This file is indexed.

/usr/share/doc/yacas-doc/html/refprogchapter3.html is in yacas-doc 1.3.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
<html>
<head>
  <title>Arbitrary-precision numerical programming</title>
  <link rel="stylesheet" href="yacas.css" TYPE="text/css" MEDIA="screen">
</head>
<body>
<a name="c3">

</a>
(directly go to documentation on : <a href="refprogchapter3.html#MultiplyNum" target='Chapters' title="optimized numerical multiplication">MultiplyNum</a>, <a href="refprogchapter3.html#CachedConstant" target='Chapters' title="precompute multiple-precision constants">CachedConstant</a>, <a href="refprogchapter3.html#NewtonNum" target='Chapters' title="low-level optimized Newton's iterations">NewtonNum</a>, <a href="refprogchapter3.html#SumTaylorNum" target='Chapters' title="optimized numerical evaluation of Taylor series">SumTaylorNum</a>, <a href="refprogchapter3.html#IntPowerNum" target='Chapters' title="optimized computation of integer powers">IntPowerNum</a>, <a href="refprogchapter3.html#BinSplitNum" target='Chapters' title="computations of series by the binary splitting method">BinSplitNum</a>, <a href="refprogchapter3.html#BinSplitData" target='Chapters' title="computations of series by the binary splitting method">BinSplitData</a>, <a href="refprogchapter3.html#BinSplitFinal" target='Chapters' title="computations of series by the binary splitting method">BinSplitFinal</a>, <a href="refprogchapter3.html#MathSetExactBits" target='Chapters' title="manipulate precision of floating-point numbers">MathSetExactBits</a>, <a href="refprogchapter3.html#MathGetExactBits" target='Chapters' title="manipulate precision of floating-point numbers">MathGetExactBits</a>, <a href="refprogchapter3.html#InNumericMode" target='Chapters' title="determine if currently in numeric mode">InNumericMode</a>, <a href="refprogchapter3.html#NonN" target='Chapters' title="calculate part in non-numeric mode">NonN</a>, <a href="refprogchapter3.html#IntLog" target='Chapters' title="integer part of logarithm">IntLog</a>, <a href="refprogchapter3.html#IntNthRoot" target='Chapters' title="integer part of <b>n</b>-th root">IntNthRoot</a>, <a href="refprogchapter3.html#NthRoot" target='Chapters' title="calculate/simplify nth root of an integer">NthRoot</a>, <a href="refprogchapter3.html#ContFracList" target='Chapters' title="manipulate continued fractions">ContFracList</a>, <a href="refprogchapter3.html#ContFracEval" target='Chapters' title="manipulate continued fractions">ContFracEval</a>, <a href="refprogchapter3.html#GuessRational" target='Chapters' title="find optimal rational approximations">GuessRational</a>, <a href="refprogchapter3.html#NearRational" target='Chapters' title="find optimal rational approximations">NearRational</a>, <a href="refprogchapter3.html#BracketRational" target='Chapters' title="find optimal rational approximations">BracketRational</a>, <a href="refprogchapter3.html#TruncRadian" target='Chapters' title="remainder modulo <b>2*Pi</b>">TruncRadian</a>, <a href="refprogchapter3.html#Builtin'Precision'Set" target='Chapters' title="set the precision">Builtin'Precision'Set</a>, <a href="refprogchapter3.html#Builtin'Precision'Get" target='Chapters' title="get the current precision">Builtin'Precision'Get</a>.
)<h1>
3. Arbitrary-precision numerical programming
</h1>
This chapter contains functions that help programming numerical calculations with arbitrary precision.

<p> </p>
<center><table>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#MultiplyNum" target='Chapters' title="optimized numerical multiplication">MultiplyNum</a></td>
<td>optimized numerical multiplication</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#CachedConstant" target='Chapters' title="precompute multiple-precision constants">CachedConstant</a></td>
<td>precompute multiple-precision constants</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#NewtonNum" target='Chapters' title="low-level optimized Newton's iterations">NewtonNum</a></td>
<td>low-level optimized Newton's iterations</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#SumTaylorNum" target='Chapters' title="optimized numerical evaluation of Taylor series">SumTaylorNum</a></td>
<td>optimized numerical evaluation of Taylor series</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#IntPowerNum" target='Chapters' title="optimized computation of integer powers">IntPowerNum</a></td>
<td>optimized computation of integer powers</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#BinSplitNum" target='Chapters' title="computations of series by the binary splitting method">BinSplitNum</a></td>
<td>computations of series by the binary splitting method</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#BinSplitData" target='Chapters' title="computations of series by the binary splitting method">BinSplitData</a></td>
<td>computations of series by the binary splitting method</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#BinSplitFinal" target='Chapters' title="computations of series by the binary splitting method">BinSplitFinal</a></td>
<td>computations of series by the binary splitting method</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#MathSetExactBits" target='Chapters' title="manipulate precision of floating-point numbers">MathSetExactBits</a></td>
<td>manipulate precision of floating-point numbers</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#MathGetExactBits" target='Chapters' title="manipulate precision of floating-point numbers">MathGetExactBits</a></td>
<td>manipulate precision of floating-point numbers</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#InNumericMode" target='Chapters' title="determine if currently in numeric mode">InNumericMode</a></td>
<td>determine if currently in numeric mode</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#NonN" target='Chapters' title="calculate part in non-numeric mode">NonN</a></td>
<td>calculate part in non-numeric mode</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#IntLog" target='Chapters' title="integer part of logarithm">IntLog</a></td>
<td>integer part of logarithm</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#IntNthRoot" target='Chapters' title="integer part of <b>n</b>-th root">IntNthRoot</a></td>
<td>integer part of <b>n</b>-th root</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#NthRoot" target='Chapters' title="calculate/simplify nth root of an integer">NthRoot</a></td>
<td>calculate/simplify nth root of an integer</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#ContFracList" target='Chapters' title="manipulate continued fractions">ContFracList</a></td>
<td>manipulate continued fractions</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#ContFracEval" target='Chapters' title="manipulate continued fractions">ContFracEval</a></td>
<td>manipulate continued fractions</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#GuessRational" target='Chapters' title="find optimal rational approximations">GuessRational</a></td>
<td>find optimal rational approximations</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#NearRational" target='Chapters' title="find optimal rational approximations">NearRational</a></td>
<td>find optimal rational approximations</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#BracketRational" target='Chapters' title="find optimal rational approximations">BracketRational</a></td>
<td>find optimal rational approximations</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#TruncRadian" target='Chapters' title="remainder modulo <b>2*Pi</b>">TruncRadian</a></td>
<td>remainder modulo <b>2*Pi</b></td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#Builtin'Precision'Set" target='Chapters' title="set the precision">Builtin'Precision'Set</a></td>
<td>set the precision</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refprogchapter3.html#Builtin'Precision'Get" target='Chapters' title="get the current precision">Builtin'Precision'Get</a></td>
<td>get the current precision</td>
</tr>
</table></center>

<p>

<a name="MultiplyNum">

</a>
<a name="multiplynum">

</a>
<h3>
<hr>MultiplyNum -- optimized numerical multiplication
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
MultiplyNum(x,y)
MultiplyNum(x,y,z,...)
MultiplyNum({x,y,z,...})
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>x</tt></b>, <b><tt>y</tt></b>, <b><tt>z</tt></b> -- integer, rational or floating-point numbers to multiply


<p>

<h5>
Description:
</h5>
The function <b><tt>MultiplyNum</tt></b> is used to speed up multiplication of floating-point numbers with rational numbers. Suppose we need to compute <b>p/q*x</b> where <b> p</b>, <b> q</b> are integers and <b> x</b> is a floating-point number. At high precision, it is faster to multiply <b> x</b> by an integer <b> p</b> and divide by an integer <b> q</b> than to compute <b> p/q</b> to high precision and then multiply by <b> x</b>. The function  <b><tt>MultiplyNum</tt></b> performs this optimization.


<p>
The function accepts any number of arguments (not less than two) or a list of numbers. The result is always a floating-point number (even if <b><tt>InNumericMode()</tt></b> returns False).


<p>

<h5>
See also:
</h5>
<a href="ref.html?MathMultiply" target="Chapters">
MathMultiply
</a>
.<a name="CachedConstant">

</a>
<a name="cachedconstant">

</a>
<h3>
<hr>CachedConstant -- precompute multiple-precision constants
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
CachedConstant(cache, Cname, Cfunc)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>cache</tt></b> -- atom, name of the cache


<p>
<b><tt>Cname</tt></b> -- atom, name of the constant


<p>
<b><tt>Cfunc</tt></b> -- expression that evaluates the constant


<p>

<h5>
Description:
</h5>
This function is used to create precomputed multiple-precision values of
constants. Caching these values will save time if they are frequently used.


<p>
The call to <b><tt>CachedConstant</tt></b> defines a new function named <b><tt>Cname()</tt></b> that
returns the value of the constant at given precision. If the precision is
increased, the value will be recalculated as necessary, otherwise calling <b><tt>Cname()</tt></b> will take very little time.


<p>
The parameter <b><tt>Cfunc</tt></b> must be an expression that can be evaluated and returns
the value of the desired constant at the current precision. (Most arbitrary-precision mathematical functions do this by default.)


<p>
The associative list <b><tt>cache</tt></b> contains elements of the form <b><tt>{Cname, prec, value}</tt></b>, as illustrated in the example. If this list does not exist, it will be created.


<p>
This mechanism is currently used by <b><tt>N()</tt></b> to precompute the values of <b> Pi</b> and <b> gamma</b> (and the golden ratio through <b><tt>GoldenRatio</tt></b>, and <b><tt>Catalan</tt></b>).
The name of the cache for <b><tt>N()</tt></b> is <b><tt>CacheOfConstantsN</tt></b>.
The code in the function <b><tt>N()</tt></b> assigns unevaluated calls to <b><tt>Internal'Pi()</tt></b> and <b><tt>Internal'gamma()</tt></b> to the atoms <b><tt>Pi</tt></b> and <b><tt>gamma</tt></b> and declares them to be lazy global variables through <b><tt>SetGlobalLazyVariable</tt></b> (with equivalent functions assigned to other constants that are added to the list of cached constants).


<p>
The result is that the constants will be recalculated only when they are used in the expression under <b><tt>N()</tt></b>.
In other words, the code in <b><tt>N()</tt></b> does the equivalent of


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
SetGlobalLazyVariable(mypi,Hold(Internal'Pi()));
SetGlobalLazyVariable(mygamma,Hold(Internal'gamma()));
</pre></tr>
</table>


<p>
After this, evaluating an expression such as <b><tt>1/2+gamma</tt></b> will call the function <b><tt>Internal'gamma()</tt></b> but not the function <b><tt>Internal'Pi()</tt></b>.


<p>

<h5>
Example:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; CachedConstant( my'cache, Ln2, Internal'LnNum(2) )
Out&gt; True;
In&gt; Internal'Ln2()
Out&gt; 0.6931471806;
In&gt; V(N(Internal'Ln2(),20))
CachedConstant: Info: constant Ln2 is being
  recalculated at precision 20 
Out&gt; 0.69314718055994530942;
In&gt; my'cache
Out&gt; {{"Ln2",20,0.69314718055994530942}};
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?N" target="Chapters">
N
</a>
, <a href="ref.html?Builtin'Precision'Set" target="Chapters">
Builtin'Precision'Set
</a>
, <a href="ref.html?Pi" target="Chapters">
Pi
</a>
, <a href="ref.html?GoldenRatio" target="Chapters">
GoldenRatio
</a>
, <a href="ref.html?Catalan" target="Chapters">
Catalan
</a>
, <a href="ref.html?gamma" target="Chapters">
gamma
</a>
.<a name="NewtonNum">

</a>
<a name="newtonnum">

</a>
<h3>
<hr>NewtonNum -- low-level optimized Newton's iterations
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
NewtonNum(func, x0, prec0, order)
NewtonNum(func, x0, prec0)
NewtonNum(func, x0)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>func</tt></b> -- a function specifying the iteration sequence


<p>
<b><tt>x0</tt></b> -- initial value (must be close enough to the root)


<p>
<b><tt>prec0</tt></b> -- initial precision (at least 4, default 5)


<p>
<b><tt>order</tt></b> -- convergence order (typically 2 or 3, default 2)


<p>

<h5>
Description:
</h5>
This function is an optimized interface for computing Newton's
iteration sequences for numerical solution of equations in arbitrary precision.


<p>
<b><tt>NewtonNum</tt></b> will iterate the given function starting from the initial
value, until the sequence converges within current precision.
Initially, up to 5 iterations at the initial precision <b><tt>prec0</tt></b> is
performed (the low precision is set for speed). The initial value <b><tt>x0</tt></b>
must be close enough to the root so that the initial iterations
converge. If the sequence does not produce even a single correct digit
of the root after these initial iterations, an error message is
printed. The default value of the initial precision is 5.


<p>
The <b><tt>order</tt></b> parameter should give the convergence order of the scheme.
Normally, Newton iteration converges quadratically (so the default
value is <b><tt>order</tt></b>=2) but some schemes converge faster and you can speed
up this function by specifying the correct order. (Caution: if you give
<b><tt>order</tt></b>=3 but the sequence is actually quadratic, the result will be
silently incorrect. It is safe to use <b><tt>order</tt></b>=2.)


<p>


<p>

<h5>
Example:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; Builtin'Precision'Set(20)
Out&gt; True;
In&gt; NewtonNum({{x}, x+Sin(x)}, 3, 5, 3)
Out&gt; 3.14159265358979323846;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?Newton" target="Chapters">
Newton
</a>
.<a name="SumTaylorNum">

</a>
<a name="sumtaylornum">

</a>
<h3>
<hr>SumTaylorNum -- optimized numerical evaluation of Taylor series
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
SumTaylorNum(x, NthTerm, order)
SumTaylorNum(x, NthTerm, TermFactor, order)
SumTaylorNum(x, ZerothTerm, TermFactor, order)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>NthTerm</tt></b> -- a function specifying <b> n</b>-th coefficient of the series


<p>
<b><tt>ZerothTerm</tt></b> -- value of the <b> 0</b>-th coefficient of the series


<p>
<b><tt>x</tt></b> -- number, value of the expansion variable


<p>
<b><tt>TermFactor</tt></b> -- a function specifying the ratio of <b> n</b>-th term to the previous one


<p>
<b><tt>order</tt></b> -- power of <b> x</b> in the last term


<p>

<h5>
Description:
</h5>
<b><tt>SumTaylorNum</tt></b> computes a Taylor series <b> Sum(k,0,n,a[k]*x^k)</b>
numerically. This function allows very efficient computations of
functions given by Taylor series, although some tweaking of the
parameters is required for good results.


<p>
The coefficients <b>a[k]</b> of the Taylor series are given as functions of one integer variable (<b>k</b>). It is convenient to pass them to <b><tt>SumTaylorNum</tt></b> as closures.
For example, if a function <b><tt>a(k)</tt></b> is defined, then
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
SumTaylorNum(x, {{k}, a(k)}, n)
</pre></tr>
</table>
computes the series <b> Sum(k,0,n,a(k)*x^k)</b>.


<p>
Often a simple relation between successive coefficients <b>a[k-1]</b>,
<b>a[k]</b> of the series is available; usually they are related by a
rational factor. In this case, the second form of <b><tt>SumTaylorNum</tt></b> should
be used because it will compute the series faster. The function
<b><tt>TermFactor</tt></b> applied to an integer <b>k&gt;=1</b> must return the ratio
<b> a[k]</b>/<b>a[k-1]</b>. (If possible, the function <b><tt>TermFactor</tt></b> should return
a rational number and not a floating-point number.) The function
<b><tt>NthTerm</tt></b> may also be given, but the current implementation only calls
<b><tt>NthTerm(0)</tt></b> and obtains all other coefficients by using <b><tt>TermFactor</tt></b>.
Instead of the function <b><tt>NthTerm</tt></b>, a number giving the <b>0</b>-th term can be given.


<p>
The algorithm is described elsewhere in the documentation.
The number of terms <b><tt>order</tt></b>+1
must be specified and a sufficiently high precision must be preset in
advance to achieve the desired accuracy.
(The function <b><tt>SumTaylorNum</tt></b> does not change the current precision.)


<p>

<h5>
Examples:
</h5>
To compute 20 digits of <b> Exp(1)</b> using the Taylor series, one needs 21
digits of working precision and 21 terms of the series. 


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; Builtin'Precision'Set(21)
Out&gt; True;
In&gt; SumTaylorNum(1, {{k},1/k!}, 21)
Out&gt; 2.718281828459045235351;
In&gt; SumTaylorNum(1, 1, {{k},1/k}, 21)
Out&gt; 2.71828182845904523535;
In&gt; SumTaylorNum(1, {{k},1/k!}, {{k},1/k}, 21)
Out&gt; 2.71828182845904523535;
In&gt; RoundTo(N(Ln(%)),20)
Out&gt; 1;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?Taylor" target="Chapters">
Taylor
</a>
.<a name="IntPowerNum">

</a>
<a name="intpowernum">

</a>
<h3>
<hr>IntPowerNum -- optimized computation of integer powers
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
IntPowerNum(x, n, mult, unity)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>x</tt></b> -- a number or an expression


<p>
<b><tt>n</tt></b> -- a non-negative integer (power to raise <b><tt>x</tt></b> to)


<p>
<b><tt>mult</tt></b> -- a function that performs one multiplication


<p>
<b><tt>unity</tt></b> -- value of the unity with respect to that multiplication


<p>

<h5>
Description:
</h5>
<b><tt>IntPowerNum</tt></b> computes the power <b>x^n</b> using the fast binary algorithm.
It can compute integer powers with <b> n&gt;=0</b> in any ring where multiplication with unity is defined.
The multiplication function and the unity element must be specified.
The number of multiplications is no more than <b> 2*Ln(n)/Ln(2)</b>.


<p>
Mathematically, this function is a generalization of <b><tt>MathPower</tt></b> to rings other than that of real numbers.


<p>
In the current implementation, the <b><tt>unity</tt></b> argument is only used when the given power <b><tt>n</tt></b> is zero.


<p>

<h5>
Examples:
</h5>
For efficient numerical calculations, the <b><tt>MathMultiply</tt></b> function can be passed:
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; IntPowerNum(3, 3, MathMultiply,1)
Out&gt; 27;
</pre></tr>
</table>
Otherwise, the usual <b><tt>*</tt></b> operator suffices:
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; IntPowerNum(3+4*I, 3, *,1)
Out&gt; Complex(-117,44);
In&gt; IntPowerNum(HilbertMatrix(2), 4, *,
  Identity(2))
Out&gt; {{289/144,29/27},{29/27,745/1296}};
</pre></tr>
</table>
Compute <b>Mod(3^100,7)</b>:
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; IntPowerNum(3,100,{{x,y},Mod(x*y,7)},1)
Out&gt; 4;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?MultiplyNum" target="Chapters">
MultiplyNum
</a>
, <a href="ref.html?MathPower" target="Chapters">
MathPower
</a>
, <a href="ref.html?MatrixPower" target="Chapters">
MatrixPower
</a>
.<a name="BinSplitNum">

</a>
<a name="binsplitnum">

</a>
<h3>
<hr>BinSplitNum -- computations of series by the binary splitting method
</h3>
<a name="BinSplitData">

</a>
<a name="binsplitdata">

</a>
<h3>
<hr>BinSplitData -- computations of series by the binary splitting method
</h3>
<a name="BinSplitFinal">

</a>
<a name="binsplitfinal">

</a>
<h3>
<hr>BinSplitFinal -- computations of series by the binary splitting method
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
BinSplitNum(n1, n2, a, b, c, d)
BinSplitData(n1,n2, a, b, c, d)
BinSplitFinal({P,Q,B,T})
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>n1</tt></b>, <b><tt>n2</tt></b> -- integers, initial and final indices for summation


<p>
<b><tt>a</tt></b>, <b><tt>b</tt></b>, <b><tt>c</tt></b>, <b><tt>d</tt></b> -- functions of one argument, coefficients of the series


<p>
<b><tt>P</tt></b>, <b><tt>Q</tt></b>, <b><tt>B</tt></b>, <b><tt>T</tt></b> -- numbers, intermediate data as returned by <b><tt>BinSplitData</tt></b>


<p>

<h5>
Description:
</h5>
The binary splitting method is an efficient way to evaluate many series when fast multiplication is available and when the series contains only rational numbers.
The function <b><tt>BinSplitNum</tt></b> evaluates a series of the form

<p><center><b>S(n[1],n[2])=Sum(k,n[1],n[2],a(k)/b(k)*p(0)/q(0)*...*p(k)/q(k)).</b></center></p>

Most series for elementary and special functions at rational points are of this form when the functions <b>a(k)</b>, <b>b(k)</b>, <b>p(k)</b>, <b>q(k)</b> are chosen appropriately.


<p>
The last four arguments of <b><tt>BinSplitNum</tt></b> are functions of one argument that give the coefficients <b>a(k)</b>, <b>b(k)</b>, <b>p(k)</b>, <b>q(k)</b>.
In most cases these will be short integers that are simple to determine.
The binary splitting method will work also for non-integer coefficients, but the calculation will take much longer in that case.


<p>
Note: the binary splitting method outperforms the straightforward summation only if the multiplication of integers is faster than quadratic in the number of digits.
See <a href="Algochapter3.html#c3s14" target="Chapters">
the algorithm documentation
</a>
 for more information.


<p>
The two other functions are low-level functions that allow a finer control over the calculation.
The use of the low-level routines allows checkpointing or parallelization of a binary splitting calculation.


<p>
The binary splitting method recursively reduces the calculation of <b>S(n[1],n[2])</b> to the same calculation for the two halves of the interval [<b>n[1]</b>, <b>n[2]</b>].
The intermediate results of a binary splitting calculation are returned by <b><tt>BinSplitData</tt></b> and consist of four integers <b>P</b>, <b> Q</b>, <b> B</b>, <b> T</b>.
These four integers are converted into the final answer <b> S</b> by the routine <b><tt>BinSplitFinal</tt></b> using the relation

<p><center><b> S=T/(B*Q).</b></center></p>



<p>

<h5>
Examples:
</h5>
Compute the series for <b>e=Exp(1)</b> using binary splitting.
(We start from <b>n=1</b> to simplify the coefficient functions.)
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; Builtin'Precision'Set(21)
Out&gt; True;
In&gt;  BinSplitNum(1,21, {{k},1},
  {{k},1},{{k},1},{{k},k})
Out&gt; 1.718281828459045235359;
In&gt; N(Exp(1)-1)
Out&gt; 1.71828182845904523536;
In&gt;  BinSplitData(1,21, {{k},1},
  {{k},1},{{k},1},{{k},k})
Out&gt; {1,51090942171709440000,1,
  87788637532500240022};
In&gt; BinSplitFinal(%)
Out&gt; 1.718281828459045235359;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?SumTaylorNum" target="Chapters">
SumTaylorNum
</a>
.<a name="MathSetExactBits">

</a>
<a name="mathsetexactbits">

</a>
<h3>
<hr>MathSetExactBits -- manipulate precision of floating-point numbers
</h3>
<a name="MathGetExactBits">

</a>
<a name="mathgetexactbits">

</a>
<h3>
<hr>MathGetExactBits -- manipulate precision of floating-point numbers
</h3>
<h5 align=right>Internal function</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
MathGetExactBits(x)
MathSetExactBits(x,bits)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>x</tt></b> -- an expression evaluating to a floating-point number


<p>
<b><tt>bits</tt></b> -- integer, number of bits 


<p>

<h5>
Description:
</h5>
Each floating-point number in Yacas has an internal precision counter that stores the number of exact bits in the mantissa.
The number of exact bits is automatically updated after each arithmetic operation to reflect the gain or loss of precision due to round-off.
The functions <b><tt>MathGetExactBits</tt></b>, <b><tt>MathSetExactBits</tt></b> allow to query or set the precision flags of individual number objects.


<p>
<b><tt>MathGetExactBits(x)</tt></b> returns an integer number <b> n</b> such that <b><tt>x</tt></b> represents a real number in the interval [<b> x*(1-2^(-n))</b>, <b>x*(1+2^(-n))</b>] if <b>x!=0</b> and in the interval [<b>-2^(-n)</b>, <b>2^(-n)</b>] if <b>x=0</b>.
The integer <b> n</b> is always nonnegative unless <b><tt>x</tt></b> is zero (a "floating zero").
A floating zero can have a negative value of the number <b> n</b> of exact bits.


<p>
These functions are only meaningful for floating-point numbers.
(All integers are always exact.)
For integer <b><tt>x</tt></b>, the function <b><tt>MathGetExactBits</tt></b> returns the bit count of <b><tt>x</tt></b>
and the function <b><tt>MathSetExactBits</tt></b> returns the unmodified integer <b><tt>x</tt></b>.


<p>


<p>

<h5>
Examples:
</h5>
The default precision of 10 decimals corresponds to 33 bits:
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; MathGetExactBits(1000.123)
Out&gt; 33;
In&gt; x:=MathSetExactBits(10., 20)
Out&gt; 10.;
In&gt; MathGetExactBits(x)
Out&gt; 20;
</pre></tr>
</table>
Prepare a "floating zero" representing an interval [-4, 4]:
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; x:=MathSetExactBits(0., -2)
Out&gt; 0.;
In&gt; x=0
Out&gt; True;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?Builtin'Precision'Set" target="Chapters">
Builtin'Precision'Set
</a>
, <a href="ref.html?Builtin'Precision'Get" target="Chapters">
Builtin'Precision'Get
</a>
.<a name="InNumericMode">

</a>
<a name="innumericmode">

</a>
<h3>
<hr>InNumericMode -- determine if currently in numeric mode
</h3>
<a name="NonN">

</a>
<a name="nonn">

</a>
<h3>
<hr>NonN -- calculate part in non-numeric mode
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
NonN(expr)
InNumericMode()
</pre></tr>
</table>

<h5>
Parameters:
</h5>
<b><tt>expr</tt></b> -- expression to evaluate


<p>
<b><tt>prec</tt></b> -- integer, precision to use


<p>

<h5>
Description:
</h5>
When in numeric mode, <b><tt>InNumericMode()</tt></b> will return <b><tt>True</tt></b>, else it will
return <b><tt>False</tt></b>. <b><tt>Yacas</tt></b> is in numeric mode when evaluating an expression
with the function <b><tt>N</tt></b>. Thus when calling <b><tt>N(expr)</tt></b>, <b><tt>InNumericMode()</tt></b> will
return <b><tt>True</tt></b> while <b><tt>expr</tt></b> is being evaluated.


<p>
<b><tt>InNumericMode()</tt></b> would typically be used to define a transformation rule 
that defines how to get a numeric approximation of some expression. One
could define a transformation rule


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
f(_x)_InNumericMode() &lt;- [... some code to get a numeric approximation of f(x) ... ];
</pre></tr>
</table>


<p>
<b><tt>InNumericMode()</tt></b> usually returns <b><tt>False</tt></b>, so transformation rules that check for this
predicate are usually left alone.


<p>
When in numeric mode, <b><tt>NonN</tt></b> can be called to switch back to non-numeric
mode temporarily.


<p>
<b><tt>NonN</tt></b> is a macro. Its argument <b><tt>expr</tt></b> will only 
be evaluated after the numeric mode has been set appropriately.


<p>

<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; InNumericMode()
Out&gt; False
In&gt; N(InNumericMode())
Out&gt; True
In&gt; N(NonN(InNumericMode()))
Out&gt; False
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?N" target="Chapters">
N
</a>
, <a href="ref.html?Builtin'Precision'Set" target="Chapters">
Builtin'Precision'Set
</a>
, <a href="ref.html?Builtin'Precision'Get" target="Chapters">
Builtin'Precision'Get
</a>
, <a href="ref.html?Pi" target="Chapters">
Pi
</a>
, <a href="ref.html?CachedConstant" target="Chapters">
CachedConstant
</a>
.<a name="IntLog">

</a>
<a name="intlog">

</a>
<h3>
<hr>IntLog -- integer part of logarithm
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
IntLog(n, base)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>n</tt></b>, <b><tt>base</tt></b> -- positive integers


<p>

<h5>
Description:
</h5>
<b><tt>IntLog</tt></b> calculates the integer part of the logarithm of <b><tt>n</tt></b> in base <b><tt>base</tt></b>. The algorithm uses only integer math and may be faster than computing 
<p><center><b> Ln(n)/Ln(base) </b></center></p>
 with multiple precision floating-point math and rounding off to get the integer part.


<p>
This function can also be used to quickly count the digits in a given number.


<p>

<h5>
Examples:
</h5>
Count the number of bits:
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; IntLog(257^8, 2)
Out&gt; 64;
</pre></tr>
</table>


<p>
Count the number of decimal digits:
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; IntLog(321^321, 10)
Out&gt; 804;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?IntNthRoot" target="Chapters">
IntNthRoot
</a>
, <a href="ref.html?Div" target="Chapters">
Div
</a>
, <a href="ref.html?Mod" target="Chapters">
Mod
</a>
, <a href="ref.html?Ln" target="Chapters">
Ln
</a>
.<a name="IntNthRoot">

</a>
<a name="intnthroot">

</a>
<h3>
<hr>IntNthRoot -- integer part of <b>n</b>-th root
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
IntNthRoot(x, n)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>x</tt></b>, <b><tt>n</tt></b> -- positive integers


<p>

<h5>
Description:
</h5>
<b><tt>IntNthRoot</tt></b> calculates the integer part of the <b> n</b>-th root of <b> x</b>. The algorithm uses only integer math and may be faster than computing <b> x^(1/n)</b> with floating-point and rounding.


<p>
This function is used to test numbers for prime powers.


<p>

<h5>
Example:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; IntNthRoot(65537^111, 37)
Out&gt; 281487861809153;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?IntLog" target="Chapters">
IntLog
</a>
, <a href="ref.html?MathPower" target="Chapters">
MathPower
</a>
, <a href="ref.html?IsPrimePower" target="Chapters">
IsPrimePower
</a>
.<a name="NthRoot">

</a>
<a name="nthroot">

</a>
<h3>
<hr>NthRoot -- calculate/simplify nth root of an integer
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
NthRoot(m,n)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>m</tt></b> -- a non-negative integer (<b>m&gt;0</b>)


<p>
<b><tt>n</tt></b> -- a positive integer greater than 1 (<b> n&gt;1</b>)


<p>

<h5>
Description:
</h5>
<b><tt>NthRoot(m,n)</tt></b> calculates the integer part of the <b> n</b>-th root <b> m^(1/n)</b> and
returns a list <b><tt>{f,r}</tt></b>. <b><tt>f</tt></b> and <b><tt>r</tt></b> are both positive integers
that satisfy <b>f^n*r</b>=<b> m</b>.
In other words, <b> f</b> is the largest integer such that <b> m</b> divides <b> f^n</b> and <b> r</b> is the remaining factor.


<p>
For large <b><tt>m</tt></b> and small <b><tt>n</tt></b>
<b><tt>NthRoot</tt></b> may work quite slowly. Every result <b><tt>{f,r}</tt></b> for given
<b><tt>m</tt></b>, <b><tt>n</tt></b> is saved in a lookup table, thus subsequent calls to
<b><tt>NthRoot</tt></b> with the same values <b><tt>m</tt></b>, <b><tt>n</tt></b> will be executed quite
fast.


<p>

<h5>
Example:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; NthRoot(12,2)
Out&gt; {2,3};
In&gt; NthRoot(81,3)
Out&gt; {3,3};
In&gt; NthRoot(3255552,2)
Out&gt; {144,157};
In&gt; NthRoot(3255552,3)
Out&gt; {12,1884};
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?IntNthRoot" target="Chapters">
IntNthRoot
</a>
, <a href="ref.html?Factors" target="Chapters">
Factors
</a>
, <a href="ref.html?MathPower" target="Chapters">
MathPower
</a>
.<a name="ContFracList">

</a>
<a name="contfraclist">

</a>
<h3>
<hr>ContFracList -- manipulate continued fractions
</h3>
<a name="ContFracEval">

</a>
<a name="contfraceval">

</a>
<h3>
<hr>ContFracEval -- manipulate continued fractions
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
ContFracList(frac)
ContFracList(frac, depth)
ContFracEval(list)
ContFracEval(list, rest)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>frac</tt></b> -- a number to be expanded


<p>
<b><tt>depth</tt></b> -- desired number of terms


<p>
<b><tt>list</tt></b> -- a list of coefficients


<p>
<b><tt>rest</tt></b> -- expression to put at the end of the continued fraction


<p>

<h5>
Description:
</h5>
The function <b><tt>ContFracList</tt></b> computes terms of the continued fraction
representation of a rational number <b><tt>frac</tt></b>.  It returns a list of terms of length <b><tt>depth</tt></b>. If <b><tt>depth</tt></b> is not specified, it returns all terms.


<p>
The function <b><tt>ContFracEval</tt></b> converts a list of coefficients into a continued fraction expression. The optional parameter <b><tt>rest</tt></b> specifies the symbol to put at the end of the expansion. If it is not given, the result is the same as if <b><tt>rest=0</tt></b>.


<p>

<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; A:=ContFracList(33/7 + 0.000001)
Out&gt; {4,1,2,1,1,20409,2,1,13,2,1,4,1,1,3,3,2};
In&gt; ContFracEval(Take(A, 5))
Out&gt; 33/7;
In&gt; ContFracEval(Take(A,3), remainder)
Out&gt; 1/(1/(remainder+2)+1)+4;

</pre></tr>
</table>

<h5>
See also:
</h5>
<a href="ref.html?ContFrac" target="Chapters">
ContFrac
</a>
, <a href="ref.html?GuessRational" target="Chapters">
GuessRational
</a>
.<a name="GuessRational">

</a>
<a name="guessrational">

</a>
<h3>
<hr>GuessRational -- find optimal rational approximations
</h3>
<a name="NearRational">

</a>
<a name="nearrational">

</a>
<h3>
<hr>NearRational -- find optimal rational approximations
</h3>
<a name="BracketRational">

</a>
<a name="bracketrational">

</a>
<h3>
<hr>BracketRational -- find optimal rational approximations
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
GuessRational(x)
GuessRational(x, digits)
NearRational(x)
NearRational(x, digits)
BracketRational(x, eps)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>x</tt></b> -- a number to be approximated (must be already evaluated to floating-point)


<p>
<b><tt>digits</tt></b> -- desired number of decimal digits (integer)


<p>
<b><tt>eps</tt></b> -- desired precision


<p>

<h5>
Description:
</h5>
The functions <b><tt>GuessRational(x)</tt></b> and <b><tt>NearRational(x)</tt></b> attempt to find "optimal"
rational approximations to a given value <b><tt>x</tt></b>. The approximations are "optimal"
in the sense of having smallest numerators and denominators among all rational
numbers close to <b><tt>x</tt></b>. This is done by computing a continued fraction
representation of <b><tt>x</tt></b> and truncating it at a suitably chosen term.  Both
functions return a rational number which is an approximation of <b><tt>x</tt></b>.


<p>
Unlike the function <b><tt>Rationalize()</tt></b> which converts floating-point numbers to
rationals without loss of precision, the functions <b><tt>GuessRational()</tt></b> and
<b><tt>NearRational()</tt></b> are intended to find the best rational that is <i>approximately</i>
equal to a given value.


<p>
The function <b><tt>GuessRational()</tt></b> is useful if you have obtained a
floating-point representation of a rational number and you know
approximately how many digits its exact representation should contain.
This function takes an optional second parameter <b><tt>digits</tt></b> which limits
the number of decimal digits in the denominator of the resulting
rational number. If this parameter is not given, it defaults to half
the current precision. This function truncates the continuous fraction
expansion when it encounters an unusually large value (see example).
This procedure does not always give the "correct" rational number; a
rule of thumb is that the floating-point number should have at least as
many digits as the combined number of digits in the numerator and the
denominator of the correct rational number.


<p>
The function <b><tt>NearRational(x)</tt></b> is useful if one needs to
approximate a given value, i.e. to find an "optimal" rational number
that lies in a certain small interval around a certain value <b><tt>x</tt></b>. This
function takes an optional second parameter <b><tt>digits</tt></b> which has slightly
different meaning: it specifies the number of digits of precision of
the approximation; in other words, the difference between <b><tt>x</tt></b> and the
resulting rational number should be at most one digit of that
precision. The parameter <b><tt>digits</tt></b> also defaults to half of the current
precision.


<p>
The function <b><tt>BracketRational(x,eps)</tt></b> can be used to find approximations with a given relative precision from above and from below.
This function returns a list of two rational numbers <b><tt>{r1,r2}</tt></b> such that <b> r1&lt;x&lt;r2</b> and <b> Abs(r2-r1)&lt;Abs(x*eps)</b>.
The argument <b><tt>x</tt></b> must be already evaluated to enough precision so that this approximation can be meaningfully found.
If the approximation with the desired precision cannot be found, the function returns an empty list.


<p>

<h5>
Examples:
</h5>
Start with a rational number and obtain a floating-point approximation:
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; x:=N(956/1013)
Out&gt; 0.9437314906
In&gt; Rationalize(x)
Out&gt; 4718657453/5000000000;
In&gt; V(GuessRational(x))

GuessRational: using 10 terms of the
  continued fraction
Out&gt; 956/1013;
In&gt; ContFracList(x)
Out&gt; {0,1,16,1,3,2,1,1,1,1,508848,3,1,2,1,2,2};
</pre></tr>
</table>
The first 10 terms of this continued fraction correspond to the correct continued fraction for the original rational number.
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; NearRational(x)
Out&gt; 218/231;
</pre></tr>
</table>
This function found a different rational number closeby because the precision was not high enough.
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; NearRational(x, 10)
Out&gt; 956/1013;
</pre></tr>
</table>
Find an approximation to <b>Ln(10)</b> good to 8 digits:
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; BracketRational(N(Ln(10)), 10^(-8))
Out&gt; {12381/5377,41062/17833};
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?ContFrac" target="Chapters">
ContFrac
</a>
, <a href="ref.html?ContFracList" target="Chapters">
ContFracList
</a>
, <a href="ref.html?Rationalize" target="Chapters">
Rationalize
</a>
.<a name="TruncRadian">

</a>
<a name="truncradian">

</a>
<h3>
<hr>TruncRadian -- remainder modulo <b>2*Pi</b>
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
TruncRadian(r)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>r</tt></b> -- a number


<p>

<h5>
Description:
</h5>
<b><tt>TruncRadian</tt></b> calculates <b> Mod(r,2*Pi)</b>, returning a value between <b>0</b>
and <b> 2*Pi</b>. This function is used in the trigonometry functions, just
before doing a numerical calculation using a Taylor series. It greatly
speeds up the calculation if the value passed is a large number.


<p>
The library uses the formula

<p><center><b> TruncRadian(r)=r-Floor(r/(2*Pi))*2*Pi,</b></center></p>

where <b> r</b> and <b> 2*Pi</b> are calculated with twice the precision used in the
environment to make sure there is no rounding error in the significant
digits.


<p>

<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; 2*Internal'Pi()
Out&gt; 6.283185307;
In&gt; TruncRadian(6.28)
Out&gt; 6.28;
In&gt; TruncRadian(6.29)
Out&gt; 0.0068146929;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?Sin" target="Chapters">
Sin
</a>
, <a href="ref.html?Cos" target="Chapters">
Cos
</a>
, <a href="ref.html?Tan" target="Chapters">
Tan
</a>
.<a name="Builtin'Precision'Set">

</a>
<a name="builtin'precision'set">

</a>
<h3>
<hr>Builtin'Precision'Set -- set the precision
</h3>
<h5 align=right>Internal function</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
Builtin'Precision'Set(n)
</pre></tr>
</table>


<p>

<h5>
Parameters:
</h5>
<b><tt>n</tt></b> -- integer, new value of precision


<p>

<h5>
Description:
</h5>
This command sets the number of decimal digits to be used in calculations.
All subsequent floating point operations will allow for
at least <b><tt>n</tt></b> digits of mantissa.


<p>
This is not the number of digits after the decimal point.
For example, <b><tt>123.456</tt></b> has 3 digits after the decimal point and 6 digits of mantissa.
The number <b><tt>123.456</tt></b> is adequately computed by specifying <b><tt>Builtin'Precision'Set(6)</tt></b>.


<p>
The call <b><tt>Builtin'Precision'Set(n)</tt></b> will not guarantee that all results are precise to <b><tt>n</tt></b> digits.


<p>
When the precision is changed, all variables containing previously calculated values
remain unchanged.
The <b><tt>Builtin'Precision'Set</tt></b> function only makes all further calculations proceed with a different precision.


<p>
Also, when typing floating-point numbers, the current value of <b><tt>Builtin'Precision'Set</tt></b> is used to implicitly determine the number of precise digits in the number.


<p>

<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; Builtin'Precision'Set(10)
Out&gt; True;
In&gt; N(Sin(1))
Out&gt; 0.8414709848;
In&gt; Builtin'Precision'Set(20)
Out&gt; True;
In&gt; x:=N(Sin(1))
Out&gt; 0.84147098480789650665;
</pre></tr>
</table>


<p>
The value <b><tt>x</tt></b> is not changed by a <b><tt>Builtin'Precision'Set()</tt></b> call:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; [ Builtin'Precision'Set(10); x; ]
Out&gt; 0.84147098480789650665;
</pre></tr>
</table>


<p>
The value <b><tt>x</tt></b> is rounded off to 10 digits after an arithmetic operation:


<p>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; x+0.
Out&gt; 0.8414709848;
</pre></tr>
</table>


<p>
In the above operation, <b><tt>0.</tt></b> was interpreted as a number which is precise to 10 digits (the user does not need to type <b><tt>0.0000000000</tt></b> for this to happen).
So the result of <b><tt>x+0.</tt></b> is precise only to 10 digits.


<p>

<h5>
See also:
</h5>
<a href="ref.html?Builtin'Precision'Get" target="Chapters">
Builtin'Precision'Get
</a>
, <a href="ref.html?N" target="Chapters">
N
</a>
.<a name="Builtin'Precision'Get">

</a>
<a name="builtin'precision'get">

</a>
<h3>
<hr>Builtin'Precision'Get -- get the current precision
</h3>
<h5 align=right>Internal function</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
Builtin'Precision'Get()
</pre></tr>
</table>


<p>

<h5>
Description:
</h5>
This command returns the current precision, as set by <b><tt>Builtin'Precision'Set</tt></b>.


<p>

<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; Builtin'Precision'Get();
Out&gt; 10;
In&gt; Builtin'Precision'Set(20);
Out&gt; True;
In&gt; Builtin'Precision'Get();
Out&gt; 20;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?Builtin'Precision'Set" target="Chapters">
Builtin'Precision'Set
</a>
, <a href="ref.html?N" target="Chapters">
N
</a>
.
<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-2425144-1";
urchinTracker();
</script>
</body>

</html>