/usr/share/z88dk/include/adt.h is in z88dk-data 1.8.ds1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | #ifndef _ADT_H
#define _ADT_H
/*
* Abstract Data Types Library
*
* - Doubly Linked List + ; added 08.2005 aralbrec
* - Heap ; added 08.2005 aralbrec
* - Stack + ; added 09.2005 aralbrec
* - Queue + ; added 09.2005 aralbrec
*
* The data types marked with "+" require a memory allocation policy
* that allows memory to be allocated and freed implicitly. You can
* determine how that memory is allocated by declaring the u_malloc
* and u_free functions globally in your main.c file (here the examples
* use the standard C malloc library functions but you could use the
* block allocator, a mixture of the two, or something of your own):
*
* ( u_malloc must return carry flag set if allocation successful )
* void *u_malloc(uint size) {
* return(malloc(size)); * lib function malloc sets carry *
* }
*
* ( u_free must ignore addr == 0 )
* void u_free(void *addr) {
* free(addr); * lib function free ignores 0 *
* }
*
* If implemented in assembler, use the labels _u_malloc and _u_free
* with HL as the parameter and return value. XDEF both labels to
* make them globals.
*
*/
#include <sys/types.h>
/*** DOUBLY LINKED LIST
Items are stored in an ordered list. Each list has a current pointer
that can point at: a specific item, before the list or after the list.
The list iterator is ListSearch, which searches from the item pointed
at by the current pointer and stops when the matching function
reports a match or when the current ptr points past the end of the list.
In the following:
void *delete <-> void [__FASTCALL__] (*delete)(void *item)
void *match <-> char (*match)(void *item1, void *item2) return 0 if =
*/
struct adt_ListNode { /* Invisible to User, one for each item in list */
void *item;
struct adt_ListNode *next; /* big endian */
struct adt_ListNode *prev; /* big endian */
};
struct adt_List { /* One as handle for each list */
uint count; /* number of NODEs in list */
uchar state; /* state of curr ptr: 1 = INLIST, 0 = BEFORE, 2 = AFTER */
struct adt_ListNode *current; /* points at current NODE in list, big endian */
struct adt_ListNode *head; /* points at first NODE in list, big endian */
struct adt_ListNode *tail; /* points at last NODE in list, big endian */
};
extern struct adt_List __LIB__ *adt_ListCreate(void);
extern void __LIB__ __FASTCALL__ adt_ListCreateS(struct adt_List *list);
extern void __LIB__ adt_ListDelete(struct adt_List *list, void *delete); /* from C: del = 0 to do nothing */
extern void __LIB__ adt_ListDeleteS(struct adt_List *list, void *delete); /* from C: del = 0 to do nothing */
extern uint __LIB__ __FASTCALL__ adt_ListCount(struct adt_List *list);
extern void __LIB__ __FASTCALL__ *adt_ListFirst(struct adt_List *list);
extern void __LIB__ __FASTCALL__ *adt_ListLast(struct adt_List *list);
extern void __LIB__ __FASTCALL__ *adt_ListNext(struct adt_List *list);
extern void __LIB__ __FASTCALL__ *adt_ListPrev(struct adt_List *list);
extern void __LIB__ __FASTCALL__ *adt_ListCurr(struct adt_List *list);
extern int __LIB__ adt_ListAdd(struct adt_List *list, void *item);
extern int __LIB__ adt_ListInsert(struct adt_List *list, void *item);
extern int __LIB__ adt_ListAppend(struct adt_List *list, void *item);
extern int __LIB__ adt_ListPrepend(struct adt_List *list, void *item);
extern void __LIB__ __FASTCALL__ *adt_ListRemove(struct adt_List *list);
extern void __LIB__ adt_ListConcat(struct adt_List *list1, struct adt_List *list2);
extern void __LIB__ __FASTCALL__ *adt_ListTrim(struct adt_List *list);
extern void __LIB__ __FASTCALL__ *adt_ListPopFront(struct adt_List *list);
extern void __LIB__ __FASTCALL__ adt_ListSetCurrBefore(struct adt_List *list);
extern void __LIB__ __FASTCALL__ adt_ListSetCurrAfter(struct adt_List *list);
extern void __LIB__ adt_ListSetCurr(struct adt_List *list, struct adt_ListNode *n);
extern void __LIB__ *adt_ListSearch(struct adt_List *list, void *match, void *item1);
// make CALLEE linkage default
extern void __LIB__ __CALLEE__ adt_ListDelete_callee(struct adt_List *list, void *delete); /* from C: del = 0 to do nothing */
extern void __LIB__ __CALLEE__ adt_ListDeleteS_callee(struct adt_List *list, void *delete); /* from C: del = 0 to do nothing */
extern int __LIB__ __CALLEE__ adt_ListAdd_callee(struct adt_List *list, void *item);
extern int __LIB__ __CALLEE__ adt_ListInsert_callee(struct adt_List *list, void *item);
extern int __LIB__ __CALLEE__ adt_ListAppend_callee(struct adt_List *list, void *item);
extern int __LIB__ __CALLEE__ adt_ListPrepend_callee(struct adt_List *list, void *item);
extern void __LIB__ __CALLEE__ adt_ListConcat_callee(struct adt_List *list1, struct adt_List *list2);
extern void __LIB__ __CALLEE__ adt_ListSetCurr_callee(struct adt_List *list, struct adt_ListNode *n);
extern void __LIB__ __CALLEE__ *adt_ListSearch_callee(struct adt_List *list, void *match, void *item1);
#define adt_ListDelete(a,b) adt_ListDelete_callee(a,b)
#define adt_ListDeleteS(a,b) adt_ListDeleteS_callee(a,b)
#define adt_ListAdd(a,b) adt_ListAdd_callee(a,b)
#define adt_ListInsert(a,b) adt_ListInsert_callee(a,b)
#define adt_ListAppend(a,b) adt_ListAppend_callee(a,b)
#define adt_ListPrepend(a,b) adt_ListPrepend_callee(a,b)
#define adt_ListConcat(a,b) adt_ListConcat_callee(a,b)
#define adt_ListSetCurr(a,b) adt_ListSetCurr_callee(a,b)
#define adt_ListSearch(a,b,c) adt_ListSearch_callee(a,b,c)
#define adt_ListPopBack(a) adt_ListTrim(a)
#define adt_ListPushBack(a,b) adt_ListAppend_callee(a,b)
#define adt_ListPushFront(a,b) adt_ListPrepend_callee(a,b)
/*** HEAP (PRIORITY QUEUE)
The heap is an array of void* with indices 1..N used to store items. Items in a
heap are stored in a special order that allows single item insertion and ordered
extraction quickly. When an array is sorted in this special order, it is said to
posses the heap property.
Heapify can be used to convert an unsorted random array into a heap with the heap
property. HeapAdd is used to add items to a valid heap incrementally. HeapExtract
pulls items out of the heap one at a time in order.
Besides returning the smallest (min heap) / largest (max heap) item in the heap,
HeapExtract will also write the extracted item to the end of the array. If all
items in an array are extracted one after the other, the array, after all
extractions, will be sorted in ascending order (max heap) or descending order
(min heap). This is an implementation of heapsort.
In the following:
void *compare <-> char (*compare)(void **item1, void **item2)
return negative if item1>item2 for max heap (extract largest item first)
return negative if item1<item2 for min heap (extract smallest item first)
NOTE ON VOID** Addresses within the array are being passed not array contents
Maximum array size (N) is 32767. You provide the array and N, the number of items
in the heap. N will automatically be modified as items are added and removed from
the heap.
*/
extern void __LIB__ adt_Heapify(void **array, uint n, void *compare);
extern void __LIB__ adt_HeapAdd(void *item, void **array, uint *n, void *compare);
extern void __LIB__ *adt_HeapExtract(void **array, uint *n, void *compare);
// make CALLEE linkage default
extern void __LIB__ __CALLEE__ adt_Heapify_callee(void **array, uint n, void *compare);
extern void __LIB__ __CALLEE__ adt_HeapAdd_callee(void *item, void **array, uint *n, void *compare);
extern void __LIB__ __CALLEE__ *adt_HeapExtract_callee(void **array, uint *n, void *compare);
#define adt_Heapify(a,b,c) adt_Heapify_callee(a,b,c)
#define adt_HeapAdd(a,b,c,d) adt_HeapAdd_callee(a,b,c,d)
#define adt_HeapExtract(a,b,c) adt_HeapExtract_callee(a,b,c)
/*** QUEUE
A queue allows storage and retrieval of items in FIFO order. New items
are added to the back of the queue and items are removed from the front
of the queue.
In the following:
void *delete <-> void [__FASTCALL__] (*delete)(void *item)
an opportunity for user clean up if a non-empty queue is deleted
*/
struct adt_QueueNode { /* One for each item in queue, invisible to user */
void *item;
struct adt_QueueNode *next;
};
struct adt_Queue { /* A single handle for each queue created */
uint count;
struct adt_QueueNode *front;
struct adt_QueueNode *back;
};
extern struct adt_Queue __LIB__ *adt_QueueCreate(void);
extern void __LIB__ __FASTCALL__ *adt_QueueCreateS(struct adt_Queue *q);
extern void __LIB__ adt_QueueDelete(struct adt_Queue *q, void *delete); /* from C: del = 0 to do nothing */
extern void __LIB__ adt_QueueDeleteS(struct adt_Queue *q, void *delete); /* from C: del = 0 to do nothing */
extern uint __LIB__ __FASTCALL__ adt_QueueCount(struct adt_Queue *q);
extern void __LIB__ __FASTCALL__ *adt_QueueFront(struct adt_Queue *q);
extern void __LIB__ __FASTCALL__ *adt_QueueBack(struct adt_Queue *q);
extern void __LIB__ __FASTCALL__ *adt_QueuePopFront(struct adt_Queue *q);
extern void __LIB__ __FASTCALL__ *adt_QueuePopBack(struct adt_Queue *q);
extern int __LIB__ adt_QueuePushFront(struct adt_Queue *q, void *item);
extern int __LIB__ adt_QueuePushBack(struct adt_Queue *q, void *item);
// make CALLEE linkage default
extern void __LIB__ __CALLEE__ adt_QueueDelete_callee(struct adt_Queue *q, void *delete);
extern void __LIB__ __CALLEE__ adt_QueueDeleteS_callee(struct adt_Queue *q, void *delete);
extern int __LIB__ __CALLEE__ adt_QueuePushFront_callee(struct adt_Queue *q, void *item);
extern int __LIB__ __CALLEE__ adt_QueuePushBack_callee(struct adt_Queue *q, void *item);
#define adt_QueueDelete(a,b) adt_QueueDelete_callee(a,b)
#define adt_QueueDeleteS(a,b) adt_QueueDeleteS_callee(a,b)
#define adt_QueuePushFront(a,b) adt_QueuePushFront_callee(a,b)
#define adt_QueuePushBack(a,b) adt_QueuePushBack_callee(a,b)
/*** STACK
A standard LIFO stack. Items are pushed onto the top of a stack and are popped
off the top as well.
In the following:
void *delete <-> void [__FASTCALL__] (*delete)(void *item)
an opportunity for user clean up if a non-empty stack is deleted
*/
struct adt_StackNode { /* One for each item in stack */
void *item;
struct adt_Stack *next;
};
struct adt_Stack {
uint count; /* Number of items in stack */
struct adt_StackNode *next; /* Pointer to top item in stack */
};
extern struct adt_Stack __LIB__ *adt_StackCreate(void);
extern void __LIB__ __FASTCALL__ adt_StackCreateS(struct adt_Stack *s);
extern void __LIB__ adt_StackDelete(struct adt_Stack *s, void *delete); /* from C: del = 0 to do nothing */
extern void __LIB__ adt_StackDeleteS(struct adt_Stack *s, void *delete); /* from C: del = 0 to do nothing */
extern int __LIB__ adt_StackPush(struct adt_Stack *s, void *item);
extern void __LIB__ __FASTCALL__ *adt_StackPop(struct adt_Stack *s);
extern void __LIB__ __FASTCALL__ *adt_StackPeek(struct adt_Stack *s);
extern uint __LIB__ __FASTCALL__ adt_StackCount(struct adt_Stack *s);
// make CALLEE linkage default
extern void __LIB__ __CALLEE__ adt_StackDelete_callee(struct adt_Stack *s, void *delete);
extern void __LIB__ __CALLEE__ adt_StackDeleteS_callee(struct adt_Stack *s, void *delete);
extern int __LIB__ __CALLEE__ adt_StackPush_callee(struct adt_Stack *s, void *item);
#define adt_StackDelete(a,b) adt_StackDelete_callee(a,b)
#define adt_StackDeleteS(a,b) adt_StackDeleteS_callee(a,b)
#define adt_StackPush(a,b) adt_StackPush_callee(a,b)
#endif
|