This file is indexed.

/usr/include/astrometry/starutil.inc is in astrometry.net 0.46-0ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
  This file is part of the Astrometry.net suite.
  Copyright 2006-2008 Dustin Lang, Keir Mierle and Sam Roweis.
  Copyright 2010 Dustin Lang.

  The Astrometry.net suite is free software; you can redistribute
  it and/or modify it under the terms of the GNU General Public License
  as published by the Free Software Foundation, version 2.

  The Astrometry.net suite is distributed in the hope that it will be
  useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with the Astrometry.net suite ; if not, write to the Free Software
  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
*/

#include <math.h>

InlineDefine void star_midpoint(double* mid, const double* A, const double* B) {
	double len;
	double invlen;
	// we don't divide by 2 because we immediately renormalize it...
	mid[0] = A[0] + B[0];
	mid[1] = A[1] + B[1];
	mid[2] = A[2] + B[2];
	//len = sqrt(square(mid[0]) + square(mid[1]) + square(mid[2]));
	len = sqrt(mid[0] * mid[0] + mid[1] * mid[1] + mid[2] * mid[2]);
	invlen = 1.0 / len;
	mid[0] *= invlen;
	mid[1] *= invlen;
	mid[2] *= invlen;
}

InlineDefine Const double mjdtojd(double mjd) {
	return mjd + MJD_JD_OFFSET;
}
InlineDefine Const double jdtomjd(double jd) {
	return jd - MJD_JD_OFFSET;
}

InlineDefine Const int dimquad2dimcode(int dimquad) {
    return 2 * (dimquad - 2);
}

InlineDefine Const double rad2deg(double x) {
    return x * DEG_PER_RAD;
}

InlineDefine Const double deg2rad(double x) {
    return x * RAD_PER_DEG;
}

InlineDefine Const double deg2arcmin(double x) {
    return x * ARCMIN_PER_DEG;
}

InlineDefine Const double arcmin2deg(double x) {
    return x * DEG_PER_ARCMIN;
}

InlineDefine Const double arcmin2arcsec(double x) {
    return x * ARCSEC_PER_ARCMIN;
}

InlineDefine Const double arcsec2arcmin(double x) {
    return x * ARCMIN_PER_ARCSEC;
}

InlineDefine Const double rad2arcmin(double x) {
    return x * ARCMIN_PER_RAD;
}

InlineDefine Const double rad2arcsec(double x) {
    return x * ARCSEC_PER_RAD;
}

InlineDefine Const double deg2arcsec(double x) {
    return x * ARCSEC_PER_DEG;
}

InlineDefine Const double arcmin2rad(double x) {
    return x * RAD_PER_ARCMIN;
}

InlineDefine Const double arcsec2rad(double x) {
    return x * RAD_PER_ARCSEC;
}

InlineDefine Const double arcsec2deg(double x) {
    return x * DEG_PER_ARCSEC;
}

InlineDefine Const double rad2distsq(double x) {
	// inverse of distsq2arc; cosine law.
	return 2.0 * (1.0 - cos(x));
}

InlineDefine Flatten Const double rad2dist(double x) {
	return sqrt(rad2distsq(x));
}

InlineDefine Flatten Const double arcsec2distsq(double x) {
	return rad2distsq(arcsec2rad(x));
}

InlineDefine Flatten Const double arcmin2dist(double x) {
	return rad2dist(arcmin2rad(x));
}

InlineDefine Flatten Const double arcmin2distsq(double arcmin) {
    return rad2distsq(arcmin2rad(arcmin));
}

InlineDefine Const double z2dec(double z) {
	return asin(z);
}

InlineDefine Const double xy2ra(double x, double y) {
	double a = atan2(y, x);
	if (a < 0)
		a += 2.0 * M_PI;
	return a;
}

InlineDefine Flatten void xyz2radec(double x, double y, double z, double *ra, double *dec) {
    if (ra)
    	*ra = xy2ra(x, y);
	if (dec)
        *dec = z2dec(z);
}

InlineDefine Flatten void xyzarr2radec(const double* xyz, double *ra, double *dec) {
	xyz2radec(xyz[0], xyz[1], xyz[2], ra, dec);
}

InlineDefine Flatten void xyzarr2radecdeg(const double* xyz, double *ra, double *dec) {
	xyzarr2radec(xyz, ra, dec);
    if (ra)
        *ra  = rad2deg(*ra);
    if (dec)
        *dec = rad2deg(*dec);
}

InlineDefine Flatten void xyzarr2radecdegarr(double* xyz, double *radec) {
	xyzarr2radecdeg(xyz, radec, radec+1);
}

InlineDefine void radec2xyzarr(double ra, double dec, double* xyz) {
	double cosdec = cos(dec);
	xyz[0] = cosdec * cos(ra);
	xyz[1] = cosdec * sin(ra);
	xyz[2] = sin(dec);
}

InlineDefine void radec2xyz(double ra, double dec,
							double* x, double* y, double* z) {
	double cosdec = cos(dec);
	*x = cosdec * cos(ra);
	*y = cosdec * sin(ra);
	*z = sin(dec);
}

InlineDefine void radecdeg2xyz(double ra, double dec,
							   double* x, double* y, double* z) {
	radec2xyz(deg2rad(ra), deg2rad(dec), x, y, z);
}

InlineDefine void radecdeg2xyzarr(double ra, double dec, double* xyz) {
	radec2xyzarr(deg2rad(ra),deg2rad(dec), xyz);
}

InlineDefine void radecdegarr2xyzarr(double* radec, double* xyz) {
    radecdeg2xyzarr(radec[0], radec[1], xyz);
}

// xyz stored as xyzxyzxyz.
InlineDefine void radec2xyzarrmany(double *ra, double *dec, double* xyz, int n) {
	int i;
	for (i=0; i<n; i++) {
		radec2xyzarr(ra[i], dec[i], xyz+3*i);
	}
}

InlineDefine void radecdeg2xyzarrmany(double *ra, double *dec, double* xyz, int n) {
	int i;
	for (i=0; i<n; i++) {
		radec2xyzarr(deg2rad(ra[i]), deg2rad(dec[i]), xyz+3*i);
	}
}

WarnUnusedResult InlineDefine
anbool star_coords(const double *s, const double *r,
	 anbool tangent, double *x, double *y) {
	// As used by the sip.c code, this does the TAN projection
	// (if "tangent" is TRUE; SIN projection otherwise)
	// r: CRVAL
    // s: RA,Dec to be projected
	// ASSUME r,s are unit vectors
	// sdotr:  s dot r = |r||s| cos(theta) = cos(theta)
	double sdotr = s[0] * r[0] + s[1] * r[1] + s[2] * r[2];
	if (sdotr <= 0.0) {
	    // on the opposite side of the sky
		return FALSE;
	}
	if (unlikely(r[2] == 1.0)) {
	    // North pole
		double inv_s2 = 1.0 / s[2];
		if (tangent) {
			*x = s[0] * inv_s2;
			*y = s[1] * inv_s2;
		} else {
			*x = s[0];
			*y = s[1];
		}
	} else if (unlikely(r[2] == -1.0)) {
	    // South pole
		double inv_s2 = 1.0 / s[2];
		if (tangent) {
			*x =  s[0] * inv_s2;
			*y = -s[1] * inv_s2;
		} else {
			*x =  s[0];
			*y = -s[1];
		}
	} else {
		double etax, etay, xix, xiy, xiz, eta_norm;
		double inv_en, inv_sdotr;
		// eta is a vector perpendicular to r pointing in the direction
		// of increasing RA.  eta_z = 0 by definition.
 		etax = -r[1];
		etay =  r[0];
		eta_norm = hypot(etax, etay);
		inv_en = 1.0 / eta_norm;
		etax *= inv_en;
		etay *= inv_en;

		// xi =  r cross eta, a vector pointing northwards,
		// in direction of increasing DEC
		xix = -r[2] * etay;
		xiy =  r[2] * etax;
		xiz =  r[0] * etay - r[1] * etax;

		// project s-r onto eta and xi.  No need to subtract r from s, though,
		// since eta and xi are orthogonal to r by construction.
		*x = (s[0] * etax + s[1] * etay             );
		*y = (s[0] *  xix + s[1] *  xiy + s[2] * xiz);

		// The "inv_sdotr" applies the TAN scaling
		if (tangent) {
			inv_sdotr = 1.0 / sdotr;
			*x *= inv_sdotr;
			*y *= inv_sdotr;
		}
	}
	return TRUE;
}

InlineDefine Flatten Const double distsq2rad(double dist2) {
	// cosine law: c^2 = a^2 + b^2 - 2 a b cos C
	// c^2 is dist2.  We want C.
	// a = b = 1
	// c^2 = 1 + 1 - 2 cos C
	// dist2 = 2( 1 - cos C )
	// 1 - (dist2 / 2) = cos C
	// C = acos(1 - dist2 / 2)
	return acos(1.0 - dist2 / 2.0);
}

InlineDefine Flatten Const double arcsec2dist(double arcInArcSec) {
   return sqrt(arcsec2distsq(arcInArcSec));
}

// Degrees to distance on the unit sphere.
InlineDefine Flatten Const double deg2dist(double arcInDegrees) {
  return arcsec2dist(deg2arcsec(arcInDegrees));
}

InlineDefine Flatten Const double deg2distsq(double d) {
	return rad2distsq(deg2rad(d));
}

InlineDefine Flatten Const double distsq2arcsec(double dist2) {
	return rad2arcsec(distsq2rad(dist2));
}

InlineDefine Flatten Const double dist2arcsec(double dist) {
	return distsq2arcsec(dist*dist);
}

InlineDefine Flatten Const double dist2deg(double dist) {
    return arcsec2deg(dist2arcsec(dist));
}

// DEPRECATED
InlineDefine Flatten Const double distsq2arc(double dist2) {
	return distsq2rad(dist2);
}

InlineDefine Flatten Const double distsq2deg(double dist2) {
	return rad2deg(distsq2rad(dist2));
}

InlineDefine Flatten Const double dist2rad(double dist) {
	return distsq2arc(dist*dist);
}