in both invocations. In general, the values of <tt>a</tt> and
<tt>b</tt> are non-deterministic since there is no guarantee as to
which thread will execute first. To solve this problem, you can use
the <tt>automatic</tt> keyword in the task declaration, writing:
<pre>
(4) automatic task domult(input [15:0] a, input [15:0] b, output [15:0] z);
(5) begin
(6) #1 z = a * b;
(7) end
(8) endtask
</pre>
in place of Lines (4) through (8) above. The <tt>automatic</tt>
keyword causes local variables in a task to be private to each
invocation at a slight performance penalty to the simulation. When
this corrected design is simulated, the simulator output becomes:
<pre>
1: s1=15
1: s2=77
</pre>
This agrees more with our expectations, although technically, the
order in which the two output lines is printed is still
non-deterministic.
<h4> 4.8.14 Functions</h4>
Functions are very similar to tasks, but have some additional
restrictions. They must
<ul>
<li> return a single value,
<li> use only <tt>input</tt> ports,
<li> must not contain any delay or event-triggered statements, and
<li> must not contain any non-blocking assignments.
</ul>
Unlike tasks, functions can also be used in <tt>assign</tt> statements
outside of normal behavioral Verilog blocks. Here is an example of a
function definition and invocation:
<pre>
(1) module top;
(2) reg [15:0] s1,s2;
(3)
(4) function [15:0] sqaddmult(input [15:0] a, input [15:0] b, input [15:0] c);
(5) reg [15:0] temp;
(5) begin
(6) temp = b + c;
(7) sqaddmult = a * temp * temp;
(8) end
(9) endtask
(10)
(11) initial
(12) begin
(13) #1 $display("%t: s1=%d",$time,sqaddmult(3,4,5));
(14) #1 $display("%t: s2=%d",$time,sqaddmult(6,7,8));
(15) end
(16)
(17) endmodule
</pre>
This function adds <tt>b</tt> and <tt>c</tt>, squares the sum and puts
the result into the temporary variable <tt>temp</tt>, then multiplies
<tt>temp</tt> by the value of <tt>a</tt>. The return value of the
function is indicated by the assignment to <tt>sqaddmult</tt>, the
name of the function. The <tt>[15:0]</tt> after the <tt>function</tt>
keyword in Line 4 tells us that the return value is 16 bits.
<p>
Just as with tasks, you can also use the alternate syntax:
<pre>
function [15:0] sqaddmult;
input [15:0] a, b, c;
</pre>
to declare the function and its ports. Also just like with tasks,
local variables are shared among invocations unless you use the
<tt>automatic</tt> keyword before <tt>function</tt>. However, due to
a limitation in the TkGate Verilog simulator implementation, you can
only use <tt>automatic</tt> to protect against alternate threads
accessing the same function, you can not use it to write recursive
functions.
<p>
One use of functions is to define complex combinational logic in a
concise algorithmic manner such as:
<pre>
(1) module mylogic(x,a,b,c);
(2) output [15:0] x;
(3) input [15:0] a,b,c;
(4)
(5) function foo(input [15:0] a,input [15:0] b,input [15:0] c);
(6) begin
(7) r1 = (a[7:0] ^ b[7:0] ^ c[7:0]) + (a[15:8] ^ b[15:8] ^ c[15:8]);
(8) r2 = (a[7:0] ^ b[15:8] ^ c[7:0]) + (a[15:8] ^ b[7:0] ^ c[15:8]);
(9) r3 = (a[7:0] ^ b[7:0] ^ c[15:8]) + (a[15:8] ^ b[15:8] ^ c[7:0]);
(10) r4 = (a[7:0] ^ b[15:8] ^ c[15:8]) + (a[15:8] ^ b[7:0] ^ c[7:0])
(11) foo = r1 ^ r2 ^ r3 ^ r4;
(12) end
(13) endfunction
(14)
(15) assign x = foo(a,b,c);
(16)
(17) endmodule
</pre>
<A NAME=parameters></A>
<h3>4.9 Module Parameters</h3>
The <tt>parameter</tt> variable type was introduced in <a
href="#parmtype">Section 4.3.6</a>. You can also declare module
parameters that can be overridden by instantiating modules. Module
parameters are declared in a separate list before the port list. This
list has the syntax:
<br>
<br>
<tt>#(
.</tt><i>name1</i><tt>(</tt><i>value1</i><tt>), </tt>
.</tt><i>name2</i><tt>(</tt><i>value2</i><tt>), </tt>...<tt>)</tt>
<br>
<br>
The names <i>name1</i>, <i>name2</i>, etc. are the names of the module
parameters, and the values <i>value1</i>, <i>value2</i>, etc. are the
default values of those parameters. As an example, consider this
module implementing and AND gate with a parameter <tt>delay</tt> for
specifying the delay.
<pre>
(1) module AND2 #(.delay(5)) (z, a, b);
(2) output z;
(3) input a,b;
(4)
(5) assign #delay z = a & b;
(6)
(7) endmodule
</pre>
The default value for <tt>delay</tt> in this example is 5. When
overriding the module parameters in an instantiation, the parameter
list is specified after the module name, but before any instance
names. For example:
<pre>
(1) module ADDER(s, co, a, b, ci);
(2) output s, co;
(3) input a,b,ci;
(4) wire w1,w2,w3 ;
(5)
(6) OR2 #(6) g1 (.a(w1), .b(w2), .z(co));
(7) AND2 #(6) g2 (.a(a), .b(b), .z(w2));
(8) AND2 #(7) g3 (.a(w3), .b(ci), .z(w1));
(9) XOR2 #(8) g4 (.a(w3), .b(ci), .z(s));
(10) XOR2 #(8) g5 (.a(a), .b(b), .z(w3));
(11)
(12) endmodule
</pre>
This would create a design where the delay of instance <tt>g2</tt> is
6, and the delay of <tt>g3</tt> is 7. You can also omit the
parameter values entirely writing:
<pre>
AND2 g2 (.a(a), .b(b), .z(w2));
</pre>
to use the default values of the parameters.
<A NAME=specify></A>
<h3>4.10 Specify Blocks</h3>
Specify blocks are an alternative way to specify the delay of
combinational logic without specifying gate-by-gate delay. They can
also be used to specify setup and hold times for registers in your
design.
<p>
A specify block is delimited by the <tt>specify...endspecify</tt>
keywords. Each statement in a specify block is either a path delay
statement, or a constraint task used to verify timing constraints.
<h4>4.10.1 Path Delay Statements</h4>
Path delay statements specify the delay from one or more input ports
to one or output ports. The syntax is:
<br>
<br>
<tt>(</tt><i>in1</i><tt>,</tt> <i>in2</i><tt>,</tt> ...<tt> *></tt>
</tt><i>out1</i><tt>,</tt> <i>out2</i><tt>,</tt> ...<tt>) =</tt> <i>value</i><tt>;</tt>
or
<tt>(</tt><i>in1</i><tt>,</tt> <i>in2</i><tt>,</tt> ...<tt> =></tt>
</tt><i>out1</i><tt>,</tt> <i>out2</i><tt>,</tt> ...<tt>) =</tt> <i>value</i><tt>;</tt>
<br>
<br>
where <i>in1</i>, <i>in2</i>, etc. are <tt>input</tt> ports and
<i>out1</i>, <i>out2</i>, etc. are <tt>output</tt> ports. These
expressions specify a delay of <i>value</i> from each of the input
ports to each of the output ports. The Verilog specification
differentiates between the <tt>=></tt> and <tt>*></tt> versions in
that the <tt>=></tt> only specifies delay for corresponding bits of
each port, while the <tt>*></tt> specifies delay from each bit of each
input port to every bit of each output port. However, the TkGate
Verilog simulator does not support bit-by-bit delay specifications, so
in TkGate, both forms are treated the same as <tt>*></tt>.
<p>
Here is an example of a combinational logic circuit using a
<tt>specify</tt> block:
<pre>
(1) module dosomething(a,b,c,x,y,z);
(2) input a,b,c;
(3) output x,y,z;
(4) wire q,r;
(5)
(6) specify
(7) (a,b *> x) = 12;
(8) (c *> x) = 8;
(9) (a *> y) = 11;
(10) (c *> y) = 16;
(11) (b *> z) = 23;
(12) (c *> z) = 18;
(13) endspecify
(14)
(15) assign r = q & c;
(16) assign x = a ^ b ^ r;
(17) assign y = a & c;
(18) assign z = c & b;
(19) assign q = a & b;
(20)
(21) endmodule
</pre>
The statement at Line 7 states that any changes on <tt>a</tt> or
<tt>b</tt> will be reflected at <tt>x</tt> after 12 time units.
Changes on <tt>c</tt> will appear at <tt>x</tt> after 8 time units,
and so on.
<p>
A path delay statement may also have a condition attached to it using
the <tt>if</tt> keyword. For example:
<pre>
module XOR(a,b,x);
input a,b;
output x;
specify
if (a) (a *> x) = 10;
if (!a) (a *> x) = 21;
(b *> x) = 12;
endspecify
assign x = a ^ b;
endmodule
</pre>
This will implement an XOR gate that has a delay of 10 when <tt>a</tt>
has a 1 value, and a delay of 21 when <tt>a</tt> has a value of 0.
The delay from input <tt>b</tt> is 12, irregardless of the input
values. There is no <tt>else</tt> in the <tt>if</tt> clause used with
path delay statements, so you must ensure that you cover every
possible condition.
<h4>4.10.2 Specparam Declarations</h4>
You can define parameters for use exclusively within a
<tt>specify</tt> block using the <tt>specparam</tt> keyword. You can
assign either a constant, or an expression using other
<tt>specparam</tt> parameters, or <tt>parameter</tt> variables defined
in the module. Here is an example using a <tt>specparam</tt>:
<pre>
specify
specparam ab_delay = 7;
(a *> b) = ab_delay;
endspecify
</pre>
<a name=constraintTasks>
<h4>4.10.3 Constraint Tasks</h4>
Another use of <tt>specify</tt> blocks is to ensure that certain
timing constraints are met. For example, most real hardware latches
require that the input data line be held constant for some time period
before the clock arrives. This is called "setup" time. There is also
often a constraint that the input data line hold its value for some
time period after the clock pulse. This is called "hold" time. There
may also be width restrictions on the clock used to drive the latch.
The example below uses a <tt>specify</tt> block to encode all of these
requirements. Each of the statements in the <tt>specify</tt> block
will be addressed in turn.
<pre>
module latch(ck,data,out);
input ck,data;
output out;
reg out = 1'bx;
specify
$setup(data, posedge ck, 10);
$hold(posedge ck, data, 10);
$width(posedge ck, 25);
endspecify
always @(posedge ck)
out = data;
endmodule
</pre>
<h5>The <tt>$setup</tt> Check</h5>
The <tt>$setup</tt> check has the syntax:
<br>
<br>
<tt>$setup(</tt><i>data</i><tt>,</tt> <i>clock</i><tt>,</tt> <i>limit</i> <tt>)</tt>
<br>
<br>
It is used to verify that a setup constraint is satisfied. The
<i>data</i> parameter should reference the data line on which you wish
to perform the setup check. The <i>clock</i> parameter specifies the
clock event for which the data must be set up. The <i>limit</i>
parameter specifies the minimum delay time allowed between the data
event and the clock event. If this constraint is violated, the TkGate
Verilog simulator will issue a warning message, but normal simulation
of the circuit will continue.
<p>
You can conditionally execute a check using the <tt>&&&</tt> operator
in the <i>clock</i> parameter. For example:
<pre>
$setup(data, posedge ck &&& enable, 10);
</pre>
would only perform the setup check if the <tt>enable</tt> signal were
asserted.
<h5>The <tt>$hold</tt> Check</h5>
The <tt>$hold</tt> check has the syntax:
<br>
<br>
<tt>$hold(</tt> <i>clock</i><tt>, </tt><i>data</i><tt>,</tt> <i>limit</i> <tt>)</tt>
<br>
<br>
It is used to verify that a hold constraint is satisfied. The
<i>clock</i> parameter references the clock event which begins the
hold period. The <i>data</i> parameter indicates the data signal that
must be held constant during the hold period. The <i>limit</i>
indicates the time period for which the <i>data</i> line can not
change after the clock event. If this constraint is violated, the
TkGate Verilog simulator will issue a warning message, but normal
simulation of the circuit will continue.
<p>
Like with the <tt>$setup</tt> check,
you can use the <tt>&&&</tt> operator in the <i>clock</i> parameter to
set a condition on when to do the check.
<h5>The <tt>$width</tt> Check</h5>
The <tt>$width</tt> check as the syntax:
<br>
<br>
<tt>$width(</tt> <i>event</i><tt>, </tt> <i>limit</i> <tt>)</tt>
<br>
<br>
It is used to verify that the width of a pulse exceeds a minimum
value. The <i>event</i> parameter indicates an event (rising or
falling) on the signal that is to be tested. The <tt>posedge</tt> and
<tt>negedge</tt> keyword are used to indicate on which edge to start
the test. For example:
<pre>
$width(posedge ck, 25);
</pre>
will check that the time the time between the positive/rising edge of
<tt>ck</tt>, and the opposite (in this case negative/falling) edge of
<tt>ck</tt> is at least 25 time units. If this constraint is
violated, the TkGate Verilog simulator will issue a warning message,
but normal simulation of the circuit will continue.
<br>
<br>
<br>
</body>
</html>
|