This file is indexed.

/usr/lib/python/astrometry/libkd/spherematch.py is in astrometry.net 0.46-0ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
from astrometry.libkd import spherematch_c
import numpy as np

# for LSST (use things defined in astrometry.net 0.30)
try:
    from astrometry.util.starutil_numpy import radectoxyz, deg2dist, dist2deg, distsq2deg
except:
    from astrometry.util.starutil_numpy import radectoxyz, rad2distsq

    def rad2dist(r):
        return np.sqrt(rad2distsq(r))

    def distsq2rad(dist2):
        return np.arccos(1. - dist2 / 2.)
    def distsq2deg(dist2):
        return np.rad2deg(distsq2rad(dist2))

    # deg2dist, dist2deg
    def deg2dist(deg):
        return rad2dist(np.deg2rad(deg))
    def dist2deg(dist):
        return distsq2deg(dist**2)

def match_xy(x1,y1, x2,y2, R, **kwargs):
    '''
    Like match_radec, except for plain old 2-D points.
    '''
    I,d = match(np.vstack((x1,y1)).T, np.vstack((x2,y2)).T, R, **kwargs)
    return I[:,0],I[:,1],d
    
# Copied from "celestial.py" by Sjoert van Velzen.
def match_radec(ra1, dec1, ra2, dec2, radius_in_deg, notself=False,
                nearest=False, indexlist=False):
    '''
    (m1,m2,d12) = match_radec(ra1,dec1, ra2,dec2, radius_in_deg)

    Cross-matches numpy arrays of RA,Dec points.

    Behaves like spherematch.pro of IDL 

    ra1,dec1 (and 2): RA,Dec in degrees of points to match.
       Must be scalars or numpy arrays.

       radius_in_deg: search radius in degrees.

    notself: if True, avoids returning 'identity' matches;
        ASSUMES that ra1,dec1 == ra2,dec2.

    nearest: if True, returns only the nearest match in (ra2,dec2)
        for each point in (ra1,dec1).

    indexlist: returns a list of length len(ra1), containing None or a
    list of ints of matched points in ra2,dec2.  Returns this list.
        
    Returns:

    m1: indices into the "ra1,dec1" arrays of matching points.
       Numpy array of ints.
    m2: same, but for "ra2,dec2".
    d12: distance, in degrees, between the matching points.
    '''

    # Convert to coordinates on the unit sphere
    xyz1 = radectoxyz(ra1, dec1)
    #if all(ra1 == ra2) and all(dec1 == dec2):
    if ra1 is ra2 and dec1 is dec2:
        xyz2 = xyz1
    else:
        xyz2 = radectoxyz(ra2, dec2)
    r = deg2dist(radius_in_deg)

    if nearest:
        (inds,dists2) = _nearest_func(xyz2, xyz1, r, notself=notself)
        I = np.flatnonzero(inds >= 0)
        J = inds[I]
        d = distsq2deg(dists2[I])
    else:
        X = match(xyz1, xyz2, r, notself=notself, indexlist=indexlist)
        if indexlist:
            return X
        (inds,dists) = X
        dist_in_deg = dist2deg(dists)
        I,J = inds[:,0], inds[:,1]
        d = dist_in_deg[:,0]
        
    return (I, J, d)


def cluster_radec(ra, dec, R, singles=False):
	'''
	Finds connected groups of objects in RA,Dec space.

	Returns a list of lists of indices that are connected,
	EXCLUDING singletons.
	'''
	I,J,d = match_radec(ra, dec, ra, dec, R, notself=True)

	# 'mgroups' maps each index in a group to a list of the group members
	mgroups = {}
	# 'ugroups' is a list of the unique groups
	ugroups = []
	
	for i,j in zip(I,J):
		# Are both sources already in groups?
		if i in mgroups and j in mgroups:
			# Are they already in the same group?
			if mgroups[i] == mgroups[j]:
				continue
			# merge if they are different;
			# assert(they are disjoint)
			lsti = mgroups[i]
			lstj = mgroups[j]
			merge = lsti + lstj
			for k in merge:
				mgroups[k] = merge

			ugroups.remove(lsti)
			ugroups.remove(lstj)
			ugroups.append(merge)

		elif i in mgroups:
			# Add j to i's group
			lst = mgroups[i]
			lst.append(j)
			mgroups[j] = lst
		elif j in mgroups:
			# Add i to j's group
			lst = mgroups[j]
			lst.append(i)
			mgroups[i] = lst
		else:
			# Create a new group
			lst = [i,j]
			mgroups[i] = lst
			mgroups[j] = lst

			ugroups.append(lst)


	if singles:
		S = np.ones(len(ra), bool)
		for g in ugroups:
			S[np.array(g)] = False
		S = np.flatnonzero(S)
		return ugroups,S

	return ugroups





def _cleaninputs(x1, x2):
    fx1 = x1.astype(np.float64)
    if x2 is x1:
        fx2 = fx1
    else:
        fx2 = x2.astype(np.float64)
    (N1,D1) = fx1.shape
    (N2,D2) = fx2.shape
    if D1 != D2:
        raise ValueError, 'Arrays must have the same dimensionality'
    return (fx1,fx2)

def _buildtrees(x1, x2):
    (fx1, fx2) = _cleaninputs(x1, x2)
    kd1 = spherematch_c.kdtree_build(fx1)
    if fx2 is fx1:
        kd2 = kd1
    else:
        kd2 = spherematch_c.kdtree_build(fx2)
    return (kd1, kd2)

def _freetrees(kd1, kd2):
    spherematch_c.kdtree_free(kd1)
    if kd2 != kd1:
        spherematch_c.kdtree_free(kd2)

def match(x1, x2, radius, notself=False, permuted=True, indexlist=False):
    '''
    (indices,dists) = match(x1, x2, radius):

    Given an N1 x D1 array x1,
    and   an N2 x D2 array x2,
    and   radius:

    Returns the indices (Nx2 int array) and distances (Nx1 float
    array) between points in "x1" and "x2" that are within "radius"
    Euclidean distance of each other.

    "x1" is N1xD and "x2" is N2xD.  "x1" and "x2" can be the same
    array.  Dimensions D above 5-10 will probably not run faster than
    naive.

    Despite the name of this package, the arrays x1 and x2 need not be
    celestial positions; in particular, there is no RA wrapping at 0,
    and no special handling at the poles.  If you want to match
    celestial coordinates like RA,Dec, see the match_radec function.

    The "indices" return value has a row for each match; the matched
    points are:
    x1[indices[:,0],:]
    and
    x2[indices[:,1],:]

    This function doesn\'t know about spherical coordinates -- it just
    searches for matches in n-dimensional space.

    >>> from astrometry.util.starutil_numpy import *   
    >>> from astrometry.libkd import spherematch

    # RA,Dec in degrees
    >>> ra1  = array([  0,  1, 2, 3, 4, 359,360])
    >>> dec1 = array([-90,-89,-1, 0, 1,  89, 90])

    # xyz: N x 3 array: unit vectors
    >>> xyz1 = radectoxyz(ra1, dec1)

    >>> ra2  = array([ 45,   1,  4, 4, 4,  0,  1])
    >>> dec2 = array([-89, -88, -1, 0, 2, 89, 89])
    >>> xyz2 = radectoxyz(ra2, dec2)

    # The \'radius\' is now distance between points on the unit sphere --
    # for small angles, this is ~ angular distance in radians.  You can use
    # the function:
    >>> radius_in_deg = 2.
    >>> r = sqrt(deg2distsq(radius_in_deg))
 
    >>> (inds,dists) = spherematch.match(xyz1, xyz2, r)

    # Now "inds" is an Mx2 array of the matching indices,
    # and "dists" the distances between them:
    #  eg,  sqrt(sum((xyz1[inds[:,0],:] - xyz2[inds[:,1],:])**2, axis=1)) = dists

    >>> print inds
    [[0 0]
     [1 0]
     [1 1]
     [2 2]
     [3 2]
     [3 3]
     [4 3]
     [4 4]
     [5 5]
     [6 5]
     [5 6]
     [6 6]]
 
    >>> print sqrt(sum((xyz1[inds[:,0],:] - xyz2[inds[:,1],:])**2, axis=1))
    [ 0.01745307  0.01307557  0.01745307  0.0348995   0.02468143  0.01745307
      0.01745307  0.01745307  0.0003046   0.01745307  0.00060917  0.01745307]

    >>> print dists[:,0]
    [ 0.01745307  0.01307557  0.01745307  0.0348995   0.02468143  0.01745307
      0.01745307  0.01745307  0.0003046   0.01745307  0.00060917  0.01745307]

    >>> print vstack((ra1[inds[:,0]], dec1[inds[:,0]], ra2[inds[:,1]], dec2[inds[:,1]])).T
    [[  0 -90  45 -89]
     [  1 -89  45 -89]
     [  1 -89   1 -88]
     [  2  -1   4  -1]
     [  3   0   4  -1]
     [  3   0   4   0]
     [  4   1   4   0]
     [  4   1   4   2]
     [359  89   0  89]
     [360  90   0  89]
     [359  89   1  89]
     [360  90   1  89]]

    '''
    (kd1,kd2) = _buildtrees(x1, x2)
    if indexlist:
        inds = spherematch_c.match2(kd1, kd2, radius, notself, permuted)
    else:
        (inds,dists) = spherematch_c.match(kd1, kd2, radius, notself, permuted)
    _freetrees(kd1, kd2)
    if indexlist:
        return inds
    return (inds,dists)

def match_naive(x1, x2, radius, notself=False):
    ''' Does the same thing as match(), but the straight-forward slow
    way.  (Not necessarily the way you\'d do it in python either).
    Not very fair as a speed comparison, but useful to convince
    yourself that match() does the right thing.
    '''
    (fx1, fx2) = _cleaninputs(x1, x2)
    (N1,D1) = x1.shape
    (N2,D2) = x2.shape
    inds = []
    dists = []
    for i1 in range(N1):
        for i2 in range(N2):
            if notself and i1 == i2:
                continue
            d2 = sum((x1[i1,:] - x2[i2,:])**2)
            if d2 < radius**2:
                inds.append((i1,i2))
                dists.append(sqrt(d2))
    inds = array(inds)
    dists = array(dists)
    return (inds,dists)

def nearest(x1, x2, maxradius, notself=False):
    '''
    For each point in x2, returns the index of the nearest point in x1,
    if there is a point within 'maxradius'.

    (Note, this may be backward from what you want/expect!)
    '''
    (kd1,kd2) = _buildtrees(x1, x2)
    (inds,dist2s) = spherematch_c.nearest(kd1, kd2, maxradius, notself)
    _freetrees(kd1, kd2)
    return (inds,dist2s)
_nearest_func = nearest

def tree_build_radec(ra=None, dec=None, xyz=None):
    if ra is not None:
        (N,) = ra.shape
        xyz = np.zeros((N,3)).astype(float)
        xyz[:,2] = np.sin(np.deg2rad(dec))
        cosd = np.cos(np.deg2rad(dec))
        xyz[:,0] = cosd * np.cos(np.deg2rad(ra))
        xyz[:,1] = cosd * np.sin(np.deg2rad(ra))
    kd = spherematch_c.kdtree_build(xyz)
    return kd

def tree_build(X):
    '''
    X: Numpy array of shape (N,D)
    Returns: kdtree identifier.
    '''
    return spherematch_c.kdtree_build(X)

def tree_free(kd):
    spherematch_c.kdtree_free(kd)

def tree_save(kd, fn):
    rtn = spherematch_c.kdtree_write(kd, fn)
    return rtn

def tree_open(fn):
    return spherematch_c.kdtree_open(fn)

def tree_close(kd):
    return spherematch_c.kdtree_close(kd)
    
def trees_match(kd1, kd2, radius, nearest=False, notself=False,
                permuted=True, count=False):
    '''
    Runs rangesearch or nearest-neighbour matching on given kdtrees.

    'radius' is Euclidean distance.

    If 'nearest'=True, returns the nearest neighbour of each point in "kd1";
    ie, "I" will NOT contain duplicates, but "J" may.

    If 'count'=True, also counts the number of objects within range
    as well as returning the nearest neighbor of each point in "kd1";
    the return value becomes I,J,d,counts , counts a numpy array of ints.

    Returns (I, J, d), where
      I are indices into kd1
      J are indices into kd2
      d are distances-squared
      [counts is number of sources in range]

    >>> import numpy as np
    >>> X = np.array([[1, 2, 3, 6]]).T.astype(float)
    >>> Y = np.array([[1, 4, 4]]).T.astype(float)
    >>> kd1 = tree_build(X)
    >>> kd2 = tree_build(Y)
    >>> I,J,d = trees_match(kd1, kd2, 1.1, nearest=True)
    >>> print I
    [0 1 2]
    >>> print J
    [0 0 2]
    >>> print d
    [  0.  60.  60.]
    >>> I,J,d,count = trees_match(kd1, kd2, 1.1, nearest=True, count=True)
    >>> print I
    [0 1 2]
    >>> print J
    [0 0 2]
    >>> print d
    [  0.  60.  60.]
    >>> print count
    [1 1 2]
    '''
    rtn = None
    if nearest:
        rtn = spherematch_c.nearest2(kd2, kd1, radius, notself, count)
        # J,I,d,[count]
        rtn = (rtn[1], rtn[0], distsq2deg(rtn[2]),) + rtn[3:]
    else:
        (inds,dists) = spherematch_c.match(kd1, kd2, radius, notself, permuted)
        d = dist2deg(dists[:,0])
        I,J = inds[:,0], inds[:,1]
        rtn = (I,J,d)
    return rtn

tree_permute = spherematch_c.kdtree_permute
tree_bbox = spherematch_c.kdtree_bbox
tree_n = spherematch_c.kdtree_n

if __name__ == '__main__':
    import doctest
    doctest.testmod()