/usr/lib/python/astrometry/libkd/spherematch.py is in astrometry.net 0.46-0ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 | from astrometry.libkd import spherematch_c
import numpy as np
# for LSST (use things defined in astrometry.net 0.30)
try:
from astrometry.util.starutil_numpy import radectoxyz, deg2dist, dist2deg, distsq2deg
except:
from astrometry.util.starutil_numpy import radectoxyz, rad2distsq
def rad2dist(r):
return np.sqrt(rad2distsq(r))
def distsq2rad(dist2):
return np.arccos(1. - dist2 / 2.)
def distsq2deg(dist2):
return np.rad2deg(distsq2rad(dist2))
# deg2dist, dist2deg
def deg2dist(deg):
return rad2dist(np.deg2rad(deg))
def dist2deg(dist):
return distsq2deg(dist**2)
def match_xy(x1,y1, x2,y2, R, **kwargs):
'''
Like match_radec, except for plain old 2-D points.
'''
I,d = match(np.vstack((x1,y1)).T, np.vstack((x2,y2)).T, R, **kwargs)
return I[:,0],I[:,1],d
# Copied from "celestial.py" by Sjoert van Velzen.
def match_radec(ra1, dec1, ra2, dec2, radius_in_deg, notself=False,
nearest=False, indexlist=False):
'''
(m1,m2,d12) = match_radec(ra1,dec1, ra2,dec2, radius_in_deg)
Cross-matches numpy arrays of RA,Dec points.
Behaves like spherematch.pro of IDL
ra1,dec1 (and 2): RA,Dec in degrees of points to match.
Must be scalars or numpy arrays.
radius_in_deg: search radius in degrees.
notself: if True, avoids returning 'identity' matches;
ASSUMES that ra1,dec1 == ra2,dec2.
nearest: if True, returns only the nearest match in (ra2,dec2)
for each point in (ra1,dec1).
indexlist: returns a list of length len(ra1), containing None or a
list of ints of matched points in ra2,dec2. Returns this list.
Returns:
m1: indices into the "ra1,dec1" arrays of matching points.
Numpy array of ints.
m2: same, but for "ra2,dec2".
d12: distance, in degrees, between the matching points.
'''
# Convert to coordinates on the unit sphere
xyz1 = radectoxyz(ra1, dec1)
#if all(ra1 == ra2) and all(dec1 == dec2):
if ra1 is ra2 and dec1 is dec2:
xyz2 = xyz1
else:
xyz2 = radectoxyz(ra2, dec2)
r = deg2dist(radius_in_deg)
if nearest:
(inds,dists2) = _nearest_func(xyz2, xyz1, r, notself=notself)
I = np.flatnonzero(inds >= 0)
J = inds[I]
d = distsq2deg(dists2[I])
else:
X = match(xyz1, xyz2, r, notself=notself, indexlist=indexlist)
if indexlist:
return X
(inds,dists) = X
dist_in_deg = dist2deg(dists)
I,J = inds[:,0], inds[:,1]
d = dist_in_deg[:,0]
return (I, J, d)
def cluster_radec(ra, dec, R, singles=False):
'''
Finds connected groups of objects in RA,Dec space.
Returns a list of lists of indices that are connected,
EXCLUDING singletons.
'''
I,J,d = match_radec(ra, dec, ra, dec, R, notself=True)
# 'mgroups' maps each index in a group to a list of the group members
mgroups = {}
# 'ugroups' is a list of the unique groups
ugroups = []
for i,j in zip(I,J):
# Are both sources already in groups?
if i in mgroups and j in mgroups:
# Are they already in the same group?
if mgroups[i] == mgroups[j]:
continue
# merge if they are different;
# assert(they are disjoint)
lsti = mgroups[i]
lstj = mgroups[j]
merge = lsti + lstj
for k in merge:
mgroups[k] = merge
ugroups.remove(lsti)
ugroups.remove(lstj)
ugroups.append(merge)
elif i in mgroups:
# Add j to i's group
lst = mgroups[i]
lst.append(j)
mgroups[j] = lst
elif j in mgroups:
# Add i to j's group
lst = mgroups[j]
lst.append(i)
mgroups[i] = lst
else:
# Create a new group
lst = [i,j]
mgroups[i] = lst
mgroups[j] = lst
ugroups.append(lst)
if singles:
S = np.ones(len(ra), bool)
for g in ugroups:
S[np.array(g)] = False
S = np.flatnonzero(S)
return ugroups,S
return ugroups
def _cleaninputs(x1, x2):
fx1 = x1.astype(np.float64)
if x2 is x1:
fx2 = fx1
else:
fx2 = x2.astype(np.float64)
(N1,D1) = fx1.shape
(N2,D2) = fx2.shape
if D1 != D2:
raise ValueError, 'Arrays must have the same dimensionality'
return (fx1,fx2)
def _buildtrees(x1, x2):
(fx1, fx2) = _cleaninputs(x1, x2)
kd1 = spherematch_c.kdtree_build(fx1)
if fx2 is fx1:
kd2 = kd1
else:
kd2 = spherematch_c.kdtree_build(fx2)
return (kd1, kd2)
def _freetrees(kd1, kd2):
spherematch_c.kdtree_free(kd1)
if kd2 != kd1:
spherematch_c.kdtree_free(kd2)
def match(x1, x2, radius, notself=False, permuted=True, indexlist=False):
'''
(indices,dists) = match(x1, x2, radius):
Given an N1 x D1 array x1,
and an N2 x D2 array x2,
and radius:
Returns the indices (Nx2 int array) and distances (Nx1 float
array) between points in "x1" and "x2" that are within "radius"
Euclidean distance of each other.
"x1" is N1xD and "x2" is N2xD. "x1" and "x2" can be the same
array. Dimensions D above 5-10 will probably not run faster than
naive.
Despite the name of this package, the arrays x1 and x2 need not be
celestial positions; in particular, there is no RA wrapping at 0,
and no special handling at the poles. If you want to match
celestial coordinates like RA,Dec, see the match_radec function.
The "indices" return value has a row for each match; the matched
points are:
x1[indices[:,0],:]
and
x2[indices[:,1],:]
This function doesn\'t know about spherical coordinates -- it just
searches for matches in n-dimensional space.
>>> from astrometry.util.starutil_numpy import *
>>> from astrometry.libkd import spherematch
# RA,Dec in degrees
>>> ra1 = array([ 0, 1, 2, 3, 4, 359,360])
>>> dec1 = array([-90,-89,-1, 0, 1, 89, 90])
# xyz: N x 3 array: unit vectors
>>> xyz1 = radectoxyz(ra1, dec1)
>>> ra2 = array([ 45, 1, 4, 4, 4, 0, 1])
>>> dec2 = array([-89, -88, -1, 0, 2, 89, 89])
>>> xyz2 = radectoxyz(ra2, dec2)
# The \'radius\' is now distance between points on the unit sphere --
# for small angles, this is ~ angular distance in radians. You can use
# the function:
>>> radius_in_deg = 2.
>>> r = sqrt(deg2distsq(radius_in_deg))
>>> (inds,dists) = spherematch.match(xyz1, xyz2, r)
# Now "inds" is an Mx2 array of the matching indices,
# and "dists" the distances between them:
# eg, sqrt(sum((xyz1[inds[:,0],:] - xyz2[inds[:,1],:])**2, axis=1)) = dists
>>> print inds
[[0 0]
[1 0]
[1 1]
[2 2]
[3 2]
[3 3]
[4 3]
[4 4]
[5 5]
[6 5]
[5 6]
[6 6]]
>>> print sqrt(sum((xyz1[inds[:,0],:] - xyz2[inds[:,1],:])**2, axis=1))
[ 0.01745307 0.01307557 0.01745307 0.0348995 0.02468143 0.01745307
0.01745307 0.01745307 0.0003046 0.01745307 0.00060917 0.01745307]
>>> print dists[:,0]
[ 0.01745307 0.01307557 0.01745307 0.0348995 0.02468143 0.01745307
0.01745307 0.01745307 0.0003046 0.01745307 0.00060917 0.01745307]
>>> print vstack((ra1[inds[:,0]], dec1[inds[:,0]], ra2[inds[:,1]], dec2[inds[:,1]])).T
[[ 0 -90 45 -89]
[ 1 -89 45 -89]
[ 1 -89 1 -88]
[ 2 -1 4 -1]
[ 3 0 4 -1]
[ 3 0 4 0]
[ 4 1 4 0]
[ 4 1 4 2]
[359 89 0 89]
[360 90 0 89]
[359 89 1 89]
[360 90 1 89]]
'''
(kd1,kd2) = _buildtrees(x1, x2)
if indexlist:
inds = spherematch_c.match2(kd1, kd2, radius, notself, permuted)
else:
(inds,dists) = spherematch_c.match(kd1, kd2, radius, notself, permuted)
_freetrees(kd1, kd2)
if indexlist:
return inds
return (inds,dists)
def match_naive(x1, x2, radius, notself=False):
''' Does the same thing as match(), but the straight-forward slow
way. (Not necessarily the way you\'d do it in python either).
Not very fair as a speed comparison, but useful to convince
yourself that match() does the right thing.
'''
(fx1, fx2) = _cleaninputs(x1, x2)
(N1,D1) = x1.shape
(N2,D2) = x2.shape
inds = []
dists = []
for i1 in range(N1):
for i2 in range(N2):
if notself and i1 == i2:
continue
d2 = sum((x1[i1,:] - x2[i2,:])**2)
if d2 < radius**2:
inds.append((i1,i2))
dists.append(sqrt(d2))
inds = array(inds)
dists = array(dists)
return (inds,dists)
def nearest(x1, x2, maxradius, notself=False):
'''
For each point in x2, returns the index of the nearest point in x1,
if there is a point within 'maxradius'.
(Note, this may be backward from what you want/expect!)
'''
(kd1,kd2) = _buildtrees(x1, x2)
(inds,dist2s) = spherematch_c.nearest(kd1, kd2, maxradius, notself)
_freetrees(kd1, kd2)
return (inds,dist2s)
_nearest_func = nearest
def tree_build_radec(ra=None, dec=None, xyz=None):
if ra is not None:
(N,) = ra.shape
xyz = np.zeros((N,3)).astype(float)
xyz[:,2] = np.sin(np.deg2rad(dec))
cosd = np.cos(np.deg2rad(dec))
xyz[:,0] = cosd * np.cos(np.deg2rad(ra))
xyz[:,1] = cosd * np.sin(np.deg2rad(ra))
kd = spherematch_c.kdtree_build(xyz)
return kd
def tree_build(X):
'''
X: Numpy array of shape (N,D)
Returns: kdtree identifier.
'''
return spherematch_c.kdtree_build(X)
def tree_free(kd):
spherematch_c.kdtree_free(kd)
def tree_save(kd, fn):
rtn = spherematch_c.kdtree_write(kd, fn)
return rtn
def tree_open(fn):
return spherematch_c.kdtree_open(fn)
def tree_close(kd):
return spherematch_c.kdtree_close(kd)
def trees_match(kd1, kd2, radius, nearest=False, notself=False,
permuted=True, count=False):
'''
Runs rangesearch or nearest-neighbour matching on given kdtrees.
'radius' is Euclidean distance.
If 'nearest'=True, returns the nearest neighbour of each point in "kd1";
ie, "I" will NOT contain duplicates, but "J" may.
If 'count'=True, also counts the number of objects within range
as well as returning the nearest neighbor of each point in "kd1";
the return value becomes I,J,d,counts , counts a numpy array of ints.
Returns (I, J, d), where
I are indices into kd1
J are indices into kd2
d are distances-squared
[counts is number of sources in range]
>>> import numpy as np
>>> X = np.array([[1, 2, 3, 6]]).T.astype(float)
>>> Y = np.array([[1, 4, 4]]).T.astype(float)
>>> kd1 = tree_build(X)
>>> kd2 = tree_build(Y)
>>> I,J,d = trees_match(kd1, kd2, 1.1, nearest=True)
>>> print I
[0 1 2]
>>> print J
[0 0 2]
>>> print d
[ 0. 60. 60.]
>>> I,J,d,count = trees_match(kd1, kd2, 1.1, nearest=True, count=True)
>>> print I
[0 1 2]
>>> print J
[0 0 2]
>>> print d
[ 0. 60. 60.]
>>> print count
[1 1 2]
'''
rtn = None
if nearest:
rtn = spherematch_c.nearest2(kd2, kd1, radius, notself, count)
# J,I,d,[count]
rtn = (rtn[1], rtn[0], distsq2deg(rtn[2]),) + rtn[3:]
else:
(inds,dists) = spherematch_c.match(kd1, kd2, radius, notself, permuted)
d = dist2deg(dists[:,0])
I,J = inds[:,0], inds[:,1]
rtn = (I,J,d)
return rtn
tree_permute = spherematch_c.kdtree_permute
tree_bbox = spherematch_c.kdtree_bbox
tree_n = spherematch_c.kdtree_n
if __name__ == '__main__':
import doctest
doctest.testmod()
|