/usr/lib/faust/effect.lib is in faust 0.9.46-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 | declare name "Faust Audio Effect Library";
declare author "Julius O. Smith (jos at ccrma.stanford.edu)";
declare copyright "Julius O. Smith III";
declare version "1.33";
declare license "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license)
declare reference "https://ccrma.stanford.edu/realsimple/faust_strings/";
import("filter.lib"); // dcblocker*, lowpass, filterbank, ...
// The following utilities (or equivalents) could go in music.lib:
//----------------------- midikey2hz,pianokey2hz ------------------------
midikey2hz(x) = 440.0*pow(2.0, (x-69.0)/12); // MIDI key 69 = A440
pianokey2hz(x) = 440.0*pow(2.0, (x-49.0)/12); // piano key 49 = A440
//---------------- cross2, bypass1, bypass2, select2stereo --------------
//
cross2 = _,_,_,_ <: _,!,_,!,!,_,!,_;
bypass1(bpc,e) = _ <: select2(bpc,(inswitch:e),_)
with {inswitch = select2(bpc,_,0);};
bypass2(bpc,e) = _,_ <: ((inswitch:e),_,_) : select2stereo(bpc) with {
inswitch = _,_ : (select2(bpc,_,0), select2(bpc,_,0)) : _,_;
};
select2stereo(bpc) = cross2 : select2(bpc), select2(bpc) : _,_;
//---------------------- levelfilter, levelfilterN ----------------------
// Dynamic level lowpass filter:
//
// USAGE: levelfilter(L,freq), where
// L = desired level (in dB) at Nyquist limit (SR/2), e.g., -60
// freq = corner frequency (-3dB point) usually set to fundamental freq
//
// REFERENCE:
// https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html
//
levelfilter(L,freq,x) = (L * L0 * x) + ((1.0-L) * lp2out(x))
with {
L0 = pow(L,1/3);
Lw = PI*freq/SR; // = w1 T / 2
Lgain = Lw / (1.0 + Lw);
Lpole2 = (1.0 - Lw) / (1.0 + Lw);
lp2out = *(Lgain) : + ~ *(Lpole2);
};
levelfilterN(N,freq,L) = seq(i,N,levelfilter((L/N),freq));
//------------------------- speakerbp -------------------------------
// Dirt-simple speaker simulator (overall bandpass eq with observed
// roll-offs above and below the passband).
//
// Low-frequency speaker model = +12 dB/octave slope breaking to
// flat near f1. Implemented using two dc blockers in series.
//
// High-frequency model = -24 dB/octave slope implemented using a
// fourth-order Butterworth lowpass.
//
// Example based on measured Celestion G12 (12" speaker):
// speakerbp(130,5000);
//
// Requires filter.lib
//
speakerbp(f1,f2) = dcblockerat(f1) : dcblockerat(f1) : lowpass(4,f2);
//--------------------- cubicnl(drive,offset) -----------------------
// Cubic nonlinearity distortion
//
// USAGE: cubicnl(drive,offset), where
// drive = distortion amount, between 0 and 1
// offset = constant added before nonlinearity to give even harmonics
// Note: offset can introduce a nonzero mean - feed
// cubicnl output to dcblocker to remove this.
//
// REFERENCES:
// https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html
// https://ccrma.stanford.edu/~jos/pasp/Nonlinear_Distortion.html
//
cubicnl(drive,offset) = *(pregain) : +(offset) : clip(-1,1) : cubic
with {
pregain = pow(10.0,2*drive);
clip(lo,hi) = min(hi) : max(lo);
cubic(x) = x - x*x*x/3;
postgain = max(1.0,1.0/pregain); // unity gain when nearly linear
};
cubicnl_nodc(drive,offset) = cubicnl(drive,offset) : dcblocker;
//--------------------------- cubicnl_demo --------------------------
// USAGE: _ : cubicnl_demo : _;
//
cubicnl_demo = bypass1(bp,
cubicnl_nodc(drive:smooth(0.999),offset:smooth(0.999)))
with {
cnl_group(x) = vgroup("CUBIC NONLINEARITY cubicnl
[tooltip: Reference:
https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html]", x);
// bypass_group(x) = cnl_group(hgroup("[0]", x));
slider_group(x) = cnl_group(hgroup("[1]", x));
// bp = bypass_group(checkbox("[0] Bypass
bp = slider_group(checkbox("[0] Bypass
[tooltip: When this is checked, the nonlinearity has no effect]"));
// drive = slider_group(vslider("[1] Drive [style: knob]
drive = slider_group(hslider("[1] Drive
[tooltip: Amount of distortion]",
0, 0, 1, 0.01));
// offset = slider_group(vslider("[2] Offset [style: knob]
offset = slider_group(hslider("[2] Offset
[tooltip: Brings in even harmonics]",
0, 0, 1, 0.01));
};
//------------------------- moog_vcf(res,fr) ---------------------------
// Moog "Voltage Controlled Filter" (VCF) in "analog" form
//
// USAGE: moog_vcf(res,fr), where
// fr = corner-resonance frequency in Hz ( less than SR/6.3 or so )
// res = Normalized amount of corner-resonance between 0 and 1
// (0 is no resonance, 1 is maximum)
// Requires filter.lib.
//
// DESCRIPTION: Moog VCF implemented using the same logical block diagram
// as the classic analog circuit. As such, it neglects the one-sample
// delay associated with the feedback path around the four one-poles.
// This extra delay alters the response, especially at high frequencies
// (see reference [1] for details).
// See moog_vcf_2b below for a more accurate implementation.
//
// REFERENCES:
// [1] https://ccrma.stanford.edu/~stilti/papers/moogvcf.pdf
// [2] https://ccrma.stanford.edu/~jos/pasp/vegf.html
//
moog_vcf(res,fr) = (+ : seq(i,4,pole(p)) : *(unitygain(p))) ~ *(mk)
with {
p = 1.0 - fr * 2.0 * PI / SR; // good approximation for fr << SR
unitygain(p) = pow(1.0-p,4.0); // one-pole unity-gain scaling
mk = -4.0*max(0,min(res,0.999999)); // need mk > -4 for stability
};
//----------------------- moog_vcf_2b[n] ---------------------------
// Moog "Voltage Controlled Filter" (VCF) as two biquads
//
// USAGE:
// moog_vcf_2b(res,fr)
// moog_vcf_2bn(res,fr)
// where
// fr = corner-resonance frequency in Hz
// res = Normalized amount of corner-resonance between 0 and 1
// (0 is min resonance, 1 is maximum)
//
// DESCRIPTION: Implementation of the ideal Moog VCF transfer
// function factored into second-order sections. As a result, it is
// more accurate than moog_vcf above, but its coefficient formulas are
// more complex when one or both parameters are varied. Here, res
// is the fourth root of that in moog_vcf, so, as the sampling rate
// approaches infinity, moog_vcf(res,fr) becomes equivalent
// to moog_vcf_2b[n](res^4,fr) (when res and fr are constant).
//
// moog_vcf_2b uses two direct-form biquads (tf2)
// moog_vcf_2bn uses two protected normalized-ladder biquads (tf2np)
//
// REQUIRES: filter.lib
//
moog_vcf_2b(res,fr) = tf2s(0,0,b0,a11,a01,w1) : tf2s(0,0,b0,a12,a02,w1)
with {
s = 1; // minus the open-loop location of all four poles
frl = max(20,min(10000,fr)); // limit fr to reasonable 20-10k Hz range
w1 = 2*PI*frl; // frequency-scaling parameter for bilinear xform
// Equivalent: w1 = 1; s = 2*PI*frl;
kmax = sqrt(2)*0.999; // 0.999 gives stability margin (tf2 is unprotected)
k = min(kmax,sqrt(2)*res); // fourth root of Moog VCF feedback gain
b0 = s^2;
s2k = sqrt(2) * k;
a11 = s * (2 + s2k);
a12 = s * (2 - s2k);
a01 = b0 * (1 + s2k + k^2);
a02 = b0 * (1 - s2k + k^2);
};
moog_vcf_2bn(res,fr) = tf2snp(0,0,b0,a11,a01,w1) : tf2snp(0,0,b0,a12,a02,w1)
with {
s = 1; // minus the open-loop location of all four poles
w1 = 2*PI*max(fr,20); // frequency-scaling parameter for bilinear xform
k = sqrt(2)*0.999*res; // fourth root of Moog VCF feedback gain
b0 = s^2;
s2k = sqrt(2) * k;
a11 = s * (2 + s2k);
a12 = s * (2 - s2k);
a01 = b0 * (1 + s2k + k^2);
a02 = b0 * (1 - s2k + k^2);
};
//------------------------- moog_vcf_demo ---------------------------
// Illustrate and compare all three Moog VCF implementations above
// (called by <faust>/examples/vcf_wah_pedals.dsp).
//
// USAGE: _ : moog_vcf_demo : _;
moog_vcf_demo = bypass1(bp,vcf) with {
mvcf_group(x) = hgroup("MOOG VCF (Voltage Controlled Filter)
[tooltip: See Faust's effect.lib for info and references]",x);
meter_group(x) = mvcf_group(vgroup("[0]",x));
cb_group(x) = meter_group(hgroup("[0]",x));
bp = cb_group(checkbox("[0] Bypass [tooltip: When this is checked, the Moog VCF has no effect]"));
archsw = cb_group(checkbox("[1] Use Biquads
[tooltip: Select moog_vcf_2b (two-biquad) implementation, instead of the default moog_vcf (analog style) implementation]"));
bqsw = cb_group(checkbox("[2] Normalized Ladders
[tooltip: If using biquads, make them normalized ladders (moog_vcf_2bn)]"));
freq = mvcf_group(hslider("[1] Corner Frequency [unit:PK] [style:knob]
[tooltip: The VCF resonates at the corner frequency (specified in PianoKey (PK) units, with A440 = 49 PK). The VCF response is flat below the corner frequency, and rolls off -24 dB per octave above.]",
25, 1, 88, 0.01) : pianokey2hz) : smooth(0.999);
res = mvcf_group(hslider("[2] Corner Resonance [style:knob]
[tooltip: Amount of resonance near VCF corner frequency (specified between 0 and 1)]",
0.9, 0, 1, 0.01));
outgain = meter_group(hslider("[1] VCF Output Level [unit:dB]
[tooltip: output level in decibels]",
5, -60, 20, 0.1)) : smooth(0.999)
: component("music.lib").db2linear;
vcfbq = _ <: select2(bqsw, moog_vcf_2b(res,freq), moog_vcf_2bn(res,freq));
vcfarch = _ <: select2(archsw, moog_vcf(res^4,freq), vcfbq);
vcf = vcfarch : *(outgain);
};
//-------------------------- wah4(fr) -------------------------------
// Wah effect, 4th order
// USAGE: wah4(fr), where fr = resonance frequency in Hz
// REFERENCE "https://ccrma.stanford.edu/~jos/pasp/vegf.html";
//
wah4(fr) = 4*moog_vcf((3.2/4),fr:smooth(0.999));
//------------------------- wah4_demo ---------------------------
// USAGE: _ : wah4_demo : _;
wah4_demo = bypass1(bp, wah4(fr)) with {
wah4_group(x) = hgroup("WAH4
[tooltip: Fourth-order wah effect made using moog_vcf]", x);
bp = wah4_group(checkbox("[0] Bypass
[tooltip: When this is checked, the wah pedal has no effect]"));
fr = wah4_group(hslider("[1] Resonance Frequency
[tooltip: wah resonance frequency in Hz]",
200,100,2000,1));
// Avoid dc with the moog_vcf (amplitude too high when freq comes up from dc)
// Also, avoid very high resonance frequencies (e.g., 5kHz or above).
};
//------------------------ autowah(level) -----------------------------
// Auto-wah effect
// USAGE: _ : autowah(level) : _;
// where level = amount of effect desired (0 to 1).
//
autowah(level,x) = level * crybaby(amp_follower(0.1,x),x) + (1.0-level)*x;
//-------------------------- crybaby(wah) -----------------------------
// Digitized CryBaby wah pedal
// USAGE: _ : crybaby(wah) : _;
// where wah = "pedal angle" from 0 to 1.
// REFERENCE: https://ccrma.stanford.edu/~jos/pasp/vegf.html
//
crybaby(wah) = *(gs) : tf2(1,-1,0,a1s,a2s)
with {
Q = pow(2.0,(2.0*(1.0-wah)+1.0)); // Resonance "quality factor"
fr = 450.0*pow(2.0,2.3*wah); // Resonance tuning
g = 0.1*pow(4.0,wah); // gain (optional)
// Biquad fit using z = exp(s T) ~ 1 + sT for low frequencies:
frn = fr/SR; // Normalized pole frequency (cycles per sample)
R = 1 - PI*frn/Q; // pole radius
theta = 2*PI*frn; // pole angle
a1 = 0-2.0*R*cos(theta); // biquad coeff
a2 = R*R; // biquad coeff
// dezippering of slider-driven signals:
s = 0.999; // smoothing parameter (one-pole pole location)
a1s = a1 : smooth(s);
a2s = a2 : smooth(s);
gs = g : smooth(s);
tf2 = component("filter.lib").tf2;
};
//------------------------- crybaby_demo ---------------------------
// USAGE: _ : crybaby_demo : _ ;
crybaby_demo = bypass1(bp, crybaby(wah)) with {
crybaby_group(x) = hgroup("CRYBABY [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/vegf.html]", x);
bp = crybaby_group(checkbox("[0] Bypass [tooltip: When this is checked, the wah pedal has no effect]"));
wah = crybaby_group(hslider("[1] Wah parameter [tooltip: wah pedal angle between 0 (rocked back) and 1 (rocked forward)]",0.8,0,1,0.01));
};
//------------ apnl(a1,a2) ---------------
// Passive Nonlinear Allpass:
// switch between allpass coefficient a1 and a2 at signal zero crossings
// REFERENCE:
// "A Passive Nonlinear Digital Filter Design ..."
// by John R. Pierce and Scott A. Van Duyne,
// JASA, vol. 101, no. 2, pp. 1120-1126, 1997
// Written by Romain Michon and JOS based on Pierce switching springs idea:
apnl(a1,a2,x) = nonLinFilter
with{
condition = _>0;
nonLinFilter = (x - _ <: _*(condition*a1 + (1-condition)*a2),_')~_ :> +;
};
//------------ piano_dispersion_filter(M,B,f0) ---------------
// Piano dispersion allpass filter in closed form
//
// ARGUMENTS:
// M = number of first-order allpass sections (compile-time only)
// Keep below 20. 8 is typical for medium-sized piano strings.
// B = string inharmonicity coefficient (0.0001 is typical)
// f0 = fundamental frequency in Hz
//
// INPUT:
// Signal to be filtered by the allpass chain
//
// OUTPUTS:
// 1. MINUS the estimated delay at f0 of allpass chain in samples,
// provided in negative form to facilitate subtraction
// from delay-line length (see USAGE below).
// 2. Output signal from allpass chain
//
// USAGE:
// piano_dispersion_filter(1,B,f0) : +(totalDelay),_ : fdelay(maxDelay)
//
// REFERENCE:
// "Dispersion Modeling in Waveguide Piano Synthesis
// Using Tunable Allpass Filters",
// by Jukka Rauhala and Vesa Valimaki, DAFX-2006, pp. 71-76
// URL: http://www.dafx.ca/proceedings/papers/p_071.pdf
// NOTE: An erratum in Eq. (7) is corrected in Dr. Rauhala's
// encompassing dissertation (and below).
// See also: http://www.acoustics.hut.fi/research/asp/piano/
//
piano_dispersion_filter(M,B,f0) = -Df0*M,seq(i,M,tf1(a1,1,a1))
with {
a1 = (1-D)/(1+D); // By Eq. 3, have D >= 0, hence a1 >= 0 also
D = exp(Cd - Ikey(f0)*kd);
trt = pow(2.0,1.0/12.0); // 12th root of 2
logb(b,x) = log(x) / log(b); // log-base-b of x
Ikey(f0) = logb(trt,f0*trt/27.5);
Bc = max(B,0.000001);
kd = exp(k1*log(Bc)*log(Bc) + k2*log(Bc)+k3);
Cd = exp((m1*log(M)+m2)*log(Bc)+m3*log(M)+m4);
k1 = -0.00179;
k2 = -0.0233;
k3 = -2.93;
m1 = 0.0126;
m2 = 0.0606;
m3 = -0.00825;
m4 = 1.97;
wT = 2*PI*f0/SR;
polydel(a) = atan(sin(wT)/(a+cos(wT)))/wT;
Df0 = polydel(a1) - polydel(1.0/a1);
};
//===================== Phasing and Flanging Effects ====================
//--------------- flanger_mono, flanger_stereo, flanger_demo -------------
// Flanging effect
//
// USAGE:
// _ : flanger_mono(dmax,curdel,depth,fb,invert) : _;
// _,_ : flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert) : _,_;
// _,_ : flanger_demo : _,_;
//
// ARGUMENTS:
// dmax = maximum delay-line length (power of 2) - 10 ms typical
// curdel = current dynamic delay (not to exceed dmax)
// depth = effect strength between 0 and 1 (1 typical)
// fb = feedback gain between 0 and 1 (0 typical)
// invert = 0 for normal, 1 to invert sign of flanging sum
//
// REFERENCE:
// https://ccrma.stanford.edu/~jos/pasp/Flanging.html
//
flanger_mono(dmax,curdel,depth,fb,invert)
= _ <: _, (-:fdelay(dmax,curdel)) ~ *(fb) : _,
*(select2(invert,depth,0-depth))
: + : *(0.5);
flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert)
= flanger_mono(dmax,curdel1,depth,fb,invert),
flanger_mono(dmax,curdel2,depth,fb,invert);
//------------------------- flanger_demo ---------------------------
// USAGE: _,_ : flanger_demo : _,_;
//
flanger_demo = bypass2(fbp,flanger_stereo_demo) with {
flanger_group(x) =
vgroup("FLANGER [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
meter_group(x) = flanger_group(hgroup("[0]", x));
ctl_group(x) = flanger_group(hgroup("[1]", x));
del_group(x) = flanger_group(hgroup("[2] Delay Controls", x));
lvl_group(x) = flanger_group(hgroup("[3]", x));
fbp = meter_group(checkbox(
"[0] Bypass [tooltip: When this is checked, the flanger has no effect]"));
invert = meter_group(checkbox("[1] Invert Flange Sum"));
// FIXME: This should be an amplitude-response display:
flangeview = lfor(freq) + lfol(freq) : meter_group(hbargraph(
"[2] Flange LFO [style: led] [tooltip: Display sum of flange delays]", -1.5,+1.5));
flanger_stereo_demo(x,y) = attach(x,flangeview),y :
*(level),*(level) : flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert);
lfol = component("oscillator.lib").oscrs; // sine for left channel
lfor = component("oscillator.lib").oscrc; // cosine for right channel
dmax = 2048;
dflange = 0.001 * SR *
del_group(hslider("[1] Flange Delay [unit:ms] [style:knob]", 10, 0, 20, 0.001));
odflange = 0.001 * SR *
del_group(hslider("[2] Delay Offset [unit:ms] [style:knob]", 1, 0, 20, 0.001));
freq = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.01));
depth = ctl_group(hslider("[2] Depth [style:knob]", 1, 0, 1, 0.001));
fb = ctl_group(hslider("[3] Feedback [style:knob]", 0, -0.999, 0.999, 0.001));
level = lvl_group(hslider("Flanger Output Level [unit:dB]", 0, -60, 10, 0.1)) : db2linear;
curdel1 = odflange+dflange*(1 + lfol(freq))/2;
curdel2 = odflange+dflange*(1 + lfor(freq))/2;
};
//------- phaser2_mono, phaser2_stereo, phaser2_demo -------
// Phasing effect
//
// USAGE:
// _ : phaser2_mono(Notches,width,frqmin,fratio,frqmax,speed,depth,fb,invert) : _;
// _,_ : phaser2_stereo(") : _,_;
// _,_ : phaser2_demo : _,_;
//
// ARGUMENTS:
// Notches = number of spectral notches (MACRO ARGUMENT - not a signal)
// width = approximate width of spectral notches in Hz
// frqmin = approximate minimum frequency of first spectral notch in Hz
// fratio = ratio of adjacent notch frequencies
// frqmax = approximate maximum frequency of first spectral notch in Hz
// speed = LFO frequency in Hz (rate of periodic notch sweep cycles)
// depth = effect strength between 0 and 1 (1 typical) (aka "intensity")
// when depth=2, "vibrato mode" is obtained (pure allpass chain)
// fb = feedback gain between -1 and 1 (0 typical)
// invert = 0 for normal, 1 to invert sign of flanging sum
//
// REFERENCES:
// https://ccrma.stanford.edu/~jos/pasp/Phasing.html
// http://www.geofex.com/Article_Folders/phasers/phase.html
// 'An Allpass Approach to Digital Phasing and Flanging', Julius O. Smith III,
// Proc. Int. Computer Music Conf. (ICMC-84), pp. 103-109, Paris, 1984.
// CCRMA Tech. Report STAN-M-21: https://ccrma.stanford.edu/STANM/stanms/stanm21/
vibrato2_mono(sections,phase01,fb,width,frqmin,fratio,frqmax,speed) =
(+ : seq(i,sections,ap2p(R,th(i)))) ~ *(fb)
with {
tf2 = component("filter.lib").tf2;
// second-order resonant digital allpass given pole radius and angle:
ap2p(R,th) = tf2(a2,a1,1,a1,a2) with {
a2 = R^2;
a1 = -2*R*cos(th);
};
SR = component("music.lib").SR;
R = exp(-pi*width/SR);
cososc = component("oscillator.lib").oscrc;
sinosc = component("oscillator.lib").oscrs;
osc = cososc(speed) * phase01 + sinosc(speed) * (1-phase01);
lfo = (1-osc)/2; // in [0,1]
pi = 4*atan(1);
thmin = 2*pi*frqmin/SR;
thmax = 2*pi*frqmax/SR;
th1 = thmin + (thmax-thmin)*lfo;
th(i) = (fratio^(i+1))*th1;
};
phaser2_mono(Notches,phase01,width,frqmin,fratio,frqmax,speed,depth,fb,invert) =
_ <: *(g1) + g2mi*vibrato2_mono(Notches,phase01,fb,width,frqmin,fratio,frqmax,speed)
with { // depth=0 => direct-signal only
g1 = 1-depth/2; // depth=1 => phaser mode (equal sum of direct and allpass-chain)
g2 = depth/2; // depth=2 => vibrato mode (allpass-chain signal only)
g2mi = select2(invert,g2,-g2); // inversion negates the allpass-chain signal
};
phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,depth,fb,invert)
= phaser2_mono(Notches,0,width,frqmin,fratio,frqmax,speed,depth,fb,invert),
phaser2_mono(Notches,1,width,frqmin,fratio,frqmax,speed,depth,fb,invert);
//------------------------- phaser2_demo ---------------------------
// USAGE: _,_ : phaser2_demo : _,_;
//
phaser2_demo = bypass2(pbp,phaser2_stereo_demo) with {
phaser2_group(x) =
vgroup("PHASER2 [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
meter_group(x) = phaser2_group(hgroup("[0]", x));
ctl_group(x) = phaser2_group(hgroup("[1]", x));
nch_group(x) = phaser2_group(hgroup("[2]", x));
lvl_group(x) = phaser2_group(hgroup("[3]", x));
pbp = meter_group(checkbox(
"[0] Bypass [tooltip: When this is checked, the phaser has no effect]"));
invert = meter_group(checkbox("[1] Invert Internal Phaser Sum"));
vibr = meter_group(checkbox("[2] Vibrato Mode")); // In this mode you can hear any "Doppler"
// FIXME: This should be an amplitude-response display:
//flangeview = phaser2_amp_resp : meter_group(hspectrumview("[2] Phaser Amplitude Response", 0,1));
//phaser2_stereo_demo(x,y) = attach(x,flangeview),y : ...
phaser2_stereo_demo = *(level),*(level) :
phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,mdepth,fb,invert);
Notches = 4; // Compile-time parameter: 2 is typical for analog phaser stomp-boxes
// FIXME: Add tooltips
speed = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.001));
depth = ctl_group(hslider("[2] Notch Depth (Intensity) [style:knob]", 1, 0, 1, 0.001));
fb = ctl_group(hslider("[3] Feedback Gain [style:knob]", 0, -0.999, 0.999, 0.001));
width = nch_group(hslider("[1] Notch width [unit:Hz] [style:knob]", 1000, 10, 5000, 1));
frqmin = nch_group(hslider("[2] Min Notch1 Freq [unit:Hz] [style:knob]", 100, 20, 5000, 1));
frqmax = nch_group(hslider("[3] Max Notch1 Freq [unit:Hz] [style:knob]", 800, 20, 10000, 1)) : max(frqmin);
fratio = nch_group(hslider("[4] Notch Freq Ratio: NotchFreq(n+1)/NotchFreq(n) [style:knob]", 1.5, 1.1, 4, 0.001));
level = lvl_group(hslider("Phaser Output Level [unit:dB]", 0, -60, 10, 0.1)) : component("music.lib").db2linear;
mdepth = select2(vibr,depth,2); // Improve "ease of use"
};
//------------------------- stereo_width(w) ---------------------------
// Stereo Width effect using the Blumlein Shuffler technique.
//
// USAGE: "_,_ : stereo_width(w) : _,_", where
// w = stereo width between 0 and 1
//
// At w=0, the output signal is mono ((left+right)/2 in both channels).
// At w=1, there is no effect (original stereo image).
// Thus, w between 0 and 1 varies stereo width from 0 to "original".
//
// REFERENCE:
// "Applications of Blumlein Shuffling to Stereo Microphone Techniques"
// Michael A. Gerzon, JAES vol. 42, no. 6, June 1994
//
stereo_width(w) = shuffle : *(mgain),*(sgain) : shuffle
with {
shuffle = _,_ <: +,-; // normally scaled by 1/sqrt(2) for orthonormality,
mgain = 1-w/2; // but we pick up the needed normalization here.
sgain = w/2;
};
//--------------------------- amp_follower ---------------------------
// Classic analog audio envelope follower with infinitely fast rise and
// exponential decay. The amplitude envelope instantaneously follows
// the absolute value going up, but then floats down exponentially.
//
// USAGE:
// _ : amp_follower(rel) : _
//
// where
// rel = release time = amplitude-envelope time-constant (sec) going down
//
// REFERENCES:
// Musical Engineer's Handbook, Bernie Hutchins, Ithaca NY, 1975
// Elecronotes Newsletter, Bernie Hutchins
amp_follower(rel) = abs : env with {
p = tau2pole(rel);
env(x) = x * (1.0 - p) : + ~ max(x,_) * p;
};
//--------------------------- amp_follower_ud ---------------------------
// Envelope follower with different up and down time-constants
//
// USAGE:
// _ : amp_follower_ud(att,rel) : _
//
// where
// att = attack time = amplitude-envelope time constant (sec) going up
// rel = release time = amplitude-envelope time constant (sec) going down
//
// For audio, att should be faster (smaller) than rel (e.g., 0.001 and 0.01)
amp_follower_ud(att,rel) = amp_follower(rel) : smooth(tau2pole(att));
//=============== Gates, Limiters, and Dynamic Range Compression ============
//----------------- gate_mono, gate_stereo -------------------
// Mono and stereo signal gates
//
// USAGE:
// _ : gate_mono(thresh,att,hold,rel) : _
// or
// _,_ : gate_stereo(thresh,att,hold,rel) : _,_
//
// where
// thresh = dB level threshold above which gate opens (e.g., -60 dB)
// att = attack time = time constant (sec) for gate to open (e.g., 0.0001 s = 0.1 ms)
// hold = hold time = time (sec) gate stays open after signal level < thresh (e.g., 0.1 s)
// rel = release time = time constant (sec) for gate to close (e.g., 0.020 s = 20 ms)
//
// REFERENCES:
// - http://en.wikipedia.org/wiki/Noise_gate
// - http://www.soundonsound.com/sos/apr01/articles/advanced.asp
// - http://en.wikipedia.org/wiki/Gating_(sound_engineering)
gate_mono(thresh,att,hold,rel,x) = x * gate_gain_mono(thresh,att,hold,rel,x);
gate_stereo(thresh,att,hold,rel,x,y) = ggm*x, ggm*y with {
ggm = gate_gain_mono(thresh,att,hold,rel,abs(x)+abs(y));
};
gate_gain_mono(thresh,att,hold,rel,x) = extendedrawgate : amp_follower_ud(att,rel) with {
extendedrawgate = max(rawgatesig,holdsig);
rawgatesig = inlevel(x) > db2linear(thresh);
inlevel(x) = amp_follower_ud(att/2,rel/2,x);
holdsig = ((max(holdreset & holdsamps,_) ~-(1)) > 0);
holdreset = rawgatesig > rawgatesig'; // reset hold when raw gate falls
holdsamps = int(hold*SR);
};
//-------------------- compressor_mono, compressor_stereo ----------------------
// Mono and stereo dynamic range compressor_s
//
// USAGE:
// _ : compressor_mono(ratio,thresh,att,rel) : _
// or
// _,_ : compressor_stereo(ratio,thresh,att,rel) : _,_
//
// where
// ratio = compression ratio (1 = no compression, >1 means compression")
// thresh = dB level threshold above which compression kicks in
// att = attack time = time constant (sec) when level & compression going up
// rel = release time = time constant (sec) coming out of compression
//
// REFERENCES:
// - http://en.wikipedia.org/wiki/Dynamic_range_compression
// - https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
// - Albert Graef's <faust2pd>/examples/synth/compressor_.dsp
//
compressor_mono(ratio,thresh,att,rel,x) = x * compression_gain_mono(ratio,thresh,att,rel,x);
compressor_stereo(ratio,thresh,att,rel,x,y) = cgm*x, cgm*y with {
cgm = compression_gain_mono(ratio,thresh,att,rel,abs(x)+abs(y));
};
compression_gain_mono(ratio,thresh,att,rel) =
amp_follower_ud(att,rel) : linear2db : outminusindb(ratio,thresh) :
kneesmooth(att) : db2linear
with {
// kneesmooth(att) installs a "knee" in the dynamic-range compression,
// where knee smoothness is set equal to half that of the compression-attack.
// A general 'knee' parameter could be used instead of tying it to att/2:
kneesmooth(att) = smooth(tau2pole(att/2.0));
// compression gain in dB:
outminusindb(ratio,thresh,level) = max(level-thresh,0) * (1/float(ratio)-1);
// Note: "float(ratio)" REQUIRED when ratio is an integer > 1!
};
//---------------------------- gate_demo -------------------------
// USAGE: _,_ : gate_demo : _,_;
//
gate_demo = bypass2(gbp,gate_stereo_demo) with {
gate_group(x) = vgroup("GATE [tooltip: Reference: http://en.wikipedia.org/wiki/Noise_gate]", x);
meter_group(x) = gate_group(hgroup("[0]", x));
knob_group(x) = gate_group(hgroup("[1]", x));
gbp = meter_group(checkbox("[0] Bypass [tooltip: When this is checked, the gate has no effect]"));
gateview = gate_gain_mono(gatethr,gateatt,gatehold,gaterel) : linear2db :
meter_group(hbargraph("[1] Gate Gain [unit:dB] [tooltip: Current gain of the gate in dB]",
-50,+10)); // [style:led]
gate_stereo_demo(x,y) = attach(x,gateview(abs(x)+abs(y))),y :
gate_stereo(gatethr,gateatt,gatehold,gaterel);
gatethr = knob_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip: When the signal level falls below the Threshold (expressed in dB), the signal is muted]",
-30, -120, 0, 0.1));
gateatt = knob_group(hslider("[2] Attack [unit:us] [style:knob] [tooltip: Time constant in MICROseconds (1/e smoothing time) for the gate gain to go (exponentially) from 0 (muted) to 1 (unmuted)]",
10, 10, 10000, 1)) : *(0.000001) : max(1/SR);
gatehold = knob_group(hslider("[3] Hold [unit:ms] [style:knob] [tooltip: Time in ms to keep the gate open (no muting) after the signal level falls below the Threshold]",
200, 0, 1000, 1)) : *(0.001) : max(1/SR);
gaterel = knob_group(hslider("[4] Release [unit:ms] [style:knob] [tooltip: Time constant in ms (1/e smoothing time) for the gain to go (exponentially) from 1 (unmuted) to 0 (muted)]",
100, 0, 1000, 1)) : *(0.001) : max(1/SR);
};
//---------------------------- compressor_demo -------------------------
// USAGE: _,_ : compressor_demo : _,_;
//
compressor_demo = bypass2(cbp,compressor_stereo_demo) with {
comp_group(x) = vgroup("COMPRESSOR [tooltip: Reference: http://en.wikipedia.org/wiki/Dynamic_range_compression]", x);
meter_group(x) = comp_group(hgroup("[0]", x));
knob_group(x) = comp_group(hgroup("[1]", x));
cbp = meter_group(checkbox("[0] Bypass [tooltip: When this is checked, the compressor has no effect]"));
gainview =
compression_gain_mono(ratio,threshold,attack,release) : linear2db :
meter_group(hbargraph("[1] Compressor Gain [unit:dB] [tooltip: Current gain of the compressor in dB]",
-50,+10));
displaygain = _,_ <: _,_,(abs,abs:+) : _,_,gainview : _,attach;
compressor_stereo_demo =
displaygain(compressor_stereo(ratio,threshold,attack,release)) :
*(makeupgain), *(makeupgain);
ctl_group(x) = knob_group(hgroup("[3] Compression Control", x));
ratio = ctl_group(hslider("[0] Ratio [style:knob] [tooltip: A compression Ratio of N means that for each N dB increase in input signal level above Threshold, the output level goes up 1 dB]",
5, 1, 20, 0.1));
threshold = ctl_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip: When the signal level exceeds the Threshold (in dB), its level is compressed according to the Ratio]",
-30, -100, 10, 0.1));
env_group(x) = knob_group(hgroup("[4] Compression Response", x));
attack = env_group(hslider("[1] Attack [unit:ms] [style:knob] [tooltip: Time constant in ms (1/e smoothing time) for the compression gain to approach (exponentially) a new lower target level (the compression `kicking in')]",
50, 0, 500, 0.1)) : *(0.001) : max(1/SR);
release = env_group(hslider("[2] Release [unit:ms] [style: knob] [tooltip: Time constant in ms (1/e smoothing time) for the compression gain to approach (exponentially) a new higher target level (the compression 'releasing')]",
500, 0, 1000, 0.1)) : *(0.001) : max(1/SR);
makeupgain = comp_group(hslider("[5] Makeup Gain [unit:dB] [tooltip: The compressed-signal output level is increased by this amount (in dB) to make up for the level lost due to compression]",
40, -96, 96, 0.1)) : db2linear;
};
//------------------------------- limiter_* ------------------------------------
// USAGE:
// _ : limiter_1176_R4_mono : _;
// _,_ : limiter_1176_R4_stereo : _,_;
//
// DESCRIPTION:
// A limiter guards against hard-clipping. It can be can be
// implemented as a compressor having a high threshold (near the
// clipping level), fast attack and release, and high ratio. Since
// the ratio is so high, some knee smoothing is
// desirable ("soft limiting"). This example is intended
// to get you started using compressor_* as a limiter, so all
// parameters are hardwired to nominal values here.
//
// REFERENCE: http://en.wikipedia.org/wiki/1176_Peak_Limiter
// Ratios: 4 (moderate compression), 8 (severe compression),
// 12 (mild limiting), or 20 to 1 (hard limiting)
// Att: 20-800 MICROseconds (Note: scaled by ratio in the 1176)
// Rel: 50-1100 ms (Note: scaled by ratio in the 1176)
// Mike Shipley likes 4:1 (Grammy-winning mixer for Queen, Tom Petty, etc.)
// Faster attack gives "more bite" (e.g. on vocals)
// He hears a bright, clear eq effect as well (not implemented here)
//
limiter_1176_R4_mono = compressor_mono(4,-6,0.0008,0.5);
limiter_1176_R4_stereo = compressor_stereo(4,-6,0.0008,0.5);
//========================== Schroeder Reverberators ======================
//------------------------------ jcrev,satrev ------------------------------
// USAGE:
// _ : jcrev : _,_,_,_
// _ : satrev : _,_
//
// DESCRIPTION:
// These artificial reverberators take a mono signal and output stereo
// (satrev) and quad (jcrev). They were implemented by John Chowning
// in the MUS10 computer-music language (descended from Music V by Max
// Mathews). They are Schroeder Reverberators, well tuned for their size.
// Nowadays, the more expensive freeverb is more commonly used (see the
// Faust examples directory).
// The reverb below was made from a listing of "RV", dated April 14, 1972,
// which was recovered from an old SAIL DART backup tape.
// John Chowning thinks this might be the one that became the
// well known and often copied JCREV:
jcrev = *(0.06) : allpass_chain <: comb_bank :> _ <: mix_mtx with {
rev1N = component("filter.lib").rev1;
rev12(len,g) = rev1N(2048,len,g);
rev14(len,g) = rev1N(4096,len,g);
allpass_chain =
rev2(512,347,0.7) :
rev2(128,113,0.7) :
rev2( 64, 37,0.7);
comb_bank =
rev12(1601,.802),
rev12(1867,.773),
rev14(2053,.753),
rev14(2251,.733);
mix_mtx = _,_,_,_ <: psum, -psum, asum, -asum : _,_,_,_ with {
psum = _,_,_,_ :> _;
asum = *(-1),_,*(-1),_ :> _;
};
};
// The reverb below was made from a listing of "SATREV", dated May 15, 1971,
// which was recovered from an old SAIL DART backup tape.
// John Chowning thinks this might be the one used on his
// often-heard brass canon sound examples, one of which can be found at
// https://ccrma.stanford.edu/~jos/wav/FM_BrassCanon2.wav
satrev = *(0.2) <: comb_bank :> allpass_chain <: _,*(-1) with {
rev1N = component("filter.lib").rev1;
rev11(len,g) = rev1N(1024,len,g);
rev12(len,g) = rev1N(2048,len,g);
comb_bank =
rev11( 778,.827),
rev11( 901,.805),
rev11(1011,.783),
rev12(1123,.764);
rev2N = component("filter.lib").rev2;
allpass_chain =
rev2N(128,125,0.7) :
rev2N( 64, 42,0.7) :
rev2N( 16, 12,0.7);
};
//-------------------------------- freeverb --------------------------------
// Freeverb is a widely used, free, open-source Schroeder reverb contributed
// by ``Jezar at Dreampoint.'' See <faust_distribution>/examples/freeverb.dsp
//=============== Feedback Delay Network (FDN) Reverberators ==============
//-------------------------------- fdnrev0 ---------------------------------
// Pure Feedback Delay Network Reverberator (generalized for easy scaling).
//
// USAGE:
// <1,2,4,...,N signals> <:
// fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl) :>
// <1,2,4,...,N signals>
//
// WHERE
// N = 2, 4, 8, ... (power of 2)
// MAXDELAY = power of 2 at least as large as longest delay-line length
// delays = N delay lines, N a power of 2, lengths perferably coprime
// BBSO = odd positive integer = order of bandsplit desired at freqs
// freqs = NB-1 crossover frequencies separating desired frequency bands
// durs = NB decay times (t60) desired for the various bands
// loopgainmax = scalar gain between 0 and 1 used to "squelch" the reverb
// nonl = nonlinearity (0 to 0.999..., 0 being linear)
//
// REFERENCE:
// https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html
//
// DEPENDENCIES: filter.lib (filterbank)
fdnrev0(MAXDELAY, delays, BBSO, freqs, durs, loopgainmax, nonl)
= (bus(2*N) :> bus(N) : delaylines(N)) ~
(delayfilters(N,freqs,durs) : feedbackmatrix(N))
with {
N = count(delays);
NB = count(durs);
//assert(count(freqs)+1==NB);
delayval(i) = take(i+1,delays);
dlmax(i) = MAXDELAY; // must hardwire this from argument for now
//dlmax(i) = 2^max(1,nextpow2(delayval(i))) // try when slider min/max is known
// with { nextpow2(x) = ceil(log(x)/log(2.0)); };
// -1 is for feedback delay:
delaylines(N) = par(i,N,(delay(dlmax(i),(delayval(i)-1))));
delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = bhadamard(N);
vbutterfly(n) = bus(n) <: (bus(n):>bus(n/2)) , ((bus(n/2),(bus(n/2):par(i,n/2,*(-1)))) :> bus(n/2));
bhadamard(2) = bus(2) <: +,-;
bhadamard(n) = bus(n) <: (bus(n):>bus(n/2)) , ((bus(n/2),(bus(n/2):par(i,n/2,*(-1)))) :> bus(n/2))
: (bhadamard(n/2) , bhadamard(n/2));
// Experimental nonlinearities:
// nonlinallpass = apnl(nonl,-nonl);
// s = nonl*PI;
// nonlinallpass(x) = allpassnn(3,(s*x,s*x*x,s*x*x*x)); // filter.lib
nonlinallpass = _; // disabled by default (rather expensive)
filter(i,freqs,durs) = filterbank(BBSO,freqs) : par(j,NB,*(g(j,i)))
:> *(loopgainmax) / sqrt(N) : nonlinallpass
with {
dur(j) = take(j+1,durs);
n60(j) = dur(j)*SR; // decay time in samples
g(j,i) = exp(-3.0*log(10.0)*delayval(i)/n60(j));
// ~ 1.0 - 6.91*delayval(i)/(SR*dur(j)); // valid for large dur(j)
};
};
// ---------- prime_power_delays -----
// Prime Power Delay Line Lengths
//
// USAGE:
// bus(N) : prime_power_delays(N,pathmin,pathmax) : bus(N);
//
// WHERE
// N = positive integer up to 16
// (for higher powers of 2, extend 'primes' array below.)
// pathmin = minimum acoustic ray length in the reverberator (in meters)
// pathmax = maximum acoustic ray length (meters) - think "room size"
//
// DEPENDENCIES:
// math.lib (SR, selector, take)
// music.lib (db2linear)
//
// REFERENCE:
// https://ccrma.stanford.edu/~jos/pasp/Prime_Power_Delay_Line.html
//
prime_power_delays(N,pathmin,pathmax) = par(i,N,delayvals(i)) with {
Np = 16;
primes = 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53;
prime(n) = primes : selector(n,Np); // math.lib
// Prime Power Bounds [matlab: floor(log(maxdel)./log(primes(53)))]
maxdel=8192; // more than 63 meters at 44100 samples/sec & 343 m/s
ppbs = 13,8,5,4, 3,3,3,3, 2,2,2,2, 2,2,2,2; // 8192 is enough for all
ppb(i) = take(i+1,ppbs);
// Approximate desired delay-line lengths using powers of distinct primes:
c = 343; // soundspeed in m/s at 20 degrees C for dry air
dmin = SR*pathmin/c;
dmax = SR*pathmax/c;
dl(i) = dmin * (dmax/dmin)^(i/float(N-1)); // desired delay in samples
ppwr(i) = floor(0.5+log(dl(i))/log(prime(i))); // best prime power
delayvals(i) = prime(i)^ppwr(i); // each delay a power of a distinct prime
};
//--------------------- stereo_reverb_tester --------------------
// Handy test inputs for reverberator demos below.
stereo_reverb_tester(revin_group,x,y) = inx,iny with {
ck_group(x) = revin_group(vgroup("[1] Input Config",x));
mutegain = 1 - ck_group(checkbox("[1] Mute Ext Inputs
[tooltip: When this is checked, the stereo external audio inputs are disabled (good for hearing the impulse response or pink-noise response alone)]"));
pinkin = ck_group(checkbox("[2] Pink Noise
[tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise (useful for adjusting the EQ sections)]"));
impulsify = _ <: _,mem : - : >(0);
imp_group(x) = revin_group(hgroup("[2] Impulse Selection",x));
pulseL = imp_group(button("[1] Left
[tooltip: Send impulse into LEFT channel]")) : impulsify;
pulseC = imp_group(button("[2] Center
[tooltip: Send impulse into LEFT and RIGHT channels]")) : impulsify;
pulseR = imp_group(button("[3] Right
[tooltip: Send impulse into RIGHT channel]")) : impulsify;
inx = x*mutegain + (pulseL+pulseC) + pn;
iny = y*mutegain + (pulseR+pulseC) + pn;
pn = 0.1*pinkin*component("oscillator.lib").pink_noise;
};
//------------------------- fdnrev0_demo ---------------------------
// USAGE: _,_ : fdnrev0_demo(N,NB,BBSO) : _,_
// WHERE
// N = Feedback Delay Network (FDN) order
// = number of delay lines used = order of feedback matrix
// = 2, 4, 8, or 16 [extend primes array below for 32, 64, ...]
// NB = number of frequency bands
// = number of (nearly) independent T60 controls
// = integer 3 or greater
// BBSO = Butterworth band-split order
// = order of lowpass/highpass bandsplit used at each crossover freq
// = odd positive integer
fdnrev0_demo(N,NB,BBSO,x,y) = stereo_reverb_tester(revin_group,x,y)
<: fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl)
:> *(gain),*(gain)
with {
MAXDELAY = 8192; // sync w delays and prime_power_delays above
defdurs = (8.4,6.5,5.0,3.8,2.7); // NB default durations (sec)
deffreqs = (500,1000,2000,4000); // NB-1 default crossover frequencies (Hz)
deflens = (56.3,63.0); // 2 default min and max path lengths
fdn_group(x) = vgroup("FEEDBACK DELAY NETWORK (FDN) REVERBERATOR, ORDER 16
[tooltip: See Faust's effect.lib for documentation and references]", x);
freq_group(x) = fdn_group(vgroup("[1] Band Crossover Frequencies", x));
t60_group(x) = fdn_group(hgroup("[2] Band Decay Times (T60)", x));
path_group(x) = fdn_group(vgroup("[3] Room Dimensions", x));
revin_group(x) = fdn_group(hgroup("[4] Input Controls", x));
nonl_group(x) = revin_group(vgroup("[4] Nonnlinearity",x));
quench_group(x) = revin_group(vgroup("[3] Reverb State",x));
nonl = nonl_group(hslider("[style:knob] [tooltip: nonlinear mode coupling]",
0, -0.999, 0.999, 0.001));
loopgainmax = 1.0-0.5*quench_group(button("[1] Quench
[tooltip: Hold down 'Quench' to clear the reverberator]"));
pathmin = path_group(hslider("[1] min acoustic ray length [unit:m]
[tooltip: This length (in meters) determines the shortest delay-line used in the FDN reverberator.
Think of it as the shortest wall-to-wall separation in the room.]",
46, 0.1, 63, 0.1));
pathmax = path_group(hslider("[2] max acoustic ray length [unit:m]
[tooltip: This length (in meters) determines the longest delay-line used in the FDN reverberator.
Think of it as the largest wall-to-wall separation in the room.]",
63, 0.1, 63, 0.1));
durvals(i) = t60_group(vslider("[%i] %i [unit:s]
[tooltip: T60 is the 60dB decay-time in seconds. For concert halls, an overall reverberation time (T60) near 1.9 seconds is typical [Beranek 2004]. Here we may set T60 independently in each frequency band. In real rooms, higher frequency bands generally decay faster due to absorption and scattering.]",
take(i+1,defdurs), 0.1, 10, 0.1));
durs = par(i,NB,durvals(NB-1-i));
freqvals(i) = freq_group(hslider("[%i] Band %i upper edge in Hz [unit:Hz]
[tooltip: Each delay-line signal is split into frequency-bands for separate decay-time control in each band]",
take(i+1,deffreqs), 100, 10000, 1));
freqs = par(i,NB-1,freqvals(i));
delays = prime_power_delays(N,pathmin,pathmax);
gain = hslider("[3] Output Level (dB) [unit:dB]
[tooltip: Output scale factor]", -40, -70, 20, 0.1) : db2linear;
// (can cause infinite loop:) with { db2linear(x) = pow(10, x/20.0); };
};
//------------------------------- zita_rev_fdn -------------------------------
// Internal 8x8 late-reverberation FDN used in the FOSS Linux reverb zita-rev1
// by Fons Adriaensen <fons@linuxaudio.org>. This is an FDN reverb with
// allpass comb filters in each feedback delay in addition to the
// damping filters.
//
// USAGE:
// bus(8) : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) : bus(8)
//
// WHERE
// f1 = crossover frequency (Hz) separating dc and midrange frequencies
// f2 = frequency (Hz) above f1 where T60 = t60m/2 (see below)
// t60dc = desired decay time (t60) at frequency 0 (sec)
// t60m = desired decay time (t60) at midrange frequencies (sec)
// fsmax = maximum sampling rate to be used (Hz)
//
// REFERENCES:
// http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html
// https://ccrma.stanford.edu/~jos/pasp/Zita_Rev1.html
//
// DEPENDENCIES:
// filter.lib (allpass_comb, lowpass, smooth)
// math.lib (hadamard, take, etc.)
zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) =
((bus(2*N) :> allpass_combs(N) : feedbackmatrix(N)) ~
(delayfilters(N,freqs,durs) : fbdelaylines(N)))
with {
N = 8;
// Delay-line lengths in seconds:
apdelays = (0.020346, 0.024421, 0.031604, 0.027333, 0.022904,
0.029291, 0.013458, 0.019123); // feedforward delays in seconds
tdelays = ( 0.153129, 0.210389, 0.127837, 0.256891, 0.174713,
0.192303, 0.125000, 0.219991); // total delays in seconds
tdelay(i) = floor(0.5 + SR*take(i+1,tdelays)); // samples
apdelay(i) = floor(0.5 + SR*take(i+1,apdelays));
fbdelay(i) = tdelay(i) - apdelay(i);
// NOTE: Since SR is not bounded at compile time, we can't use it to
// allocate delay lines; hence, the fsmax parameter:
tdelaymaxfs(i) = floor(0.5 + fsmax*take(i+1,tdelays));
apdelaymaxfs(i) = floor(0.5 + fsmax*take(i+1,apdelays));
fbdelaymaxfs(i) = tdelaymaxfs(i) - apdelaymaxfs(i);
nextpow2(x) = ceil(log(x)/log(2.0));
maxapdelay(i) = int(2.0^max(1.0,nextpow2(apdelaymaxfs(i))));
maxfbdelay(i) = int(2.0^max(1.0,nextpow2(fbdelaymaxfs(i))));
apcoeff(i) = select2(i&1,0.6,-0.6); // allpass comb-filter coefficient
allpass_combs(N) =
par(i,N,(allpass_comb(maxapdelay(i),apdelay(i),apcoeff(i)))); // filter.lib
fbdelaylines(N) = par(i,N,(delay(maxfbdelay(i),(fbdelay(i)))));
freqs = (f1,f2); durs = (t60dc,t60m);
delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
feedbackmatrix(N) = hadamard(N); // math.lib
staynormal = 10.0^(-20); // let signals decay well below LSB, but not to zero
special_lowpass(g,f) = smooth(p) with {
// unity-dc-gain lowpass needs gain g at frequency f => quadratic formula:
p = mbo2 - sqrt(max(0,mbo2*mbo2 - 1.0)); // other solution is unstable
mbo2 = (1.0 - gs*c)/(1.0 - gs); // NOTE: must ensure |g|<1 (t60m finite)
gs = g*g;
c = cos(2.0*PI*f/float(SR));
};
filter(i,freqs,durs) = lowshelf_lowpass(i)/sqrt(float(N))+staynormal
with {
lowshelf_lowpass(i) = gM*low_shelf1_l(g0/gM,f(1)):special_lowpass(gM,f(2));
low_shelf1_l(G0,fx,x) = x + (G0-1)*lowpass(1,fx,x); // filter.lib
g0 = g(0,i);
gM = g(1,i);
f(k) = take(k,freqs);
dur(j) = take(j+1,durs);
n60(j) = dur(j)*SR; // decay time in samples
g(j,i) = exp(-3.0*log(10.0)*tdelay(i)/n60(j));
};
};
// Stereo input delay used by zita_rev1 in both stereo and ambisonics mode:
zita_in_delay(rdel) = zita_delay_mono(rdel), zita_delay_mono(rdel) with {
zita_delay_mono(rdel) = delay(8192,SR*rdel*0.001) * 0.3;
};
// Stereo input mapping used by zita_rev1 in both stereo and ambisonics mode:
zita_distrib2(N) = _,_ <: fanflip(N) with {
fanflip(4) = _,_,*(-1),*(-1);
fanflip(N) = fanflip(N/2),fanflip(N/2);
};
//--------------------------- zita_rev_fdn_demo ------------------------------
// zita_rev_fdn_demo = zita_rev_fdn (above) + basic GUI
//
// USAGE:
// bus(8) : zita_rev_fdn_demo(f1,f2,t60dc,t60m,fsmax) : bus(8)
//
// WHERE
// (args and references as for zita_rev_fdn above)
zita_rev_fdn_demo = zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
with {
fsmax = 48000.0;
fdn_group(x) = hgroup(
"Zita_Rev Internal FDN Reverb [tooltip: ~ Zita_Rev's internal 8x8 Feedback Delay Network (FDN) & Schroeder allpass-comb reverberator. See Faust's effect.lib for documentation and references]",x);
t60dc = fdn_group(vslider("[1] Low RT60 [unit:s] [style:knob]
[style:knob]
[tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
3, 1, 8, 0.1));
f1 = fdn_group(vslider("[2] LF X [unit:Hz] [style:knob]
[tooltip: Crossover frequency (Hz) separating low and middle frequencies]",
200, 50, 1000, 1));
t60m = fdn_group(vslider("[3] Mid RT60 [unit:s] [style:knob]
[tooltip: T60 = time (in seconds) to decay 60dB in middle band]",
2, 1, 8, 0.1));
f2 = fdn_group(vslider("[4] HF Damping [unit:Hz] [style:knob]
[tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
6000, 1500, 0.49*fsmax, 1));
};
//---------------------------- zita_rev1_stereo ---------------------------
// Extend zita_rev_fdn to include zita_rev1 input/output mapping in stereo mode.
//
// USAGE:
// _,_ : zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) : _,_
//
// WHERE
// rdel = delay (in ms) before reverberation begins (e.g., 0 to ~100 ms)
// (remaining args and refs as for zita_rev_fdn above)
zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) =
zita_in_delay(rdel)
: zita_distrib2(N)
: zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
: output2(N)
with {
N = 8;
output2(N) = outmix(N) : *(t1),*(t1);
t1 = 0.37; // zita-rev1 linearly ramps from 0 to t1 over one buffer
outmix(4) = !,butterfly(2),!; // probably the result of some experimenting!
outmix(N) = outmix(N/2),par(i,N/2,!);
};
//----------------------------- zita_rev1_ambi ---------------------------
// Extend zita_rev_fdn to include zita_rev1 input/output mapping in
// "ambisonics mode", as provided in the Linux C++ version.
//
// USAGE:
// _,_ : zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) : _,_,_,_
//
// WHERE
// rgxyz = relative gain of lanes 1,4,2 to lane 0 in output (e.g., -9 to 9)
// (remaining args and references as for zita_rev1_stereo above)
zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) =
zita_in_delay(rdel)
: zita_distrib2(N)
: zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
: output4(N) // ambisonics mode
with {
N=8;
output4(N) = select4 : *(t0),*(t1),*(t1),*(t1);
select4 = _,_,_,!,_,!,!,! : _,_,cross with { cross(x,y) = y,x; };
t0 = 1.0/sqrt(2.0);
t1 = t0 * 10.0^(0.05 * rgxyz);
};
//---------------------------------- zita_rev1 ------------------------------
// Example GUI for zita_rev1_stereo (mostly following the Linux zita-rev1 GUI).
//
// Only the dry/wet and output level parameters are "dezippered" here. If
// parameters are to be varied in real time, use "smooth(0.999)" or the like
// in the same way.
//
// REFERENCE:
// http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html
//
// DEPENDENCIES:
// filter.lib (peak_eq_rm)
zita_rev1(x,y) = zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax,x,y)
: out_eq : dry_wet(x,y) : out_level
with {
fsmax = 48000.0; // highest sampling rate that will be used
fdn_group(x) = hgroup(
"[0] Zita_Rev1 [tooltip: ~ ZITA REV1 FEEDBACK DELAY NETWORK (FDN) & SCHROEDER ALLPASS-COMB REVERBERATOR (8x8). See Faust's effect.lib for documentation and references]", x);
in_group(x) = fdn_group(hgroup("[1] Input", x));
rdel = in_group(vslider("[1] In Delay [unit:ms] [style:knob]
[tooltip: Delay in ms before reverberation begins]",
60,20,100,1));
freq_group(x) = fdn_group(hgroup("[2] Decay Times in Bands (see tooltips)", x));
f1 = freq_group(vslider("[1] LF X [unit:Hz] [style:knob]
[tooltip: Crossover frequency (Hz) separating low and middle frequencies]",
200, 50, 1000, 1));
t60dc = freq_group(vslider("[2] Low RT60 [unit:s] [style:knob]
[style:knob] [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
3, 1, 8, 0.1));
t60m = freq_group(vslider("[3] Mid RT60 [unit:s] [style:knob]
[tooltip: T60 = time (in seconds) to decay 60dB in middle band]",
2, 1, 8, 0.1));
f2 = freq_group(vslider("[4] HF Damping [unit:Hz] [style:knob]
[tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
6000, 1500, 0.49*fsmax, 1));
out_eq = pareq_stereo(eq1f,eq1l,eq1q) : pareq_stereo(eq2f,eq2l,eq2q);
// Zolzer style peaking eq (not used in zita-rev1) (filter.lib):
// pareq_stereo(eqf,eql,Q) = peak_eq(eql,eqf,eqf/Q), peak_eq(eql,eqf,eqf/Q);
// Regalia-Mitra peaking eq with "Q" hard-wired near sqrt(g)/2 (filter.lib):
pareq_stereo(eqf,eql,Q) = peak_eq_rm(eql,eqf,tpbt), peak_eq_rm(eql,eqf,tpbt)
with {
tpbt = wcT/sqrt(max(0,g)); // tan(PI*B/SR), B bw in Hz (Q^2 ~ g/4)
wcT = 2*PI*eqf/SR; // peak frequency in rad/sample
g = db2linear(eql); // peak gain
};
eq1_group(x) = fdn_group(hgroup("[3] RM Peaking Equalizer 1", x));
eq1f = eq1_group(vslider("[1] Eq1 Freq [unit:Hz] [style:knob]
[tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 1]",
315, 40, 2500, 1));
eq1l = eq1_group(vslider("[2] Eq1 Level [unit:dB] [style:knob]
[tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 1]",
0, -15, 15, 0.1));
eq1q = eq1_group(vslider("[3] Eq1 Q [style:knob]
[tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 1]",
3, 0.1, 10, 0.1));
eq2_group(x) = fdn_group(hgroup("[4] RM Peaking Equalizer 2", x));
eq2f = eq2_group(vslider("[1] Eq2 Freq [unit:Hz] [style:knob]
[tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 2]",
315, 40, 2500, 1));
eq2l = eq2_group(vslider("[2] Eq2 Level [unit:dB] [style:knob]
[tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 2]",
0, -15, 15, 0.1));
eq2q = eq2_group(vslider("[3] Eq2 Q [style:knob]
[tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 2]",
3, 0.1, 10, 0.1));
out_group(x) = fdn_group(hgroup("[5] Output", x));
dry_wet(x,y) = *(wet) + dry*x, *(wet) + dry*y with {
wet = 0.5*(drywet+1.0);
dry = 1.0-wet;
};
drywet = out_group(vslider("[1] Dry/Wet Mix [style:knob]
[tooltip: -1 = dry, 1 = wet]",
0, -1.0, 1.0, 0.01)) : smooth(0.999);
out_level = *(gain),*(gain);
gain = out_group(vslider("[2] Level [unit:dB] [style:knob]
[tooltip: Output scale factor]", -20, -70, 40, 0.1))
: smooth(0.999) : db2linear;
};
//---------------------------------- mesh_square ------------------------------
// Square Rectangular Digital Waveguide Mesh
//
// USAGE:
// bus(4*N) : mesh_square(N) : bus(4*N);
//
// WHERE
// N = number of nodes along each edge - a power of two (1,2,4,8,...)
//
// EXAMPLE: Reflectively terminated mesh impulsed at one corner:
// mesh_square_test(N,x) = mesh_square(N)~(busi(4*N,x)) // input to corner
// with { busi(N,x) = bus(N) : par(i,N,*(-1)) : par(i,N-1,_), +(x); };
// process = 1-1' : mesh_square_test(4); // all modes excited forever
//
// REQUIRES: math.lib.
//
// REFERENCE:
// https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Mesh.html
// four-port scattering junction:
mesh_square(1)
= bus(4) <: par(i,4,*(-1)), (bus(4) :> (*(.5)) <: bus(4)) :> bus(4);
// rectangular NxN square waveguide mesh:
mesh_square(N) = bus(4*N) : (route_inputs(N/2) : par(i,4,mesh_square(N/2)))
~(prune_feedback(N/2))
: prune_outputs(N/2) : route_outputs(N/2) : bus(4*N)
with {
block(N) = par(i,N,!);
// select block i of N, block size = M:
s(i,N,M) = par(j, M*N, Sv(i, j))
with { Sv(i,i) = bus(N); Sv(i,j) = block(N); };
// prune mesh outputs down to the signals which make it out:
prune_outputs(N)
= bus(16*N) :
block(N), bus(N), block(N), bus(N),
block(N), bus(N), bus(N), block(N),
bus(N), block(N), block(N), bus(N),
bus(N), block(N), bus(N), block(N)
: bus(8*N);
// collect mesh outputs into standard order (N,W,E,S):
route_outputs(N)
= bus(8*N)
<: s(4,N,8),s(5,N,8), s(0,N,8),s(2,N,8),
s(3,N,8),s(7,N,8), s(1,N,8),s(6,N,8)
: bus(8*N);
// collect signals used as feedback:
prune_feedback(N) = bus(16*N) :
bus(N), block(N), bus(N), block(N),
bus(N), block(N), block(N), bus(N),
block(N), bus(N), bus(N), block(N),
block(N), bus(N), block(N), bus(N) :
bus(8*N);
// route mesh inputs (feedback, external inputs):
route_inputs(N) = bus(8*N), bus(8*N)
<:s(8,N,16),s(4,N,16), s(12,N,16),s(3,N,16),
s(9,N,16),s(6,N,16), s(1,N,16),s(14,N,16),
s(0,N,16),s(10,N,16), s(13,N,16),s(7,N,16),
s(2,N,16),s(11,N,16), s(5,N,16),s(15,N,16)
: bus(16*N);
};
|