This file is indexed.

/usr/lib/python/astrometry/util/miscutils.py is in astrometry.net 0.46-0ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
from math import pi
import numpy as np

def patch_image(img, mask, dxdy = [(-1,0),(1,0),(0,-1),(0,1)],
                required=None):
    '''
    Patch masked pixels by iteratively averaging non-masked neighboring pixels.

    WARNING: this modifies BOTH the "img" and "mask" arrays!

    mask: True for good pixels
    required: if non-None: True for pixels you want to be patched.
    dxdy: Pixels to average in, relative to pixels to be patched.
    
    Returns True if patching was successful.
    '''
    assert(img.shape == mask.shape)
    assert(len(img.shape) == 2)
    h,w = img.shape
    Nlast = -1
    while True:
        needpatching = np.logical_not(mask)
        if required is not None:
            needpatching *= required
        I = np.flatnonzero(needpatching)
        if len(I) == 0:
            break
        if len(I) == Nlast:
            return False
        #print 'Patching', len(I), 'pixels'
        Nlast = len(I)
        iy,ix = np.unravel_index(I, img.shape)
        psum = np.zeros(len(I), img.dtype)
        pn = np.zeros(len(I), int)

        for dx,dy in dxdy:
            ok = True
            if dx < 0:
                ok = ok * (ix >= (-dx))
            if dx > 0:
                ok = ok * (ix <= (w-1-dx))
            if dy < 0:
                ok = ok * (iy >= (-dy))
            if dy > 0:
                ok = ok * (iy <= (h-1-dy))

            # darn, NaN * False = NaN, not zero.
            finite = np.isfinite(img [iy[ok]+dy, ix[ok]+dx])
            ok[ok] *= finite

            psum[ok] += (img [iy[ok]+dy, ix[ok]+dx] *
                         mask[iy[ok]+dy, ix[ok]+dx])
            pn[ok] += mask[iy[ok]+dy, ix[ok]+dx]

            # print 'ix', ix
            # print 'iy', iy
            # print 'dx,dy', dx,dy
            # print 'ok', ok
            # print 'psum', psum
            # print 'pn', pn
                
        img.flat[I] = (psum / np.maximum(pn, 1)).astype(img.dtype)
        mask.flat[I] = (pn > 0)
        #print 'Patched', np.sum(pn > 0)
    return True

def polygon_area(poly):
	xx,yy = poly
	x,y = np.mean(xx), np.mean(yy)
	area = 0.
	for dx0,dy0,dx1,dy1 in zip(xx-x, yy-y, xx[1:]-x, yy[1:]-y):
		# area: 1/2 cross product
		area += np.abs(dx0 * dy1 - dx1 * dy0)
	return 0.5 * area

def clip_polygon(poly1, poly2):
    '''
    Returns a new polygon resulting from taking poly1 and clipping it
    to lie inside poly2.

    WARNING, the polygons must be listed in CLOCKWISE order.

    WARNING, the clipping polygon, poly2, must be CONVEX.
    '''
    # from clipper import Clipper, Point, PolyType, ClipType, PolyFillType
    # '''
    # '''
    # c = Clipper()
    # p1 = [Point(x,y) for x,y in poly1]
    # p2 = [Point(x,y) for x,y in poly2]
    # c.AddPolygon(p1, PolyType.Subject)
    # c.AddPolygon(p2, PolyType.Clip)
    # solution = []
    # pft = PolyFillType.EvenOdd
    # result = c.Execute(ClipType.Intersection, solution, pft, pft)
    # if len(solution) > 1:
    #     raise RuntimeError('Polygon clipping results in non-simple polygon')
    # assert(result)
    # #print 'Result:', result
    # #print 'Solution:', solution
    # return [(s.x, s.y) for s in solution[0]]

    # Sutherland-Hodgman algorithm -- thanks, Wikipedia!
    N2 = len(poly2)
    # clip by each edge in turn.
    for j in range(N2):
        # target "left_right" value
        clip1 = poly2[j]
        clip2 = poly2[(j+1)%N2]
        LRinside = _left_right(clip1, clip2, poly2[(j+2)%N2])
        # are poly vertices inside or outside the clip polygon?
        isinside = [_left_right(clip1, clip2, p) == LRinside
                    for p in poly1]
        # the resulting clipped polygon
        clipped = []
        N1 = len(poly1)
        for i in range(N1):
            S = poly1[i]
            E = poly1[(i+1)%N1]
            Sin = isinside[i]
            Ein = isinside[(i+1)%N1]
            if Ein:
                if not Sin:
                    clipped.append(line_intersection(clip1, clip2, S, E))
                clipped.append(E)
            else:
                if Sin:
                    clipped.append(line_intersection(clip1, clip2, S, E))
        poly1 = clipped
    return poly1

    
def polygons_intersect(poly1, poly2):
    '''
    Determines whether the given 2-D polygons intersect.

    poly1, poly2: np arrays with shape (N,2)
    '''

    # Check whether any points in poly1 are inside poly2,
    # or vice versa.
    for (px,py) in poly1:
        if point_in_poly(px,py, poly2):
            return (px,py)
    for (px,py) in poly2:
        if point_in_poly(px,py, poly1):
            return (px,py)

    # Check for intersections between line segments.  O(n^2) brutish
    N1 = len(poly1)
    N2 = len(poly2)

    for i in range(N1):
        for j in range(N2):
            xy = line_segments_intersect(poly1[i % N1, :], poly1[(i+1) % N1, :],
                                         poly2[j % N2, :], poly2[(j+1) % N2, :])
            if xy:
                return xy
    return False
    

def line_segments_intersect((x1,y1), (x2,y2), (x3,y3), (x4,y4)):
    '''
    Determines whether the two given line segments intersect;

    (x1,y1) to (x2,y2)
    and 
    (x3,y3) to (x4,y4)
    '''
    x,y = line_intersection((x1,y1),(x2,y2),(x3,y3),(x4,y4))
    if x1 == x2:
        p1,p2 = y1,y2
        p = y
    else:
        p1,p2 = x1,x2
        p = x

    if not ((p >= min(p1,p2)) and (p <= max(p1,p2))):
        return False

    if x3 == x4:
        p1,p2 = y3,y4
        p = y
    else:
        p1,p2 = x3,x4
        p = x

    if not ((p >= min(p1,p2)) and (p <= max(p1,p2))):
        return False
    return (x,y)
    

def line_intersection((x1,y1), (x2,y2), (x3,y3), (x4,y4)):
    '''
    Determines the point where the lines described by
    (x1,y1) to (x2,y2)
    and 
    (x3,y3) to (x4,y4)
    intersect.

    Note that this may be beyond the endpoints of the line segments.

    Probably raises an exception if the lines are parallel, or does
    something numerically crazy.
    '''
    # This code started with the equation from Wikipedia,
    # then I added special-case handling.
    # bottom = ((x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4))
    # if bottom == 0:
    #   raise RuntimeError("divide by zero")
    # t1 = (x1 * y2 - y1 * x2)
    # t2 = (x3 * y4 - y3 * x4)
    # px = (t1 * (x3 - x4) - t2 * (x1 - x2)) / bottom
    # py = (t1 * (y3 - y4) - t2 * (y1 - y2)) / bottom

    # From http://wiki.processing.org/w/Line-Line_intersection
    bx = float(x2) - float(x1)
    by = float(y2) - float(y1)
    dx = float(x4) - float(x3)
    dy = float(y4) - float(y3)
    b_dot_d_perp = bx*dy - by*dx
    if b_dot_d_perp == 0:
        return None,None
    cx = float(x3) - float(x1)
    cy = float(y3) - float(y1)
    t = (cx*dy - cy*dx) / b_dot_d_perp
    return x1 + t*bx, y1 + t*by

def _left_right((x1,y1), (x2,y2), (x3,y3)):
    '''
    is (x3,y3) to the 'left' or 'right' of the line from (x1,y1) to (x2,y2) ?
    '''
    dx2,dy2 = x2-x1, y2-y1
    dx3,dy3 = x3-x1, y3-y1
    return (dx2 * dy3 - dx3 * dy2) > 0


def point_in_poly(x, y, poly):
    '''
    Performs a point-in-polygon test for numpy arrays of *x* and *y*
    values, and a polygon described as 2-d numpy array (with shape (N,2))

    poly: N x 2 array

    Returns a numpy array of bools.
    '''
    x = np.atleast_1d(x)
    y = np.atleast_1d(y)
    inside = np.zeros(x.shape, bool)
    # This does a winding test -- count how many times a horizontal ray
    # from (-inf,y) to (x,y) crosses the boundary.
    for i in range(len(poly)):
        j = (i-1 + len(poly)) % len(poly)
        xi,xj = poly[i,0], poly[j,0]
        yi,yj = poly[i,1], poly[j,1]

        if yi == yj:
            continue

        I = np.logical_and(
            np.logical_or(np.logical_and(yi <= y, y < yj),
                          np.logical_and(yj <= y, y < yi)),
            x < (xi + ((xj - xi) * (y - yi) / (yj - yi))))
        inside[I] = np.logical_not(inside[I])
    return inside

def lanczos_filter(order, x, out=None):
    x = np.atleast_1d(x)
    nz = np.logical_and(x != 0., np.logical_and(x < order, x > -order))
    nz = np.flatnonzero(nz)
    if out is None:
        out = np.zeros(x.shape, dtype=float)
    pinz = pi * x.flat[nz]
    out.flat[nz] = order * np.sin(pinz) * np.sin(pinz / order) / (pinz**2)
    out[x == 0] = 1.
    return out

# Given a range of integer coordinates that you want to, eg, cut out
# of an image, [xlo, xhi], and bounds for the image [xmin, xmax],
# returns the range of coordinates that are in-bounds, and the
# corresponding region within the desired cutout.
def get_overlapping_region(xlo, xhi, xmin, xmax):
    if xlo > xmax or xhi < xmin or xlo > xhi or xmin > xmax:
        return ([], [])

    assert(xlo <= xhi)
    assert(xmin <= xmax)
    
    xloclamp = max(xlo, xmin)
    Xlo = xloclamp - xlo

    xhiclamp = min(xhi, xmax)
    Xhi = Xlo + (xhiclamp - xloclamp)

    #print 'xlo, xloclamp, xhiclamp, xhi', xlo, xloclamp, xhiclamp, xhi
    assert(xloclamp >= xlo)
    assert(xloclamp >= xmin)
    assert(xloclamp <= xmax)
    assert(xhiclamp <= xhi)
    assert(xhiclamp >= xmin)
    assert(xhiclamp <= xmax)
    #print 'Xlo, Xhi, (xmax-xmin)', Xlo, Xhi, xmax-xmin
    assert(Xlo >= 0)
    assert(Xhi >= 0)
    assert(Xlo <= (xhi-xlo))
    assert(Xhi <= (xhi-xlo))

    return (slice(xloclamp, xhiclamp+1), slice(Xlo, Xhi+1))



if __name__ == '__main__':
    import matplotlib
    matplotlib.use('Agg')
    import pylab as plt
    import numpy as np
    from astrometry.util.plotutils import *
    ps = PlotSequence('miscutils')

    np.random.seed(42)

    if True:
        p2 = np.array([[0,0],[0,4],[4,4],[4,0]])

        for i,p1 in enumerate([ np.array([[0,0],[0,2],[2,2],[2,0]]),
                                np.array([[-1,-1],[0,2],[2,2],[2,0]]),
                                np.array([[4,0],[0,4],[-4,0],[0,-4]]),
                                np.array([[-1,2],[2,5],[5,2],[2,-1]]),
                                ] + [None]*10):
            if p1 is None:
                p1 = np.random.uniform(high=6., low=-2, size=(4,2))
            pc = np.array(clip_polygon(p1, p2))
            plt.clf()
            I = np.array([0,1,2,3,0])
            plt.plot(p1[I,0], p1[I,1], 'b-', lw=3, alpha=0.5)
            plt.plot(p2[I,0], p2[I,1], 'k-')
            I = np.array(range(len(pc)) + [0])
            plt.plot(pc[I,0], pc[I,1], 'r-')
            plt.axis([-1,5,-1,5])
            plt.savefig('clip-%02i.png' % i)
        import sys
        sys.exit(0)
    
    if True:
        for i in range(20):
            if i <= 10:
                xy1 = np.array([[0,0],[0,4],[4,4],[4,0]])
            else:
                xy1 = np.random.uniform(high=10., size=(4,2))
            xy2 = np.random.uniform(high=10., size=(4,2))
            plt.clf()
            I = np.array([0,1,2,3,0])
            xy = polygons_intersect(xy1, xy2)
            if xy:
                cc = 'r'
                x,y = xy
                plt.plot(x,y, 'mo', mec='m', mfc='none', ms=20, mew=3, zorder=30)
            else:
                cc = 'k'
            plt.plot(xy1[I,0], xy1[I,1], '-', color=cc, zorder=20, lw=3)
            plt.plot(xy2[I,0], xy2[I,1], '-', color=cc, zorder=20, lw=3)
            ax = plt.axis()
            plt.axis([ax[0]-0.5, ax[1]+0.5, ax[2]-0.5, ax[3]+0.5])
            ps.savefig()
    
    if False:
        X,Y = np.meshgrid(np.linspace(-1,11, 20), np.linspace(-1,11, 23))
        X = X.ravel()
        Y = Y.ravel()
        for i in range(20):
            if i == 0:
                xy = np.array([[0,0],[0,10],[10,10],[10,0]])
            else:
                xy = np.random.uniform(high=10., size=(4,2))
            plt.clf()
            I = np.array([0,1,2,3,0])
            plt.plot(xy[I,0], xy[I,1], 'r-', zorder=20, lw=3)
            inside = point_in_poly(X, Y, xy)
            plt.plot(X[inside], Y[inside], 'bo')
            out = np.logical_not(inside)
            plt.plot(X[out], Y[out], 'ro')
            ax = plt.axis()
            plt.axis([ax[0]-0.5, ax[1]+0.5, ax[2]-0.5, ax[3]+0.5])
            ps.savefig()
        


    if True:
        # intersection()
        for i in range(20):
            if i == 0:
                x1 = x2 = 0
                y1 = 0
                y2 = 1
                x3 = 1
                x4 = -1
                y3 = 0
                y4 = 1
            elif i == 1:
                x1,y1 = 0,0
                x2,y2 = 0,1
                x3,y3 = -3,0
                x4,y4 = -2,0
            elif i == 2:
                x1,y1 = 1,0
                x2,y2 = 0,1
                x3,y3 = -3,0
                x4,y4 = -2,0
            elif i == 3:
                x1,y1 = 0,1
                x2,y2 = 1,0
                x3,y3 = 0,-3
                x4,y4 = 0,-2
            elif i == 4:
                x1,y1 = 0,0
                x2,y2 = 0,1
                x3,y3 = 0,2
                x4,y4 = 0,3
            elif i == 5:
                x1,y1 = -1,0
                x2,y2 = 1, 0
                x3,y3 = 0, 2
                x4,y4 = 0.5, 1
            else:
                xy = np.random.uniform(high=10., size=(8,))
                x1,y1,x2,y2,x3,y3,x4,y4 = xy
            plt.clf()
            plt.plot([x1,x2],[y1,y2], 'r-', zorder=20, lw=3)
            plt.plot([x3,x4],[y3,y4], 'b-', zorder=20, lw=3)
            x,y = line_intersection((x1,y1),(x2,y2),(x3,y3),(x4,y4))
            plt.plot(x, y, 'kx', ms=20, zorder=25)
            plt.plot([x1,x],[y1,y], 'k--', alpha=0.5, zorder=15)
            plt.plot([x2,x],[y2,y], 'k--', alpha=0.5, zorder=15)
            plt.plot([x3,x],[y3,y], 'k--', alpha=0.5, zorder=15)
            plt.plot([x4,x],[y4,y], 'k--', alpha=0.5, zorder=15)

            # line_segments_intersect()
            if line_segments_intersect((x1,y1),(x2,y2),(x3,y3),(x4,y4)):
                plt.plot(x,y, 'mo', mec='m', mfc='none', ms=20, mew=3, zorder=30)
            ax = plt.axis()
            plt.axis([ax[0]-0.5, ax[1]+0.5, ax[2]-0.5, ax[3]+0.5])
            ps.savefig()