/usr/include/coin/OsiClpSolverInterface.hpp is in coinor-libclp-dev 1.15.5-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 | // $Id$
// Copyright (C) 2000, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#ifndef OsiClpSolverInterface_H
#define OsiClpSolverInterface_H
#include <string>
#include <cfloat>
#include <map>
#include "ClpSimplex.hpp"
#include "ClpLinearObjective.hpp"
#include "CoinPackedMatrix.hpp"
#include "OsiSolverInterface.hpp"
#include "CoinWarmStartBasis.hpp"
#include "ClpEventHandler.hpp"
#include "ClpNode.hpp"
#include "CoinIndexedVector.hpp"
#include "CoinFinite.hpp"
class OsiRowCut;
class OsiClpUserSolver;
class OsiClpDisasterHandler;
class CoinSet;
static const double OsiClpInfinity = COIN_DBL_MAX;
//#############################################################################
/** Clp Solver Interface
Instantiation of OsiClpSolverInterface for the Model Algorithm.
*/
class OsiClpSolverInterface :
virtual public OsiSolverInterface {
friend void OsiClpSolverInterfaceUnitTest(const std::string & mpsDir, const std::string & netlibDir);
public:
//---------------------------------------------------------------------------
/**@name Solve methods */
//@{
/// Solve initial LP relaxation
virtual void initialSolve();
/// Resolve an LP relaxation after problem modification
virtual void resolve();
/// Resolve an LP relaxation after problem modification (try GUB)
virtual void resolveGub(int needed);
/// Invoke solver's built-in enumeration algorithm
virtual void branchAndBound();
/** Solve when primal column and dual row solutions are near-optimal
options - 0 no presolve (use primal and dual)
1 presolve (just use primal)
2 no presolve (just use primal)
basis - 0 use all slack basis
1 try and put some in basis
*/
void crossover(int options,int basis);
//@}
/*! @name OsiSimplexInterface methods
\brief Methods for the Osi Simplex API.
The current implementation should work for both minimisation and
maximisation in mode 1 (tableau access). In mode 2 (single pivot), only
minimisation is supported as of 100907.
*/
//@{
/** \brief Simplex API capability.
Returns
- 0 if no simplex API
- 1 if can just do getBInv etc
- 2 if has all OsiSimplex methods
*/
virtual int canDoSimplexInterface() const;
/*! \brief Enables simplex mode 1 (tableau access)
Tells solver that calls to getBInv etc are about to take place.
Underlying code may need mutable as this may be called from
CglCut::generateCuts which is const. If that is too horrific then
each solver e.g. BCP or CBC will have to do something outside
main loop.
*/
virtual void enableFactorization() const;
/*! \brief Undo any setting changes made by #enableFactorization */
virtual void disableFactorization() const;
/** Returns true if a basis is available
AND problem is optimal. This should be used to see if
the BInvARow type operations are possible and meaningful.
*/
virtual bool basisIsAvailable() const;
/** The following two methods may be replaced by the
methods of OsiSolverInterface using OsiWarmStartBasis if:
1. OsiWarmStartBasis resize operation is implemented
more efficiently and
2. It is ensured that effects on the solver are the same
Returns a basis status of the structural/artificial variables
At present as warm start i.e 0 free, 1 basic, 2 upper, 3 lower
NOTE artificials are treated as +1 elements so for <= rhs
artificial will be at lower bound if constraint is tight
This means that Clpsimplex flips artificials as it works
in terms of row activities
*/
virtual void getBasisStatus(int* cstat, int* rstat) const;
/** Set the status of structural/artificial variables and
factorize, update solution etc
NOTE artificials are treated as +1 elements so for <= rhs
artificial will be at lower bound if constraint is tight
This means that Clpsimplex flips artificials as it works
in terms of row activities
Returns 0 if OK, 1 if problem is bad e.g. duplicate elements, too large ...
*/
virtual int setBasisStatus(const int* cstat, const int* rstat);
///Get the reduced gradient for the cost vector c
virtual void getReducedGradient(double* columnReducedCosts,
double * duals,
const double * c) const ;
///Get a row of the tableau (slack part in slack if not NULL)
virtual void getBInvARow(int row, double* z, double * slack=NULL) const;
/** Get a row of the tableau (slack part in slack if not NULL)
If keepScaled is true then scale factors not applied after so
user has to use coding similar to what is in this method
*/
virtual void getBInvARow(int row, CoinIndexedVector * z, CoinIndexedVector * slack=NULL,
bool keepScaled=false) const;
///Get a row of the basis inverse
virtual void getBInvRow(int row, double* z) const;
///Get a column of the tableau
virtual void getBInvACol(int col, double* vec) const ;
///Get a column of the tableau
virtual void getBInvACol(int col, CoinIndexedVector * vec) const ;
/** Update (i.e. ftran) the vector passed in.
Unscaling is applied after - can't be applied before
*/
virtual void getBInvACol(CoinIndexedVector * vec) const ;
///Get a column of the basis inverse
virtual void getBInvCol(int col, double* vec) const ;
/** Get basic indices (order of indices corresponds to the
order of elements in a vector retured by getBInvACol() and
getBInvCol()).
*/
virtual void getBasics(int* index) const;
/*! \brief Enables simplex mode 2 (individual pivot control)
This method is supposed to ensure that all typical things (like
reduced costs, etc.) are updated when individual pivots are executed
and can be queried by other methods.
*/
virtual void enableSimplexInterface(bool doingPrimal);
/// Copy across enabled stuff from one solver to another
void copyEnabledSuff(OsiClpSolverInterface & rhs);
/*! \brief Undo setting changes made by #enableSimplexInterface */
virtual void disableSimplexInterface();
/// Copy across enabled stuff from one solver to another
void copyEnabledStuff(ClpSimplex & rhs);
/** Perform a pivot by substituting a colIn for colOut in the basis.
The status of the leaving variable is given in statOut. Where
1 is to upper bound, -1 to lower bound
Return code is 0 for okay,
1 if inaccuracy forced re-factorization (should be okay) and
-1 for singular factorization
*/
virtual int pivot(int colIn, int colOut, int outStatus);
/** Obtain a result of the primal pivot
Outputs: colOut -- leaving column, outStatus -- its status,
t -- step size, and, if dx!=NULL, *dx -- primal ray direction.
Inputs: colIn -- entering column, sign -- direction of its change (+/-1).
Both for colIn and colOut, artificial variables are index by
the negative of the row index minus 1.
Return code (for now): 0 -- leaving variable found,
-1 -- everything else?
Clearly, more informative set of return values is required
Primal and dual solutions are updated
*/
virtual int primalPivotResult(int colIn, int sign,
int& colOut, int& outStatus,
double& t, CoinPackedVector* dx);
/** Obtain a result of the dual pivot (similar to the previous method)
Differences: entering variable and a sign of its change are now
the outputs, the leaving variable and its statuts -- the inputs
If dx!=NULL, then *dx contains dual ray
Return code: same
*/
virtual int dualPivotResult(int& colIn, int& sign,
int colOut, int outStatus,
double& t, CoinPackedVector* dx);
//@}
//---------------------------------------------------------------------------
/**@name Parameter set/get methods
The set methods return true if the parameter was set to the given value,
false otherwise. There can be various reasons for failure: the given
parameter is not applicable for the solver (e.g., refactorization
frequency for the clp algorithm), the parameter is not yet implemented
for the solver or simply the value of the parameter is out of the range
the solver accepts. If a parameter setting call returns false check the
details of your solver.
The get methods return true if the given parameter is applicable for the
solver and is implemented. In this case the value of the parameter is
returned in the second argument. Otherwise they return false.
*/
//@{
// Set an integer parameter
bool setIntParam(OsiIntParam key, int value);
// Set an double parameter
bool setDblParam(OsiDblParam key, double value);
// Set a string parameter
bool setStrParam(OsiStrParam key, const std::string & value);
// Get an integer parameter
bool getIntParam(OsiIntParam key, int& value) const;
// Get an double parameter
bool getDblParam(OsiDblParam key, double& value) const;
// Get a string parameter
bool getStrParam(OsiStrParam key, std::string& value) const;
// Set a hint parameter - overrides OsiSolverInterface
virtual bool setHintParam(OsiHintParam key, bool yesNo=true,
OsiHintStrength strength=OsiHintTry,
void * otherInformation=NULL);
//@}
//---------------------------------------------------------------------------
///@name Methods returning info on how the solution process terminated
//@{
/// Are there a numerical difficulties?
virtual bool isAbandoned() const;
/// Is optimality proven?
virtual bool isProvenOptimal() const;
/// Is primal infeasiblity proven?
virtual bool isProvenPrimalInfeasible() const;
/// Is dual infeasiblity proven?
virtual bool isProvenDualInfeasible() const;
/// Is the given primal objective limit reached?
virtual bool isPrimalObjectiveLimitReached() const;
/// Is the given dual objective limit reached?
virtual bool isDualObjectiveLimitReached() const;
/// Iteration limit reached?
virtual bool isIterationLimitReached() const;
//@}
//---------------------------------------------------------------------------
/**@name WarmStart related methods */
//@{
/*! \brief Get an empty warm start object
This routine returns an empty CoinWarmStartBasis object. Its purpose is
to provide a way to give a client a warm start basis object of the
appropriate type, which can resized and modified as desired.
*/
virtual CoinWarmStart *getEmptyWarmStart () const;
/// Get warmstarting information
virtual CoinWarmStart* getWarmStart() const;
/// Get warmstarting information
inline CoinWarmStartBasis* getPointerToWarmStart()
{ return &basis_;}
/// Get warmstarting information
inline const CoinWarmStartBasis* getConstPointerToWarmStart() const
{ return &basis_;}
/** Set warmstarting information. Return true/false depending on whether
the warmstart information was accepted or not. */
virtual bool setWarmStart(const CoinWarmStart* warmstart);
/** \brief Get warm start information.
Return warm start information for the current state of the solver
interface. If there is no valid warm start information, an empty warm
start object wil be returned. This does not necessarily create an
object - may just point to one. must Delete set true if user
should delete returned object.
OsiClp version always returns pointer and false.
*/
virtual CoinWarmStart* getPointerToWarmStart(bool & mustDelete) ;
//@}
//---------------------------------------------------------------------------
/**@name Hotstart related methods (primarily used in strong branching).
The user can create a hotstart (a snapshot) of the optimization process
then reoptimize over and over again always starting from there.<br>
<strong>NOTE</strong>: between hotstarted optimizations only
bound changes are allowed. */
//@{
/// Create a hotstart point of the optimization process
virtual void markHotStart();
/// Optimize starting from the hotstart
virtual void solveFromHotStart();
/// Delete the snapshot
virtual void unmarkHotStart();
/** Start faster dual - returns negative if problems 1 if infeasible,
Options to pass to solver
1 - create external reduced costs for columns
2 - create external reduced costs for rows
4 - create external row activity (columns always done)
Above only done if feasible
When set resolve does less work
*/
int startFastDual(int options);
/// Stop fast dual
void stopFastDual();
/// Sets integer tolerance and increment
void setStuff(double tolerance,double increment);
//@}
//---------------------------------------------------------------------------
/**@name Problem information methods
These methods call the solver's query routines to return
information about the problem referred to by the current object.
Querying a problem that has no data associated with it result in
zeros for the number of rows and columns, and NULL pointers from
the methods that return vectors.
Const pointers returned from any data-query method are valid as
long as the data is unchanged and the solver is not called.
*/
//@{
/**@name Methods related to querying the input data */
//@{
/// Get number of columns
virtual int getNumCols() const {
return modelPtr_->numberColumns(); }
/// Get number of rows
virtual int getNumRows() const {
return modelPtr_->numberRows(); }
/// Get number of nonzero elements
virtual int getNumElements() const {
int retVal = 0;
const CoinPackedMatrix * matrix =modelPtr_->matrix();
if ( matrix != NULL ) retVal=matrix->getNumElements();
return retVal; }
/// Return name of row if one exists or Rnnnnnnn
/// maxLen is currently ignored and only there to match the signature from the base class!
virtual std::string getRowName(int rowIndex,
unsigned maxLen = static_cast<unsigned>(std::string::npos)) const;
/// Return name of column if one exists or Cnnnnnnn
/// maxLen is currently ignored and only there to match the signature from the base class!
virtual std::string getColName(int colIndex,
unsigned maxLen = static_cast<unsigned>(std::string::npos)) const;
/// Get pointer to array[getNumCols()] of column lower bounds
virtual const double * getColLower() const { return modelPtr_->columnLower(); }
/// Get pointer to array[getNumCols()] of column upper bounds
virtual const double * getColUpper() const { return modelPtr_->columnUpper(); }
/** Get pointer to array[getNumRows()] of row constraint senses.
<ul>
<li>'L' <= constraint
<li>'E' = constraint
<li>'G' >= constraint
<li>'R' ranged constraint
<li>'N' free constraint
</ul>
*/
virtual const char * getRowSense() const;
/** Get pointer to array[getNumRows()] of rows right-hand sides
<ul>
<li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
<li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
<li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
<li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
</ul>
*/
virtual const double * getRightHandSide() const ;
/** Get pointer to array[getNumRows()] of row ranges.
<ul>
<li> if rowsense()[i] == 'R' then
rowrange()[i] == rowupper()[i] - rowlower()[i]
<li> if rowsense()[i] != 'R' then
rowrange()[i] is undefined
</ul>
*/
virtual const double * getRowRange() const ;
/// Get pointer to array[getNumRows()] of row lower bounds
virtual const double * getRowLower() const { return modelPtr_->rowLower(); }
/// Get pointer to array[getNumRows()] of row upper bounds
virtual const double * getRowUpper() const { return modelPtr_->rowUpper(); }
/// Get pointer to array[getNumCols()] of objective function coefficients
virtual const double * getObjCoefficients() const
{ if (fakeMinInSimplex_)
return linearObjective_ ;
else
return modelPtr_->objective(); }
/// Get objective function sense (1 for min (default), -1 for max)
virtual double getObjSense() const
{ return ((fakeMinInSimplex_)?-modelPtr_->optimizationDirection():
modelPtr_->optimizationDirection()); }
/// Return true if column is continuous
virtual bool isContinuous(int colNumber) const;
/// Return true if variable is binary
virtual bool isBinary(int colIndex) const;
/** Return true if column is integer.
Note: This function returns true if the the column
is binary or a general integer.
*/
virtual bool isInteger(int colIndex) const;
/// Return true if variable is general integer
virtual bool isIntegerNonBinary(int colIndex) const;
/// Return true if variable is binary and not fixed at either bound
virtual bool isFreeBinary(int colIndex) const;
/** Return array of column length
0 - continuous
1 - binary (may get fixed later)
2 - general integer (may get fixed later)
*/
virtual const char * getColType(bool refresh=false) const;
/** Return true if column is integer but does not have to
be declared as such.
Note: This function returns true if the the column
is binary or a general integer.
*/
bool isOptionalInteger(int colIndex) const;
/** Set the index-th variable to be an optional integer variable */
void setOptionalInteger(int index);
/// Get pointer to row-wise copy of matrix
virtual const CoinPackedMatrix * getMatrixByRow() const;
/// Get pointer to column-wise copy of matrix
virtual const CoinPackedMatrix * getMatrixByCol() const;
/// Get pointer to mutable column-wise copy of matrix
virtual CoinPackedMatrix * getMutableMatrixByCol() const;
/// Get solver's value for infinity
virtual double getInfinity() const { return OsiClpInfinity; }
//@}
/**@name Methods related to querying the solution */
//@{
/// Get pointer to array[getNumCols()] of primal solution vector
virtual const double * getColSolution() const;
/// Get pointer to array[getNumRows()] of dual prices
virtual const double * getRowPrice() const;
/// Get a pointer to array[getNumCols()] of reduced costs
virtual const double * getReducedCost() const;
/** Get pointer to array[getNumRows()] of row activity levels (constraint
matrix times the solution vector */
virtual const double * getRowActivity() const;
/// Get objective function value
virtual double getObjValue() const;
/** Get how many iterations it took to solve the problem (whatever
"iteration" mean to the solver. */
virtual int getIterationCount() const
{ return modelPtr_->numberIterations(); }
/** Get as many dual rays as the solver can provide. (In case of proven
primal infeasibility there should be at least one.)
The first getNumRows() ray components will always be associated with
the row duals (as returned by getRowPrice()). If \c fullRay is true,
the final getNumCols() entries will correspond to the ray components
associated with the nonbasic variables. If the full ray is requested
and the method cannot provide it, it will throw an exception.
<strong>NOTE for implementers of solver interfaces:</strong> <br>
The double pointers in the vector should point to arrays of length
getNumRows() and they should be allocated via new[]. <br>
<strong>NOTE for users of solver interfaces:</strong> <br>
It is the user's responsibility to free the double pointers in the
vector using delete[].
*/
virtual std::vector<double*> getDualRays(int maxNumRays,
bool fullRay = false) const;
/** Get as many primal rays as the solver can provide. (In case of proven
dual infeasibility there should be at least one.)
<strong>NOTE for implementers of solver interfaces:</strong> <br>
The double pointers in the vector should point to arrays of length
getNumCols() and they should be allocated via new[]. <br>
<strong>NOTE for users of solver interfaces:</strong> <br>
It is the user's responsibility to free the double pointers in the
vector using delete[].
*/
virtual std::vector<double*> getPrimalRays(int maxNumRays) const;
//@}
//@}
//---------------------------------------------------------------------------
/**@name Problem modifying methods */
//@{
//-------------------------------------------------------------------------
/**@name Changing bounds on variables and constraints */
//@{
/** Set an objective function coefficient */
virtual void setObjCoeff( int elementIndex, double elementValue );
/** Set a single column lower bound<br>
Use -DBL_MAX for -infinity. */
virtual void setColLower( int elementIndex, double elementValue );
/** Set a single column upper bound<br>
Use DBL_MAX for infinity. */
virtual void setColUpper( int elementIndex, double elementValue );
/** Set a single column lower and upper bound */
virtual void setColBounds( int elementIndex,
double lower, double upper );
/** Set the bounds on a number of columns simultaneously<br>
The default implementation just invokes setColLower() and
setColUpper() over and over again.
@param indexFirst,indexLast pointers to the beginning and after the
end of the array of the indices of the variables whose
<em>either</em> bound changes
@param boundList the new lower/upper bound pairs for the variables
*/
virtual void setColSetBounds(const int* indexFirst,
const int* indexLast,
const double* boundList);
/** Set a single row lower bound<br>
Use -DBL_MAX for -infinity. */
virtual void setRowLower( int elementIndex, double elementValue );
/** Set a single row upper bound<br>
Use DBL_MAX for infinity. */
virtual void setRowUpper( int elementIndex, double elementValue ) ;
/** Set a single row lower and upper bound */
virtual void setRowBounds( int elementIndex,
double lower, double upper ) ;
/** Set the type of a single row<br> */
virtual void setRowType(int index, char sense, double rightHandSide,
double range);
/** Set the bounds on a number of rows simultaneously<br>
The default implementation just invokes setRowLower() and
setRowUpper() over and over again.
@param indexFirst,indexLast pointers to the beginning and after the
end of the array of the indices of the constraints whose
<em>either</em> bound changes
@param boundList the new lower/upper bound pairs for the constraints
*/
virtual void setRowSetBounds(const int* indexFirst,
const int* indexLast,
const double* boundList);
/** Set the type of a number of rows simultaneously<br>
The default implementation just invokes setRowType()
over and over again.
@param indexFirst,indexLast pointers to the beginning and after the
end of the array of the indices of the constraints whose
<em>any</em> characteristics changes
@param senseList the new senses
@param rhsList the new right hand sides
@param rangeList the new ranges
*/
virtual void setRowSetTypes(const int* indexFirst,
const int* indexLast,
const char* senseList,
const double* rhsList,
const double* rangeList);
/** Set the objective coefficients for all columns
array [getNumCols()] is an array of values for the objective.
This defaults to a series of set operations and is here for speed.
*/
virtual void setObjective(const double * array);
/** Set the lower bounds for all columns
array [getNumCols()] is an array of values for the objective.
This defaults to a series of set operations and is here for speed.
*/
virtual void setColLower(const double * array);
/** Set the upper bounds for all columns
array [getNumCols()] is an array of values for the objective.
This defaults to a series of set operations and is here for speed.
*/
virtual void setColUpper(const double * array);
// using OsiSolverInterface::setRowName ;
/// Set name of row
// virtual void setRowName(int rowIndex, std::string & name) ;
virtual void setRowName(int rowIndex, std::string name) ;
// using OsiSolverInterface::setColName ;
/// Set name of column
// virtual void setColName(int colIndex, std::string & name) ;
virtual void setColName(int colIndex, std::string name) ;
//@}
//-------------------------------------------------------------------------
/**@name Integrality related changing methods */
//@{
/** Set the index-th variable to be a continuous variable */
virtual void setContinuous(int index);
/** Set the index-th variable to be an integer variable */
virtual void setInteger(int index);
/** Set the variables listed in indices (which is of length len) to be
continuous variables */
virtual void setContinuous(const int* indices, int len);
/** Set the variables listed in indices (which is of length len) to be
integer variables */
virtual void setInteger(const int* indices, int len);
/// Number of SOS sets
inline int numberSOS() const
{ return numberSOS_;}
/// SOS set info
inline const CoinSet * setInfo() const
{ return setInfo_;}
/** \brief Identify integer variables and SOS and create corresponding objects.
Record integer variables and create an OsiSimpleInteger object for each
one. All existing OsiSimpleInteger objects will be destroyed.
If the solver supports SOS then do the same for SOS.
If justCount then no objects created and we just store numberIntegers_
Returns number of SOS
*/
virtual int findIntegersAndSOS(bool justCount);
//@}
//-------------------------------------------------------------------------
/// Set objective function sense (1 for min (default), -1 for max,)
virtual void setObjSense(double s )
{ modelPtr_->setOptimizationDirection( s < 0 ? -1 : 1); }
/** Set the primal solution column values
colsol[numcols()] is an array of values of the problem column
variables. These values are copied to memory owned by the
solver object or the solver. They will be returned as the
result of colsol() until changed by another call to
setColsol() or by a call to any solver routine. Whether the
solver makes use of the solution in any way is
solver-dependent.
*/
virtual void setColSolution(const double * colsol);
/** Set dual solution vector
rowprice[numrows()] is an array of values of the problem row
dual variables. These values are copied to memory owned by the
solver object or the solver. They will be returned as the
result of rowprice() until changed by another call to
setRowprice() or by a call to any solver routine. Whether the
solver makes use of the solution in any way is
solver-dependent.
*/
virtual void setRowPrice(const double * rowprice);
//-------------------------------------------------------------------------
/**@name Methods to expand a problem.<br>
Note that if a column is added then by default it will correspond to a
continuous variable. */
//@{
//using OsiSolverInterface::addCol ;
/** */
virtual void addCol(const CoinPackedVectorBase& vec,
const double collb, const double colub,
const double obj);
/*! \brief Add a named column (primal variable) to the problem.
*/
virtual void addCol(const CoinPackedVectorBase& vec,
const double collb, const double colub,
const double obj, std::string name) ;
/** Add a column (primal variable) to the problem. */
virtual void addCol(int numberElements, const int * rows, const double * elements,
const double collb, const double colub,
const double obj) ;
/*! \brief Add a named column (primal variable) to the problem.
*/
virtual void addCol(int numberElements,
const int* rows, const double* elements,
const double collb, const double colub,
const double obj, std::string name) ;
/** */
virtual void addCols(const int numcols,
const CoinPackedVectorBase * const * cols,
const double* collb, const double* colub,
const double* obj);
/** */
virtual void addCols(const int numcols,
const int * columnStarts, const int * rows, const double * elements,
const double* collb, const double* colub,
const double* obj);
/** */
virtual void deleteCols(const int num, const int * colIndices);
/** */
virtual void addRow(const CoinPackedVectorBase& vec,
const double rowlb, const double rowub);
/** */
/*! \brief Add a named row (constraint) to the problem.
The default implementation adds the row, then changes the name. This
can surely be made more efficient within an OsiXXX class.
*/
virtual void addRow(const CoinPackedVectorBase& vec,
const double rowlb, const double rowub,
std::string name) ;
virtual void addRow(const CoinPackedVectorBase& vec,
const char rowsen, const double rowrhs,
const double rowrng);
/** Add a row (constraint) to the problem. */
virtual void addRow(int numberElements, const int * columns, const double * element,
const double rowlb, const double rowub) ;
/*! \brief Add a named row (constraint) to the problem.
*/
virtual void addRow(const CoinPackedVectorBase& vec,
const char rowsen, const double rowrhs,
const double rowrng, std::string name) ;
/** */
virtual void addRows(const int numrows,
const CoinPackedVectorBase * const * rows,
const double* rowlb, const double* rowub);
/** */
virtual void addRows(const int numrows,
const CoinPackedVectorBase * const * rows,
const char* rowsen, const double* rowrhs,
const double* rowrng);
/** */
virtual void addRows(const int numrows,
const int * rowStarts, const int * columns, const double * element,
const double* rowlb, const double* rowub);
///
void modifyCoefficient(int row, int column, double newElement,
bool keepZero=false)
{modelPtr_->modifyCoefficient(row,column,newElement, keepZero);}
/** */
virtual void deleteRows(const int num, const int * rowIndices);
/** If solver wants it can save a copy of "base" (continuous) model here
*/
virtual void saveBaseModel() ;
/** Strip off rows to get to this number of rows.
If solver wants it can restore a copy of "base" (continuous) model here
*/
virtual void restoreBaseModel(int numberRows);
//-----------------------------------------------------------------------
/** Apply a collection of row cuts which are all effective.
applyCuts seems to do one at a time which seems inefficient.
*/
virtual void applyRowCuts(int numberCuts, const OsiRowCut * cuts);
/** Apply a collection of row cuts which are all effective.
applyCuts seems to do one at a time which seems inefficient.
This uses array of pointers
*/
virtual void applyRowCuts(int numberCuts, const OsiRowCut ** cuts);
/** Apply a collection of cuts.
Only cuts which have an <code>effectiveness >= effectivenessLb</code>
are applied.
<ul>
<li> ReturnCode.getNumineffective() -- number of cuts which were
not applied because they had an
<code>effectiveness < effectivenessLb</code>
<li> ReturnCode.getNuminconsistent() -- number of invalid cuts
<li> ReturnCode.getNuminconsistentWrtIntegerModel() -- number of
cuts that are invalid with respect to this integer model
<li> ReturnCode.getNuminfeasible() -- number of cuts that would
make this integer model infeasible
<li> ReturnCode.getNumApplied() -- number of integer cuts which
were applied to the integer model
<li> cs.size() == getNumineffective() +
getNuminconsistent() +
getNuminconsistentWrtIntegerModel() +
getNuminfeasible() +
getNumApplied()
</ul>
*/
virtual ApplyCutsReturnCode applyCuts(const OsiCuts & cs,
double effectivenessLb = 0.0);
//@}
//@}
//---------------------------------------------------------------------------
public:
/**@name Methods to input a problem */
//@{
/** Load in an problem by copying the arguments (the constraints on the
rows are given by lower and upper bounds). If a pointer is NULL then the
following values are the default:
<ul>
<li> <code>colub</code>: all columns have upper bound infinity
<li> <code>collb</code>: all columns have lower bound 0
<li> <code>rowub</code>: all rows have upper bound infinity
<li> <code>rowlb</code>: all rows have lower bound -infinity
<li> <code>obj</code>: all variables have 0 objective coefficient
</ul>
*/
virtual void loadProblem(const CoinPackedMatrix& matrix,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub);
/** Load in an problem by assuming ownership of the arguments (the
constraints on the rows are given by lower and upper bounds). For
default values see the previous method. <br>
<strong>WARNING</strong>: The arguments passed to this method will be
freed using the C++ <code>delete</code> and <code>delete[]</code>
functions.
*/
virtual void assignProblem(CoinPackedMatrix*& matrix,
double*& collb, double*& colub, double*& obj,
double*& rowlb, double*& rowub);
/** Load in an problem by copying the arguments (the constraints on the
rows are given by sense/rhs/range triplets). If a pointer is NULL then the
following values are the default:
<ul>
<li> <code>colub</code>: all columns have upper bound infinity
<li> <code>collb</code>: all columns have lower bound 0
<li> <code>obj</code>: all variables have 0 objective coefficient
<li> <code>rowsen</code>: all rows are >=
<li> <code>rowrhs</code>: all right hand sides are 0
<li> <code>rowrng</code>: 0 for the ranged rows
</ul>
*/
virtual void loadProblem(const CoinPackedMatrix& matrix,
const double* collb, const double* colub,
const double* obj,
const char* rowsen, const double* rowrhs,
const double* rowrng);
/** Load in an problem by assuming ownership of the arguments (the
constraints on the rows are given by sense/rhs/range triplets). For
default values see the previous method. <br>
<strong>WARNING</strong>: The arguments passed to this method will be
freed using the C++ <code>delete</code> and <code>delete[]</code>
functions.
*/
virtual void assignProblem(CoinPackedMatrix*& matrix,
double*& collb, double*& colub, double*& obj,
char*& rowsen, double*& rowrhs,
double*& rowrng);
/** Just like the other loadProblem() methods except that the matrix is
given as a ClpMatrixBase. */
virtual void loadProblem(const ClpMatrixBase& matrix,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub) ;
/** Just like the other loadProblem() methods except that the matrix is
given in a standard column major ordered format (without gaps). */
virtual void loadProblem(const int numcols, const int numrows,
const CoinBigIndex * start, const int* index,
const double* value,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub);
/** Just like the other loadProblem() methods except that the matrix is
given in a standard column major ordered format (without gaps). */
virtual void loadProblem(const int numcols, const int numrows,
const CoinBigIndex * start, const int* index,
const double* value,
const double* collb, const double* colub,
const double* obj,
const char* rowsen, const double* rowrhs,
const double* rowrng);
/// This loads a model from a coinModel object - returns number of errors
virtual int loadFromCoinModel ( CoinModel & modelObject, bool keepSolution=false);
using OsiSolverInterface::readMps ;
/** Read an mps file from the given filename (defaults to Osi reader) - returns
number of errors (see OsiMpsReader class) */
virtual int readMps(const char *filename,
const char *extension = "mps") ;
/** Read an mps file from the given filename returns
number of errors (see OsiMpsReader class) */
int readMps(const char *filename,bool keepNames,bool allowErrors);
/// Read an mps file
virtual int readMps (const char *filename, const char*extension,
int & numberSets, CoinSet ** & sets);
/** Write the problem into an mps file of the given filename.
If objSense is non zero then -1.0 forces the code to write a
maximization objective and +1.0 to write a minimization one.
If 0.0 then solver can do what it wants */
virtual void writeMps(const char *filename,
const char *extension = "mps",
double objSense=0.0) const;
/** Write the problem into an mps file of the given filename,
names may be null. formatType is
0 - normal
1 - extra accuracy
2 - IEEE hex (later)
Returns non-zero on I/O error
*/
virtual int writeMpsNative(const char *filename,
const char ** rowNames, const char ** columnNames,
int formatType=0,int numberAcross=2,
double objSense=0.0) const ;
/// Read file in LP format (with names)
virtual int readLp(const char *filename, const double epsilon = 1e-5);
/** Write the problem into an Lp file of the given filename.
If objSense is non zero then -1.0 forces the code to write a
maximization objective and +1.0 to write a minimization one.
If 0.0 then solver can do what it wants.
This version calls writeLpNative with names */
virtual void writeLp(const char *filename,
const char *extension = "lp",
double epsilon = 1e-5,
int numberAcross = 10,
int decimals = 5,
double objSense = 0.0,
bool useRowNames = true) const;
/** Write the problem into the file pointed to by the parameter fp.
Other parameters are similar to
those of writeLp() with first parameter filename.
*/
virtual void writeLp(FILE *fp,
double epsilon = 1e-5,
int numberAcross = 10,
int decimals = 5,
double objSense = 0.0,
bool useRowNames = true) const;
/**
I (JJF) am getting annoyed because I can't just replace a matrix.
The default behavior of this is do nothing so only use where that would not matter
e.g. strengthening a matrix for MIP
*/
virtual void replaceMatrixOptional(const CoinPackedMatrix & matrix);
/// And if it does matter (not used at present)
virtual void replaceMatrix(const CoinPackedMatrix & matrix) ;
//@}
/**@name Message handling (extra for Clp messages).
Normally I presume you would want the same language.
If not then you could use underlying model pointer */
//@{
/** Pass in a message handler
It is the client's responsibility to destroy a message handler installed
by this routine; it will not be destroyed when the solver interface is
destroyed.
*/
virtual void passInMessageHandler(CoinMessageHandler * handler);
/// Set language
void newLanguage(CoinMessages::Language language);
void setLanguage(CoinMessages::Language language)
{newLanguage(language);}
/// Set log level (will also set underlying solver's log level)
void setLogLevel(int value);
/// Create C++ lines to get to current state
void generateCpp( FILE * fp);
//@}
//---------------------------------------------------------------------------
/**@name Clp specific public interfaces */
//@{
/// Get pointer to Clp model
ClpSimplex * getModelPtr() const ;
/// Set pointer to Clp model and return old
inline ClpSimplex * swapModelPtr(ClpSimplex * newModel)
{ ClpSimplex * model = modelPtr_; modelPtr_=newModel;return model;}
/// Get special options
inline unsigned int specialOptions() const
{ return specialOptions_;}
void setSpecialOptions(unsigned int value);
/// Last algorithm used , 1 = primal, 2 = dual other unknown
inline int lastAlgorithm() const
{ return lastAlgorithm_;}
/// Set last algorithm used , 1 = primal, 2 = dual other unknown
inline void setLastAlgorithm(int value)
{ lastAlgorithm_ = value;}
/// Get scaling action option
inline int cleanupScaling() const
{ return cleanupScaling_;}
/** Set Scaling option
When scaling is on it is possible that the scaled problem
is feasible but the unscaled is not. Clp returns a secondary
status code to that effect. This option allows for a cleanup.
If you use it I would suggest 1.
This only affects actions when scaled optimal
0 - no action
1 - clean up using dual if primal infeasibility
2 - clean up using dual if dual infeasibility
3 - clean up using dual if primal or dual infeasibility
11,12,13 - as 1,2,3 but use primal
*/
inline void setCleanupScaling(int value)
{ cleanupScaling_=value;}
/** Get smallest allowed element in cut.
If smaller than this then ignored */
inline double smallestElementInCut() const
{ return smallestElementInCut_;}
/** Set smallest allowed element in cut.
If smaller than this then ignored */
inline void setSmallestElementInCut(double value)
{ smallestElementInCut_=value;}
/** Get smallest change in cut.
If (upper-lower)*element < this then element is
taken out and cut relaxed.
(upper-lower) is taken to be at least 1.0 and
this is assumed >= smallestElementInCut_
*/
inline double smallestChangeInCut() const
{ return smallestChangeInCut_;}
/** Set smallest change in cut.
If (upper-lower)*element < this then element is
taken out and cut relaxed.
(upper-lower) is taken to be at least 1.0 and
this is assumed >= smallestElementInCut_
*/
inline void setSmallestChangeInCut(double value)
{ smallestChangeInCut_=value;}
/// Pass in initial solve options
inline void setSolveOptions(const ClpSolve & options)
{ solveOptions_ = options;}
/** Tighten bounds - lightweight or very lightweight
0 - normal, 1 lightweight but just integers, 2 lightweight and all
*/
virtual int tightenBounds(int lightweight=0);
/// Return number of entries in L part of current factorization
virtual CoinBigIndex getSizeL() const;
/// Return number of entries in U part of current factorization
virtual CoinBigIndex getSizeU() const;
/// Get disaster handler
const OsiClpDisasterHandler * disasterHandler() const
{ return disasterHandler_;}
/// Pass in disaster handler
void passInDisasterHandler(OsiClpDisasterHandler * handler);
/// Get fake objective
ClpLinearObjective * fakeObjective() const
{ return fakeObjective_;}
/// Set fake objective (and take ownership)
void setFakeObjective(ClpLinearObjective * fakeObjective);
/// Set fake objective
void setFakeObjective(double * fakeObjective);
/*! \brief Set up solver for repeated use by Osi interface.
The normal usage does things like keeping factorization around so can be
used. Will also do things like keep scaling and row copy of matrix if
matrix does not change.
\p senseOfAdventure:
- 0 - safe stuff as above
- 1 - will take more risks - if it does not work then bug which will be
fixed
- 2 - don't bother doing most extreme termination checks e.g. don't bother
re-factorizing if less than 20 iterations.
- 3 - Actually safer than 1 (mainly just keeps factorization)
\p printOut
- -1 always skip round common messages instead of doing some work
- 0 skip if normal defaults
- 1 leaves
*/
void setupForRepeatedUse(int senseOfAdventure=0, int printOut=0);
/// Synchronize model (really if no cuts in tree)
virtual void synchronizeModel();
/*! \brief Set special options in underlying clp solver.
Safe as const because #modelPtr_ is mutable.
*/
void setSpecialOptionsMutable(unsigned int value) const;
//@}
//---------------------------------------------------------------------------
/**@name Constructors and destructors */
//@{
/// Default Constructor
OsiClpSolverInterface ();
/// Clone
virtual OsiSolverInterface * clone(bool copyData = true) const;
/// Copy constructor
OsiClpSolverInterface (const OsiClpSolverInterface &);
/// Borrow constructor - only delete one copy
OsiClpSolverInterface (ClpSimplex * rhs, bool reallyOwn=false);
/// Releases so won't error
void releaseClp();
/// Assignment operator
OsiClpSolverInterface & operator=(const OsiClpSolverInterface& rhs);
/// Destructor
virtual ~OsiClpSolverInterface ();
/// Resets as if default constructor
virtual void reset();
//@}
//---------------------------------------------------------------------------
protected:
///@name Protected methods
//@{
/** Apply a row cut (append to constraint matrix). */
virtual void applyRowCut(const OsiRowCut& rc);
/** Apply a column cut (adjust one or more bounds). */
virtual void applyColCut(const OsiColCut& cc);
//@}
//---------------------------------------------------------------------------
protected:
/**@name Protected methods */
//@{
/// The real work of a copy constructor (used by copy and assignment)
void gutsOfDestructor();
/// Deletes all mutable stuff
void freeCachedResults() const;
/// Deletes all mutable stuff for row ranges etc
void freeCachedResults0() const;
/// Deletes all mutable stuff for matrix etc
void freeCachedResults1() const;
/// A method that fills up the rowsense_, rhs_ and rowrange_ arrays
void extractSenseRhsRange() const;
///
void fillParamMaps();
/** Warm start
NOTE artificials are treated as +1 elements so for <= rhs
artificial will be at lower bound if constraint is tight
This means that Clpsimplex flips artificials as it works
in terms of row activities
*/
CoinWarmStartBasis getBasis(ClpSimplex * model) const;
/** Sets up working basis as a copy of input
NOTE artificials are treated as +1 elements so for <= rhs
artificial will be at lower bound if constraint is tight
This means that Clpsimplex flips artificials as it works
in terms of row activities
*/
void setBasis( const CoinWarmStartBasis & basis, ClpSimplex * model);
/// Crunch down problem a bit
void crunch();
/// Extend scale factors
void redoScaleFactors(int numberRows,const CoinBigIndex * starts,
const int * indices, const double * elements);
public:
/** Sets up working basis as a copy of input and puts in as basis
*/
void setBasis( const CoinWarmStartBasis & basis);
/// Just puts current basis_ into ClpSimplex model
inline void setBasis( )
{ setBasis(basis_,modelPtr_);}
/// Warm start difference from basis_ to statusArray
CoinWarmStartDiff * getBasisDiff(const unsigned char * statusArray) const ;
/// Warm start from statusArray
CoinWarmStartBasis * getBasis(const unsigned char * statusArray) const ;
/// Delete all scale factor stuff and reset option
void deleteScaleFactors();
/// If doing fast hot start then ranges are computed
inline const double * upRange() const
{ return rowActivity_;}
inline const double * downRange() const
{ return columnActivity_;}
/// Pass in range array
inline void passInRanges(int * array)
{ whichRange_=array;}
/// Pass in sos stuff from AMPl
void setSOSData(int numberSOS,const char * type,
const int * start,const int * indices, const double * weights=NULL);
/// Compute largest amount any at continuous away from bound
void computeLargestAway();
/// Get largest amount continuous away from bound
inline double largestAway() const
{ return largestAway_;}
/// Set largest amount continuous away from bound
inline void setLargestAway(double value)
{ largestAway_ = value;}
/// Sort of lexicographic resolve
void lexSolve();
//@}
protected:
/**@name Protected member data */
//@{
/// Clp model represented by this class instance
mutable ClpSimplex * modelPtr_;
//@}
/**@name Cached information derived from the OSL model */
//@{
/// Pointer to dense vector of row sense indicators
mutable char *rowsense_;
/// Pointer to dense vector of row right-hand side values
mutable double *rhs_;
/** Pointer to dense vector of slack upper bounds for range
constraints (undefined for non-range rows)
*/
mutable double *rowrange_;
/** A pointer to the warmstart information to be used in the hotstarts.
This is NOT efficient and more thought should be given to it... */
mutable CoinWarmStartBasis* ws_;
/** also save row and column information for hot starts
only used in hotstarts so can be casual */
mutable double * rowActivity_;
mutable double * columnActivity_;
/// Stuff for fast dual
ClpNodeStuff stuff_;
/// Number of SOS sets
int numberSOS_;
/// SOS set info
CoinSet * setInfo_;
/// Alternate model (hot starts) - but also could be permanent and used for crunch
ClpSimplex * smallModel_;
/// factorization for hot starts
ClpFactorization * factorization_;
/** Smallest allowed element in cut.
If smaller than this then ignored */
double smallestElementInCut_;
/** Smallest change in cut.
If (upper-lower)*element < this then element is
taken out and cut relaxed. */
double smallestChangeInCut_;
/// Largest amount continuous away from bound
double largestAway_;
/// Arrays for hot starts
char * spareArrays_;
/** Warmstart information to be used in resolves. */
CoinWarmStartBasis basis_;
/** The original iteration limit before hotstarts started. */
int itlimOrig_;
/*! \brief Last algorithm used
Coded as
- 0 invalid
- 1 primal
- 2 dual
- -911 disaster in the algorithm that was attempted
- 999 current solution no longer optimal due to change in problem or
basis
*/
mutable int lastAlgorithm_;
/// To say if destructor should delete underlying model
bool notOwned_;
/// Pointer to row-wise copy of problem matrix coefficients.
mutable CoinPackedMatrix *matrixByRow_;
/// Pointer to row-wise copy of continuous problem matrix coefficients.
CoinPackedMatrix *matrixByRowAtContinuous_;
/// Pointer to integer information
char * integerInformation_;
/** Pointer to variables for which we want range information
The number is in [0]
memory is not owned by OsiClp
*/
int * whichRange_;
//std::map<OsiIntParam, ClpIntParam> intParamMap_;
//std::map<OsiDblParam, ClpDblParam> dblParamMap_;
//std::map<OsiStrParam, ClpStrParam> strParamMap_;
/*! \brief Faking min to get proper dual solution signs in simplex API */
mutable bool fakeMinInSimplex_ ;
/*! \brief Linear objective
Normally a pointer to the linear coefficient array in the clp objective.
An independent copy when #fakeMinInSimplex_ is true, because we need
something permanent to point to when #getObjCoefficients is called.
*/
mutable double *linearObjective_;
/// To save data in OsiSimplex stuff
mutable ClpDataSave saveData_;
/// Options for initialSolve
ClpSolve solveOptions_;
/** Scaling option
When scaling is on it is possible that the scaled problem
is feasible but the unscaled is not. Clp returns a secondary
status code to that effect. This option allows for a cleanup.
If you use it I would suggest 1.
This only affects actions when scaled optimal
0 - no action
1 - clean up using dual if primal infeasibility
2 - clean up using dual if dual infeasibility
3 - clean up using dual if primal or dual infeasibility
11,12,13 - as 1,2,3 but use primal
*/
int cleanupScaling_;
/** Special options
0x80000000 off
0 simple stuff for branch and bound
1 try and keep work regions as much as possible
2 do not use any perturbation
4 allow exit before re-factorization
8 try and re-use factorization if no cuts
16 use standard strong branching rather than clp's
32 Just go to first factorization in fast dual
64 try and tighten bounds in crunch
128 Model will only change in column bounds
256 Clean up model before hot start
512 Give user direct access to Clp regions in getBInvARow etc (i.e.,
do not unscale, and do not return result in getBInv parameters;
you have to know where to look for the answer)
1024 Don't "borrow" model in initialSolve
2048 Don't crunch
4096 quick check for optimality
Bits above 8192 give where called from in Cbc
At present 0 is normal, 1 doing fast hotstarts, 2 is can do quick check
65536 Keep simple i.e. no crunch etc
131072 Try and keep scaling factors around
262144 Don't try and tighten bounds (funny global cuts)
524288 Fake objective and 0-1
1048576 Don't recompute ray after crunch
2097152
*/
mutable unsigned int specialOptions_;
/// Copy of model when option 131072 set
ClpSimplex * baseModel_;
/// Number of rows when last "scaled"
int lastNumberRows_;
/// Continuous model
ClpSimplex * continuousModel_;
/// Possible disaster handler
OsiClpDisasterHandler * disasterHandler_ ;
/// Fake objective
ClpLinearObjective * fakeObjective_;
/// Row scale factors (has inverse at end)
CoinDoubleArrayWithLength rowScale_;
/// Column scale factors (has inverse at end)
CoinDoubleArrayWithLength columnScale_;
//@}
};
class OsiClpDisasterHandler : public ClpDisasterHandler {
public:
/**@name Virtual methods that the derived classe should provide.
*/
//@{
/// Into simplex
virtual void intoSimplex();
/// Checks if disaster
virtual bool check() const ;
/// saves information for next attempt
virtual void saveInfo();
/// Type of disaster 0 can fix, 1 abort
virtual int typeOfDisaster();
//@}
/**@name Constructors, destructor */
//@{
/** Default constructor. */
OsiClpDisasterHandler(OsiClpSolverInterface * model = NULL);
/** Destructor */
virtual ~OsiClpDisasterHandler();
// Copy
OsiClpDisasterHandler(const OsiClpDisasterHandler&);
// Assignment
OsiClpDisasterHandler& operator=(const OsiClpDisasterHandler&);
/// Clone
virtual ClpDisasterHandler * clone() const;
//@}
/**@name Sets/gets */
//@{
/** set model. */
void setOsiModel(OsiClpSolverInterface * model);
/// Get model
inline OsiClpSolverInterface * osiModel() const
{ return osiModel_;}
/// Set where from
inline void setWhereFrom(int value)
{ whereFrom_=value;}
/// Get where from
inline int whereFrom() const
{ return whereFrom_;}
/// Set phase
inline void setPhase(int value)
{ phase_=value;}
/// Get phase
inline int phase() const
{ return phase_;}
/// are we in trouble
inline bool inTrouble() const
{ return inTrouble_;}
//@}
protected:
/**@name Data members
The data members are protected to allow access for derived classes. */
//@{
/// Pointer to model
OsiClpSolverInterface * osiModel_;
/** Where from
0 dual (resolve)
1 crunch
2 primal (resolve)
4 dual (initialSolve)
6 primal (initialSolve)
*/
int whereFrom_;
/** phase
0 initial
1 trying continuing with back in and maybe different perturb
2 trying continuing with back in and different scaling
3 trying dual from all slack
4 trying primal from previous stored basis
*/
int phase_;
/// Are we in trouble
bool inTrouble_;
//@}
};
// So unit test can find out if NDEBUG set
bool OsiClpHasNDEBUG();
//#############################################################################
/** A function that tests the methods in the OsiClpSolverInterface class. */
void OsiClpSolverInterfaceUnitTest(const std::string & mpsDir, const std::string & netlibDir);
#endif
|