/usr/include/coin/IpMatrix.hpp is in coinor-libipopt-dev 3.11.4-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 | // Copyright (C) 2004, 2008 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpMatrix.hpp 2276 2013-05-05 12:33:44Z stefan $
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
#ifndef __IPMATRIX_HPP__
#define __IPMATRIX_HPP__
#include "IpVector.hpp"
namespace Ipopt
{
/* forward declarations */
class MatrixSpace;
/** Matrix Base Class. This is the base class for all derived matrix
* types. All Matrices, such as Jacobian and Hessian matrices, as
* well as possibly the iteration matrices needed for the step
* computation, are of this type.
*
* Deriving from Matrix: Overload the protected XXX_Impl method.
*/
class Matrix : public TaggedObject
{
public:
/** @name Constructor/Destructor */
//@{
/** Constructor. It has to be given a pointer to the
* corresponding MatrixSpace.
*/
Matrix(const MatrixSpace* owner_space)
:
TaggedObject(),
owner_space_(owner_space)
{}
/** Destructor */
virtual ~Matrix()
{}
//@}
/**@name Operations of the Matrix on a Vector */
//@{
/** Matrix-vector multiply. Computes y = alpha * Matrix * x +
* beta * y. Do not overload. Overload MultVectorImpl instead.
*/
void MultVector(Number alpha, const Vector& x, Number beta,
Vector& y) const
{
MultVectorImpl(alpha, x, beta, y);
}
/** Matrix(transpose) vector multiply. Computes y = alpha *
* Matrix^T * x + beta * y. Do not overload. Overload
* TransMultVectorImpl instead.
*/
void TransMultVector(Number alpha, const Vector& x, Number beta,
Vector& y) const
{
TransMultVectorImpl(alpha, x, beta, y);
}
//@}
/** @name Methods for specialized operations. A prototype
* implementation is provided, but for efficient implementation
* those should be specially implemented.
*/
//@{
/** X = X + alpha*(Matrix S^{-1} Z). Should be implemented
* efficiently for the ExansionMatrix
*/
void AddMSinvZ(Number alpha, const Vector& S, const Vector& Z,
Vector& X) const;
/** X = S^{-1} (r + alpha*Z*M^Td). Should be implemented
* efficiently for the ExansionMatrix
*/
void SinvBlrmZMTdBr(Number alpha, const Vector& S,
const Vector& R, const Vector& Z,
const Vector& D, Vector& X) const;
//@}
/** Method for determining if all stored numbers are valid (i.e.,
* no Inf or Nan). */
bool HasValidNumbers() const;
/** @name Information about the size of the matrix */
//@{
/** Number of rows */
inline
Index NRows() const;
/** Number of columns */
inline
Index NCols() const;
//@}
/** @name Norms of the individual rows and columns */
//@{
/** Compute the max-norm of the rows in the matrix. The result is
* stored in rows_norms. The vector is assumed to be initialized
* of init is false. */
void ComputeRowAMax(Vector& rows_norms, bool init=true) const
{
DBG_ASSERT(NRows() == rows_norms.Dim());
if (init) rows_norms.Set(0.);
ComputeRowAMaxImpl(rows_norms, init);
}
/** Compute the max-norm of the columns in the matrix. The result
* is stored in cols_norms The vector is assumed to be initialized
* of init is false. */
void ComputeColAMax(Vector& cols_norms, bool init=true) const
{
DBG_ASSERT(NCols() == cols_norms.Dim());
if (init) cols_norms.Set(0.);
ComputeColAMaxImpl(cols_norms, init);
}
//@}
/** Print detailed information about the matrix. Do not overload.
* Overload PrintImpl instead.
*/
//@{
virtual void Print(SmartPtr<const Journalist> jnlst,
EJournalLevel level,
EJournalCategory category,
const std::string& name,
Index indent=0,
const std::string& prefix="") const;
virtual void Print(const Journalist& jnlst,
EJournalLevel level,
EJournalCategory category,
const std::string& name,
Index indent=0,
const std::string& prefix="") const;
//@}
/** Return the owner MatrixSpace*/
inline
SmartPtr<const MatrixSpace> OwnerSpace() const;
protected:
/** @name implementation methods (derived classes MUST
* overload these pure virtual protected methods.
*/
//@{
/** Matrix-vector multiply. Computes y = alpha * Matrix * x +
* beta * y
*/
virtual void MultVectorImpl(Number alpha, const Vector& x, Number beta, Vector& y) const =0;
/** Matrix(transpose) vector multiply.
* Computes y = alpha * Matrix^T * x + beta * y
*/
virtual void TransMultVectorImpl(Number alpha, const Vector& x, Number beta, Vector& y) const =0;
/** X = X + alpha*(Matrix S^{-1} Z). Prototype for this
* specialize method is provided, but for efficient
* implementation it should be overloaded for the expansion matrix.
*/
virtual void AddMSinvZImpl(Number alpha, const Vector& S, const Vector& Z,
Vector& X) const;
/** X = S^{-1} (r + alpha*Z*M^Td). Should be implemented
* efficiently for the ExpansionMatrix.
*/
virtual void SinvBlrmZMTdBrImpl(Number alpha, const Vector& S,
const Vector& R, const Vector& Z,
const Vector& D, Vector& X) const;
/** Method for determining if all stored numbers are valid (i.e.,
* no Inf or Nan). A default implementation always returning true
* is provided, but if possible it should be implemented. */
virtual bool HasValidNumbersImpl() const
{
return true;
}
/** Compute the max-norm of the rows in the matrix. The result is
* stored in rows_norms. The vector is assumed to be
* initialized. */
virtual void ComputeRowAMaxImpl(Vector& rows_norms, bool init) const = 0;
/** Compute the max-norm of the columns in the matrix. The result
* is stored in cols_norms. The vector is assumed to be
* initialized. */
virtual void ComputeColAMaxImpl(Vector& cols_norms, bool init) const = 0;
/** Print detailed information about the matrix. */
virtual void PrintImpl(const Journalist& jnlst,
EJournalLevel level,
EJournalCategory category,
const std::string& name,
Index indent,
const std::string& prefix) const =0;
//@}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** default constructor */
Matrix();
/** Copy constructor */
Matrix(const Matrix&);
/** Overloaded Equals Operator */
Matrix& operator=(const Matrix&);
//@}
const SmartPtr<const MatrixSpace> owner_space_;
/**@name CachedResults data members */
//@{
mutable TaggedObject::Tag valid_cache_tag_;
mutable bool cached_valid_;
//@}
};
/** MatrixSpace base class, corresponding to the Matrix base class.
* For each Matrix implementation, a corresponding MatrixSpace has
* to be implemented. A MatrixSpace is able to create new Matrices
* of a specific type. The MatrixSpace should also store
* information that is common to all Matrices of that type. For
* example, the dimensions of a Matrix is stored in the MatrixSpace
* base class.
*/
class MatrixSpace : public ReferencedObject
{
public:
/** @name Constructors/Destructors */
//@{
/** Constructor, given the number rows and columns of all matrices
* generated by this MatrixSpace.
*/
MatrixSpace(Index nRows, Index nCols)
:
nRows_(nRows),
nCols_(nCols)
{}
/** Destructor */
virtual ~MatrixSpace()
{}
//@}
/** Pure virtual method for creating a new Matrix of the
* corresponding type.
*/
virtual Matrix* MakeNew() const=0;
/** Accessor function for the number of rows. */
Index NRows() const
{
return nRows_;
}
/** Accessor function for the number of columns. */
Index NCols() const
{
return nCols_;
}
/** Method to test if a given matrix belongs to a particular
* matrix space.
*/
bool IsMatrixFromSpace(const Matrix& matrix) const
{
return (matrix.OwnerSpace() == this);
}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** default constructor */
MatrixSpace();
/** Copy constructor */
MatrixSpace(const MatrixSpace&);
/** Overloaded Equals Operator */
MatrixSpace& operator=(const MatrixSpace&);
//@}
/** Number of rows for all matrices of this type. */
const Index nRows_;
/** Number of columns for all matrices of this type. */
const Index nCols_;
};
/* Inline Methods */
inline
Index Matrix::NRows() const
{
return owner_space_->NRows();
}
inline
Index Matrix::NCols() const
{
return owner_space_->NCols();
}
inline
SmartPtr<const MatrixSpace> Matrix::OwnerSpace() const
{
return owner_space_;
}
} // namespace Ipopt
// Macro definitions for debugging matrices
#if COIN_IPOPT_VERBOSITY == 0
# define DBG_PRINT_MATRIX(__verbose_level, __mat_name, __mat)
#else
# define DBG_PRINT_MATRIX(__verbose_level, __mat_name, __mat) \
if (dbg_jrnl.Verbosity() >= (__verbose_level)) { \
if (dbg_jrnl.Jnlst()!=NULL) { \
(__mat).Print(dbg_jrnl.Jnlst(), \
J_ERROR, J_DBG, \
__mat_name, \
dbg_jrnl.IndentationLevel()*2, \
"# "); \
} \
}
#endif // #if COIN_IPOPT_VERBOSITY == 0
#endif
|