This file is indexed.

/usr/lib/faust/effect.lib is in faust 0.9.46-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
declare name "Faust Audio Effect Library";
declare author "Julius O. Smith (jos at ccrma.stanford.edu)";
declare copyright "Julius O. Smith III";
declare version "1.33";
declare license "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license)
declare reference "https://ccrma.stanford.edu/realsimple/faust_strings/";

import("filter.lib"); // dcblocker*, lowpass, filterbank, ...

// The following utilities (or equivalents) could go in music.lib:

//----------------------- midikey2hz,pianokey2hz ------------------------
midikey2hz(x) = 440.0*pow(2.0, (x-69.0)/12); // MIDI key 69 = A440
pianokey2hz(x) = 440.0*pow(2.0, (x-49.0)/12); // piano key 49 = A440

//---------------- cross2, bypass1, bypass2, select2stereo --------------
//
cross2 = _,_,_,_ <: _,!,_,!,!,_,!,_;

bypass1(bpc,e) = _ <: select2(bpc,(inswitch:e),_)
                 with {inswitch = select2(bpc,_,0);};

bypass2(bpc,e) = _,_ <: ((inswitch:e),_,_) : select2stereo(bpc) with {
  inswitch = _,_ : (select2(bpc,_,0), select2(bpc,_,0)) : _,_;
};

select2stereo(bpc) = cross2 : select2(bpc), select2(bpc) : _,_;

//---------------------- levelfilter, levelfilterN ----------------------
// Dynamic level lowpass filter:
//
// USAGE: levelfilter(L,freq), where
//  L    = desired level (in dB) at Nyquist limit (SR/2), e.g., -60
//  freq = corner frequency (-3dB point) usually set to fundamental freq
//
// REFERENCE:
// https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html
//
levelfilter(L,freq,x) = (L * L0 * x) + ((1.0-L) * lp2out(x))
with {
  L0 = pow(L,1/3);
  Lw = PI*freq/SR; // = w1 T / 2
  Lgain = Lw / (1.0 + Lw);
  Lpole2 = (1.0 - Lw) / (1.0 + Lw);
  lp2out = *(Lgain) : + ~ *(Lpole2);
};

levelfilterN(N,freq,L) = seq(i,N,levelfilter((L/N),freq));

//------------------------- speakerbp -------------------------------
// Dirt-simple speaker simulator (overall bandpass eq with observed
// roll-offs above and below the passband).
//
// Low-frequency speaker model = +12 dB/octave slope breaking to
// flat near f1. Implemented using two dc blockers in series.
//
// High-frequency model = -24 dB/octave slope implemented using a
// fourth-order Butterworth lowpass.
//
// Example based on measured Celestion G12 (12" speaker):
// speakerbp(130,5000);
//
// Requires filter.lib
//
speakerbp(f1,f2) = dcblockerat(f1) : dcblockerat(f1) : lowpass(4,f2);


//--------------------- cubicnl(drive,offset) -----------------------
// Cubic nonlinearity distortion
//
// USAGE: cubicnl(drive,offset), where
//   drive  = distortion amount, between 0 and 1
//   offset = constant added before nonlinearity to give even harmonics
//            Note: offset can introduce a nonzero mean - feed
//            cubicnl output to dcblocker to remove this.
//
// REFERENCES:
//   https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html
//   https://ccrma.stanford.edu/~jos/pasp/Nonlinear_Distortion.html
//
cubicnl(drive,offset) = *(pregain) : +(offset) : clip(-1,1) : cubic
with {
    pregain = pow(10.0,2*drive);
    clip(lo,hi) = min(hi) : max(lo);
    cubic(x) = x - x*x*x/3;
    postgain = max(1.0,1.0/pregain); // unity gain when nearly linear
};

cubicnl_nodc(drive,offset) = cubicnl(drive,offset) : dcblocker;

//--------------------------- cubicnl_demo --------------------------
// USAGE: _ : cubicnl_demo : _;
//
cubicnl_demo = bypass1(bp,
   cubicnl_nodc(drive:smooth(0.999),offset:smooth(0.999)))
with {
   cnl_group(x)  = vgroup("CUBIC NONLINEARITY cubicnl
        [tooltip: Reference:
         https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html]", x);
//   bypass_group(x) = cnl_group(hgroup("[0]", x));
   slider_group(x)  = cnl_group(hgroup("[1]", x));
//   bp = bypass_group(checkbox("[0] Bypass
   bp = slider_group(checkbox("[0] Bypass
        [tooltip: When this is checked, the nonlinearity has no effect]"));
//   drive = slider_group(vslider("[1] Drive [style: knob]
   drive = slider_group(hslider("[1] Drive
                       [tooltip: Amount of distortion]",
                       0, 0, 1, 0.01));
//   offset = slider_group(vslider("[2] Offset [style: knob]
   offset = slider_group(hslider("[2] Offset
                       [tooltip: Brings in even harmonics]",
                       0, 0, 1, 0.01));
};

//------------------------- moog_vcf(res,fr) ---------------------------
// Moog "Voltage Controlled Filter" (VCF) in "analog" form
//
// USAGE: moog_vcf(res,fr), where
//   fr = corner-resonance frequency in Hz ( less than SR/6.3 or so )
//   res  = Normalized amount of corner-resonance between 0 and 1
//        (0 is no resonance, 1 is maximum)
// Requires filter.lib.
//
// DESCRIPTION: Moog VCF implemented using the same logical block diagram
//   as the classic analog circuit.  As such, it neglects the one-sample
//   delay associated with the feedback path around the four one-poles.
//   This extra delay alters the response, especially at high frequencies
//   (see reference [1] for details).
//   See moog_vcf_2b below for a more accurate implementation.
//
// REFERENCES:
//   [1] https://ccrma.stanford.edu/~stilti/papers/moogvcf.pdf
//   [2] https://ccrma.stanford.edu/~jos/pasp/vegf.html
//
moog_vcf(res,fr) = (+ : seq(i,4,pole(p)) : *(unitygain(p))) ~ *(mk)
with {
     p = 1.0 - fr * 2.0 * PI / SR; // good approximation for fr << SR
     unitygain(p) = pow(1.0-p,4.0); // one-pole unity-gain scaling
     mk = -4.0*max(0,min(res,0.999999)); // need mk > -4 for stability
};

//----------------------- moog_vcf_2b[n] ---------------------------
// Moog "Voltage Controlled Filter" (VCF) as two biquads
//
// USAGE:
//   moog_vcf_2b(res,fr)
//   moog_vcf_2bn(res,fr)
// where
//   fr = corner-resonance frequency in Hz
//   res  = Normalized amount of corner-resonance between 0 and 1
//        (0 is min resonance, 1 is maximum)
//
// DESCRIPTION: Implementation of the ideal Moog VCF transfer
//   function factored into second-order sections.  As a result, it is
//   more accurate than moog_vcf above, but its coefficient formulas are
//   more complex when one or both parameters are varied.  Here, res
//   is the fourth root of that in moog_vcf, so, as the sampling rate
//   approaches infinity, moog_vcf(res,fr) becomes equivalent
//   to moog_vcf_2b[n](res^4,fr) (when res and fr are constant).
//
//   moog_vcf_2b  uses two direct-form biquads (tf2)
//   moog_vcf_2bn uses two protected normalized-ladder biquads (tf2np)
//
// REQUIRES: filter.lib
//
moog_vcf_2b(res,fr) = tf2s(0,0,b0,a11,a01,w1) : tf2s(0,0,b0,a12,a02,w1)
with {
 s = 1; // minus the open-loop location of all four poles
 frl = max(20,min(10000,fr)); // limit fr to reasonable 20-10k Hz range
 w1 = 2*PI*frl; // frequency-scaling parameter for bilinear xform
 // Equivalent: w1 = 1; s = 2*PI*frl;
 kmax = sqrt(2)*0.999; // 0.999 gives stability margin (tf2 is unprotected)
 k = min(kmax,sqrt(2)*res); // fourth root of Moog VCF feedback gain
 b0 = s^2;
 s2k = sqrt(2) * k;
 a11 = s * (2 + s2k);
 a12 = s * (2 - s2k);
 a01 = b0 * (1 + s2k + k^2);
 a02 = b0 * (1 - s2k + k^2);
};

moog_vcf_2bn(res,fr) = tf2snp(0,0,b0,a11,a01,w1) : tf2snp(0,0,b0,a12,a02,w1)
with {
 s = 1; // minus the open-loop location of all four poles
 w1 = 2*PI*max(fr,20); // frequency-scaling parameter for bilinear xform
 k = sqrt(2)*0.999*res; // fourth root of Moog VCF feedback gain
 b0 = s^2;
 s2k = sqrt(2) * k;
 a11 = s * (2 + s2k);
 a12 = s * (2 - s2k);
 a01 = b0 * (1 + s2k + k^2);
 a02 = b0 * (1 - s2k + k^2);
};

//------------------------- moog_vcf_demo ---------------------------
// Illustrate and compare all three Moog VCF implementations above
// (called by <faust>/examples/vcf_wah_pedals.dsp).
//
// USAGE: _ : moog_vcf_demo : _;

moog_vcf_demo = bypass1(bp,vcf) with {
   mvcf_group(x)  = hgroup("MOOG VCF (Voltage Controlled Filter)
      [tooltip: See Faust's effect.lib for info and references]",x);

   meter_group(x) = mvcf_group(vgroup("[0]",x));
   cb_group(x) = meter_group(hgroup("[0]",x));

   bp = cb_group(checkbox("[0] Bypass  [tooltip: When this is checked, the Moog VCF has no effect]"));
   archsw = cb_group(checkbox("[1] Use Biquads
   [tooltip: Select moog_vcf_2b (two-biquad) implementation, instead of the default moog_vcf (analog style) implementation]"));
   bqsw = cb_group(checkbox("[2] Normalized Ladders
   [tooltip: If using biquads, make them normalized ladders (moog_vcf_2bn)]"));

   freq = mvcf_group(hslider("[1] Corner Frequency [unit:PK] [style:knob]
   [tooltip: The VCF resonates at the corner frequency (specified in PianoKey (PK) units, with A440 = 49 PK).  The VCF response is flat below the corner frequency, and rolls off -24 dB per octave above.]",
   25, 1, 88, 0.01) : pianokey2hz) : smooth(0.999);

   res = mvcf_group(hslider("[2] Corner Resonance [style:knob]
   [tooltip: Amount of resonance near VCF corner frequency (specified between 0 and 1)]",
   0.9, 0, 1, 0.01));

   outgain  = meter_group(hslider("[1] VCF Output Level [unit:dB]
   [tooltip: output level in decibels]",
   5, -60, 20, 0.1)) : smooth(0.999)
   : component("music.lib").db2linear;

   vcfbq =  _ <: select2(bqsw, moog_vcf_2b(res,freq), moog_vcf_2bn(res,freq));
   vcfarch =  _ <: select2(archsw, moog_vcf(res^4,freq), vcfbq);
   vcf = vcfarch : *(outgain);
};

//-------------------------- wah4(fr) -------------------------------
// Wah effect, 4th order
// USAGE: wah4(fr), where fr = resonance frequency in Hz
// REFERENCE "https://ccrma.stanford.edu/~jos/pasp/vegf.html";
//
wah4(fr) = 4*moog_vcf((3.2/4),fr:smooth(0.999));

//------------------------- wah4_demo ---------------------------
// USAGE: _ : wah4_demo : _;

wah4_demo = bypass1(bp, wah4(fr)) with {
  wah4_group(x)  = hgroup("WAH4
       [tooltip: Fourth-order wah effect made using moog_vcf]", x);
  bp = wah4_group(checkbox("[0] Bypass
       [tooltip: When this is checked, the wah pedal has no effect]"));
  fr = wah4_group(hslider("[1] Resonance Frequency
       [tooltip: wah resonance frequency in Hz]",
     200,100,2000,1));
// Avoid dc with the moog_vcf (amplitude too high when freq comes up from dc)
// Also, avoid very high resonance frequencies (e.g., 5kHz or above).
};

//------------------------ autowah(level) -----------------------------
// Auto-wah effect
// USAGE: _ : autowah(level) : _;
// where level = amount of effect desired (0 to 1).
//
autowah(level,x) = level * crybaby(amp_follower(0.1,x),x) + (1.0-level)*x;

//-------------------------- crybaby(wah) -----------------------------
// Digitized CryBaby wah pedal
// USAGE: _ : crybaby(wah) : _;
// where wah = "pedal angle" from 0 to 1.
// REFERENCE: https://ccrma.stanford.edu/~jos/pasp/vegf.html
//
crybaby(wah) = *(gs) : tf2(1,-1,0,a1s,a2s)
with {
  Q  = pow(2.0,(2.0*(1.0-wah)+1.0)); // Resonance "quality factor"
  fr = 450.0*pow(2.0,2.3*wah);       // Resonance tuning
  g  = 0.1*pow(4.0,wah);             // gain (optional)

  // Biquad fit using z = exp(s T) ~ 1 + sT for low frequencies:
  frn = fr/SR; // Normalized pole frequency (cycles per sample)
  R = 1 - PI*frn/Q; // pole radius
  theta = 2*PI*frn; // pole angle
  a1 = 0-2.0*R*cos(theta); // biquad coeff
  a2 = R*R;                // biquad coeff

  // dezippering of slider-driven signals:
  s = 0.999; // smoothing parameter (one-pole pole location)
  a1s = a1 : smooth(s);
  a2s = a2 : smooth(s);
  gs =  g  : smooth(s);

  tf2 = component("filter.lib").tf2;
};

//------------------------- crybaby_demo ---------------------------
// USAGE: _ : crybaby_demo : _ ;

crybaby_demo = bypass1(bp, crybaby(wah)) with {
   crybaby_group(x)  = hgroup("CRYBABY [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/vegf.html]", x);
   bp = crybaby_group(checkbox("[0] Bypass [tooltip: When this is checked, the wah pedal has no effect]"));
   wah = crybaby_group(hslider("[1] Wah parameter [tooltip: wah pedal angle between 0 (rocked back) and 1 (rocked forward)]",0.8,0,1,0.01));
};

//------------ apnl(a1,a2) ---------------
// Passive Nonlinear Allpass:
// switch between allpass coefficient a1 and a2 at signal zero crossings
// REFERENCE:
//  "A Passive Nonlinear Digital Filter Design ..."
//  by John R. Pierce and Scott A. Van Duyne,
//  JASA, vol. 101, no. 2, pp. 1120-1126, 1997
// Written by Romain Michon and JOS based on Pierce switching springs idea:
  apnl(a1,a2,x) = nonLinFilter
  with{
   condition = _>0;
   nonLinFilter = (x - _ <: _*(condition*a1 + (1-condition)*a2),_')~_ :> +;
  };

//------------ piano_dispersion_filter(M,B,f0) ---------------
// Piano dispersion allpass filter in closed form
//
// ARGUMENTS:
//   M = number of first-order allpass sections (compile-time only)
//       Keep below 20. 8 is typical for medium-sized piano strings.
//   B = string inharmonicity coefficient (0.0001 is typical)
//  f0 = fundamental frequency in Hz
//
// INPUT:
//   Signal to be filtered by the allpass chain
//
// OUTPUTS:
//  1. MINUS the estimated delay at f0 of allpass chain in samples,
//     provided in negative form to facilitate subtraction
//     from delay-line length (see USAGE below).
//  2. Output signal from allpass chain
//
// USAGE:
//  piano_dispersion_filter(1,B,f0) : +(totalDelay),_ : fdelay(maxDelay)
//
// REFERENCE:
//   "Dispersion Modeling in Waveguide Piano Synthesis
//    Using Tunable Allpass Filters",
//   by Jukka Rauhala and Vesa Valimaki, DAFX-2006, pp. 71-76
//   URL: http://www.dafx.ca/proceedings/papers/p_071.pdf
//   NOTE: An erratum in Eq. (7) is corrected in Dr. Rauhala's
//    encompassing dissertation (and below).
//   See also: http://www.acoustics.hut.fi/research/asp/piano/
//
piano_dispersion_filter(M,B,f0) = -Df0*M,seq(i,M,tf1(a1,1,a1))
with {
 a1 = (1-D)/(1+D); // By Eq. 3, have D >= 0, hence a1 >= 0 also
 D = exp(Cd - Ikey(f0)*kd);
 trt = pow(2.0,1.0/12.0); // 12th root of 2
 logb(b,x) = log(x) / log(b); // log-base-b of x
 Ikey(f0) = logb(trt,f0*trt/27.5);
 Bc = max(B,0.000001);
 kd = exp(k1*log(Bc)*log(Bc) + k2*log(Bc)+k3);
 Cd = exp((m1*log(M)+m2)*log(Bc)+m3*log(M)+m4);
 k1 = -0.00179;
 k2 = -0.0233;
 k3 = -2.93;
 m1 = 0.0126;
 m2 = 0.0606;
 m3 = -0.00825;
 m4 = 1.97;
 wT = 2*PI*f0/SR;
 polydel(a) = atan(sin(wT)/(a+cos(wT)))/wT;
 Df0 = polydel(a1) - polydel(1.0/a1);
};

//===================== Phasing and Flanging Effects  ====================

//--------------- flanger_mono, flanger_stereo, flanger_demo -------------
// Flanging effect
//
// USAGE:
//     _ : flanger_mono(dmax,curdel,depth,fb,invert) : _;
//   _,_ : flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert) : _,_;
//   _,_ : flanger_demo : _,_;
//
// ARGUMENTS:
//   dmax   = maximum delay-line length (power of 2) - 10 ms typical
//   curdel = current dynamic delay (not to exceed dmax)
//   depth  = effect strength between 0 and 1 (1 typical)
//   fb     = feedback gain between 0 and 1 (0 typical)
//   invert = 0 for normal, 1 to invert sign of flanging sum
//
// REFERENCE:
//    https://ccrma.stanford.edu/~jos/pasp/Flanging.html
//
flanger_mono(dmax,curdel,depth,fb,invert)
  = _ <: _, (-:fdelay(dmax,curdel)) ~ *(fb) : _,
  *(select2(invert,depth,0-depth))
  : + : *(0.5);

flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert)
  =  flanger_mono(dmax,curdel1,depth,fb,invert),
     flanger_mono(dmax,curdel2,depth,fb,invert);

//------------------------- flanger_demo ---------------------------
// USAGE:  _,_ : flanger_demo : _,_;
//
flanger_demo = bypass2(fbp,flanger_stereo_demo) with {
   flanger_group(x) =
    vgroup("FLANGER [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
   meter_group(x) = flanger_group(hgroup("[0]", x));
   ctl_group(x)  = flanger_group(hgroup("[1]", x));
   del_group(x)  = flanger_group(hgroup("[2] Delay Controls", x));
   lvl_group(x)  = flanger_group(hgroup("[3]", x));

   fbp = meter_group(checkbox(
         "[0] Bypass  [tooltip: When this is checked, the flanger has no effect]"));
   invert = meter_group(checkbox("[1] Invert Flange Sum"));

   // FIXME: This should be an amplitude-response display:
   flangeview = lfor(freq) + lfol(freq) : meter_group(hbargraph(
      "[2] Flange LFO [style: led] [tooltip: Display sum of flange delays]", -1.5,+1.5));

   flanger_stereo_demo(x,y) = attach(x,flangeview),y :
     *(level),*(level) : flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert);

   lfol = component("oscillator.lib").oscrs; // sine for left channel
   lfor = component("oscillator.lib").oscrc; // cosine for right channel
   dmax = 2048;
   dflange = 0.001 * SR *
     del_group(hslider("[1] Flange Delay [unit:ms] [style:knob]", 10, 0, 20, 0.001));
   odflange = 0.001 * SR *
     del_group(hslider("[2] Delay Offset [unit:ms] [style:knob]", 1, 0, 20, 0.001));
   freq   = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.01));
   depth  = ctl_group(hslider("[2] Depth [style:knob]", 1, 0, 1, 0.001));
   fb     = ctl_group(hslider("[3] Feedback [style:knob]", 0, -0.999, 0.999, 0.001));
   level  = lvl_group(hslider("Flanger Output Level [unit:dB]", 0, -60, 10, 0.1)) : db2linear;
   curdel1 = odflange+dflange*(1 + lfol(freq))/2;
   curdel2 = odflange+dflange*(1 + lfor(freq))/2;
};

//------- phaser2_mono, phaser2_stereo, phaser2_demo -------
// Phasing effect
//
// USAGE:
//   _ : phaser2_mono(Notches,width,frqmin,fratio,frqmax,speed,depth,fb,invert) : _;
// _,_ : phaser2_stereo(") : _,_;
// _,_ : phaser2_demo : _,_;
//
// ARGUMENTS:
//   Notches = number of spectral notches (MACRO ARGUMENT - not a signal)
//   width  = approximate width of spectral notches in Hz
//   frqmin = approximate minimum frequency of first spectral notch in Hz
//   fratio = ratio of adjacent notch frequencies
//   frqmax = approximate maximum frequency of first spectral notch in Hz
//   speed  = LFO frequency in Hz (rate of periodic notch sweep cycles)
//   depth  = effect strength between 0 and 1 (1 typical) (aka "intensity")
//            when depth=2, "vibrato mode" is obtained (pure allpass chain)
//   fb     = feedback gain between -1 and 1 (0 typical)
//   invert = 0 for normal, 1 to invert sign of flanging sum
//
// REFERENCES:
//    https://ccrma.stanford.edu/~jos/pasp/Phasing.html
//    http://www.geofex.com/Article_Folders/phasers/phase.html
//    'An Allpass Approach to Digital Phasing and Flanging', Julius O. Smith III,
//    Proc. Int. Computer Music Conf. (ICMC-84), pp. 103-109, Paris, 1984.
//    CCRMA Tech. Report STAN-M-21: https://ccrma.stanford.edu/STANM/stanms/stanm21/

vibrato2_mono(sections,phase01,fb,width,frqmin,fratio,frqmax,speed) =
 (+ : seq(i,sections,ap2p(R,th(i)))) ~ *(fb)
with {
     tf2 = component("filter.lib").tf2;
     // second-order resonant digital allpass given pole radius and angle:
     ap2p(R,th) = tf2(a2,a1,1,a1,a2) with {
       a2 = R^2;
       a1 = -2*R*cos(th);
     };
     SR = component("music.lib").SR;
     R = exp(-pi*width/SR);
     cososc = component("oscillator.lib").oscrc;
     sinosc = component("oscillator.lib").oscrs;
     osc = cososc(speed) * phase01 + sinosc(speed) * (1-phase01);
     lfo = (1-osc)/2; // in [0,1]
     pi = 4*atan(1);
     thmin = 2*pi*frqmin/SR;
     thmax = 2*pi*frqmax/SR;
     th1 = thmin + (thmax-thmin)*lfo;
     th(i) = (fratio^(i+1))*th1;
};

phaser2_mono(Notches,phase01,width,frqmin,fratio,frqmax,speed,depth,fb,invert) =
      _ <: *(g1) + g2mi*vibrato2_mono(Notches,phase01,fb,width,frqmin,fratio,frqmax,speed)
with {               // depth=0 => direct-signal only
     g1 = 1-depth/2; // depth=1 => phaser mode (equal sum of direct and allpass-chain)
     g2 = depth/2;   // depth=2 => vibrato mode (allpass-chain signal only)
     g2mi = select2(invert,g2,-g2); // inversion negates the allpass-chain signal
};

phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,depth,fb,invert)
   = phaser2_mono(Notches,0,width,frqmin,fratio,frqmax,speed,depth,fb,invert),
     phaser2_mono(Notches,1,width,frqmin,fratio,frqmax,speed,depth,fb,invert);

//------------------------- phaser2_demo ---------------------------
// USAGE:  _,_ : phaser2_demo : _,_;
//
phaser2_demo = bypass2(pbp,phaser2_stereo_demo) with {
   phaser2_group(x) =
    vgroup("PHASER2 [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
   meter_group(x) = phaser2_group(hgroup("[0]", x));
   ctl_group(x)  = phaser2_group(hgroup("[1]", x));
   nch_group(x)  = phaser2_group(hgroup("[2]", x));
   lvl_group(x)  = phaser2_group(hgroup("[3]", x));

   pbp = meter_group(checkbox(
         "[0] Bypass  [tooltip: When this is checked, the phaser has no effect]"));
   invert = meter_group(checkbox("[1] Invert Internal Phaser Sum"));
   vibr   = meter_group(checkbox("[2] Vibrato Mode")); // In this mode you can hear any "Doppler"

   // FIXME: This should be an amplitude-response display:
   //flangeview = phaser2_amp_resp : meter_group(hspectrumview("[2] Phaser Amplitude Response", 0,1));
   //phaser2_stereo_demo(x,y) = attach(x,flangeview),y : ...

   phaser2_stereo_demo = *(level),*(level) :
     phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,mdepth,fb,invert);

   Notches = 4; // Compile-time parameter: 2 is typical for analog phaser stomp-boxes

   // FIXME: Add tooltips
   speed  = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.001));
   depth  = ctl_group(hslider("[2] Notch Depth (Intensity) [style:knob]", 1, 0, 1, 0.001));
   fb     = ctl_group(hslider("[3] Feedback Gain [style:knob]", 0, -0.999, 0.999, 0.001));

   width  = nch_group(hslider("[1] Notch width [unit:Hz] [style:knob]", 1000, 10, 5000, 1));
   frqmin = nch_group(hslider("[2] Min Notch1 Freq [unit:Hz] [style:knob]", 100, 20, 5000, 1));
   frqmax = nch_group(hslider("[3] Max Notch1 Freq [unit:Hz] [style:knob]", 800, 20, 10000, 1)) : max(frqmin);
   fratio = nch_group(hslider("[4] Notch Freq Ratio: NotchFreq(n+1)/NotchFreq(n)  [style:knob]", 1.5, 1.1, 4, 0.001));

   level  = lvl_group(hslider("Phaser Output Level [unit:dB]", 0, -60, 10, 0.1)) : component("music.lib").db2linear;

   mdepth = select2(vibr,depth,2); // Improve "ease of use"
};

//------------------------- stereo_width(w) ---------------------------
// Stereo Width effect using the Blumlein Shuffler technique.
//
// USAGE: "_,_ : stereo_width(w) : _,_", where
//   w = stereo width between 0 and 1
//
// At w=0, the output signal is mono ((left+right)/2 in both channels).
// At w=1, there is no effect (original stereo image).
// Thus, w between 0 and 1 varies stereo width from 0 to "original".
//
// REFERENCE:
// "Applications of Blumlein Shuffling to Stereo Microphone Techniques"
// Michael A. Gerzon, JAES vol. 42, no. 6, June 1994
//
stereo_width(w) = shuffle : *(mgain),*(sgain) : shuffle
with {
     shuffle =  _,_ <: +,-; // normally scaled by 1/sqrt(2) for orthonormality,
     mgain = 1-w/2;  // but we pick up the needed normalization here.
     sgain = w/2;
};

//--------------------------- amp_follower ---------------------------
// Classic analog audio envelope follower with infinitely fast rise and
// exponential decay.  The amplitude envelope instantaneously follows
// the absolute value going up, but then floats down exponentially.
//
// USAGE:
//    _ : amp_follower(rel) : _
//
// where
//  rel = release time = amplitude-envelope time-constant (sec) going down
//
// REFERENCES:
//  Musical Engineer's Handbook, Bernie Hutchins, Ithaca NY, 1975
//  Elecronotes Newsletter, Bernie Hutchins

amp_follower(rel) = abs : env with {
 p = tau2pole(rel);
 env(x) = x * (1.0 - p) : + ~ max(x,_) * p;
};

//--------------------------- amp_follower_ud ---------------------------
// Envelope follower with different up and down time-constants
//
// USAGE:
//    _ : amp_follower_ud(att,rel) : _
//
// where
//  att = attack time = amplitude-envelope time constant (sec) going up
//  rel = release time = amplitude-envelope time constant (sec) going down
//
// For audio, att should be faster (smaller) than rel (e.g., 0.001 and 0.01)

amp_follower_ud(att,rel) = amp_follower(rel) : smooth(tau2pole(att));

//=============== Gates, Limiters, and Dynamic Range Compression ============

//----------------- gate_mono, gate_stereo -------------------
// Mono and stereo signal gates
//
// USAGE:
//    _ : gate_mono(thresh,att,hold,rel)   : _
// or
//  _,_ : gate_stereo(thresh,att,hold,rel) : _,_
//
// where
//  thresh = dB level threshold above which gate opens (e.g., -60 dB)
//  att    = attack time = time constant (sec) for gate to open (e.g., 0.0001 s = 0.1 ms)
//  hold   = hold time = time (sec) gate stays open after signal level < thresh (e.g., 0.1 s)
//  rel    = release time = time constant (sec) for gate to close (e.g., 0.020 s = 20 ms)
//
// REFERENCES:
// - http://en.wikipedia.org/wiki/Noise_gate
// - http://www.soundonsound.com/sos/apr01/articles/advanced.asp
// - http://en.wikipedia.org/wiki/Gating_(sound_engineering)

gate_mono(thresh,att,hold,rel,x) = x * gate_gain_mono(thresh,att,hold,rel,x);

gate_stereo(thresh,att,hold,rel,x,y) = ggm*x, ggm*y with {
  ggm = gate_gain_mono(thresh,att,hold,rel,abs(x)+abs(y));
};

gate_gain_mono(thresh,att,hold,rel,x) = extendedrawgate : amp_follower_ud(att,rel) with {
  extendedrawgate = max(rawgatesig,holdsig);
  rawgatesig = inlevel(x) > db2linear(thresh);
  inlevel(x) = amp_follower_ud(att/2,rel/2,x);
  holdsig = ((max(holdreset & holdsamps,_) ~-(1)) > 0);
  holdreset = rawgatesig > rawgatesig'; // reset hold when raw gate falls
  holdsamps = int(hold*SR);
};

//-------------------- compressor_mono, compressor_stereo ----------------------
// Mono and stereo dynamic range compressor_s
//
// USAGE:
//    _ : compressor_mono(ratio,thresh,att,rel)   : _
// or
//  _,_ : compressor_stereo(ratio,thresh,att,rel) : _,_
//
// where
//  ratio  = compression ratio (1 = no compression, >1 means compression")
//  thresh = dB level threshold above which compression kicks in
//  att    = attack time = time constant (sec) when level & compression going up
//  rel    = release time = time constant (sec) coming out of compression
//
// REFERENCES:
// - http://en.wikipedia.org/wiki/Dynamic_range_compression
// - https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
// - Albert Graef's <faust2pd>/examples/synth/compressor_.dsp
//

compressor_mono(ratio,thresh,att,rel,x) = x * compression_gain_mono(ratio,thresh,att,rel,x);

compressor_stereo(ratio,thresh,att,rel,x,y) = cgm*x, cgm*y with {
  cgm = compression_gain_mono(ratio,thresh,att,rel,abs(x)+abs(y));
};

compression_gain_mono(ratio,thresh,att,rel) =
  amp_follower_ud(att,rel) : linear2db : outminusindb(ratio,thresh) :
  kneesmooth(att) : db2linear
with {
  // kneesmooth(att) installs a "knee" in the dynamic-range compression,
  // where knee smoothness is set equal to half that of the compression-attack.
  // A general 'knee' parameter could be used instead of tying it to att/2:
  kneesmooth(att)  = smooth(tau2pole(att/2.0));
  // compression gain in dB:
   outminusindb(ratio,thresh,level) = max(level-thresh,0) * (1/float(ratio)-1);
  // Note: "float(ratio)" REQUIRED when ratio is an integer > 1!
};

//---------------------------- gate_demo -------------------------
// USAGE: _,_ : gate_demo : _,_;
//
gate_demo = bypass2(gbp,gate_stereo_demo) with {

   gate_group(x)  = vgroup("GATE  [tooltip: Reference: http://en.wikipedia.org/wiki/Noise_gate]", x);
   meter_group(x) = gate_group(hgroup("[0]", x));
   knob_group(x)  = gate_group(hgroup("[1]", x));

   gbp = meter_group(checkbox("[0] Bypass  [tooltip: When this is checked, the gate has no effect]"));

   gateview = gate_gain_mono(gatethr,gateatt,gatehold,gaterel) : linear2db :
     meter_group(hbargraph("[1] Gate Gain [unit:dB]  [tooltip: Current gain of the gate in dB]",
      -50,+10)); // [style:led]

   gate_stereo_demo(x,y) = attach(x,gateview(abs(x)+abs(y))),y :
     gate_stereo(gatethr,gateatt,gatehold,gaterel);

   gatethr = knob_group(hslider("[1] Threshold [unit:dB] [style:knob]  [tooltip: When the signal level falls below the Threshold (expressed in dB), the signal is muted]",
     -30, -120, 0, 0.1));

   gateatt = knob_group(hslider("[2] Attack [unit:us] [style:knob]  [tooltip: Time constant in MICROseconds (1/e smoothing time) for the gate gain to go (exponentially) from 0 (muted) to 1 (unmuted)]",
     10, 10, 10000, 1)) : *(0.000001) : max(1/SR);

   gatehold = knob_group(hslider("[3] Hold [unit:ms] [style:knob]  [tooltip: Time in ms to keep the gate open (no muting) after the signal level falls below the Threshold]",
     200, 0, 1000, 1)) : *(0.001) : max(1/SR);

   gaterel = knob_group(hslider("[4] Release [unit:ms] [style:knob]  [tooltip: Time constant in ms (1/e smoothing time) for the gain to go (exponentially) from 1 (unmuted) to 0 (muted)]",
     100, 0, 1000, 1)) : *(0.001) : max(1/SR);
};

//---------------------------- compressor_demo -------------------------
// USAGE: _,_ : compressor_demo : _,_;
//
compressor_demo = bypass2(cbp,compressor_stereo_demo) with {

   comp_group(x) = vgroup("COMPRESSOR  [tooltip: Reference: http://en.wikipedia.org/wiki/Dynamic_range_compression]", x);

   meter_group(x)  = comp_group(hgroup("[0]", x));
   knob_group(x)  = comp_group(hgroup("[1]", x));

   cbp = meter_group(checkbox("[0] Bypass  [tooltip: When this is checked, the compressor has no effect]"));

   gainview =
     compression_gain_mono(ratio,threshold,attack,release) : linear2db :
     meter_group(hbargraph("[1] Compressor Gain [unit:dB] [tooltip: Current gain of the compressor in dB]",
      -50,+10));

   displaygain = _,_ <: _,_,(abs,abs:+) : _,_,gainview : _,attach;

   compressor_stereo_demo =
     displaygain(compressor_stereo(ratio,threshold,attack,release)) :
     *(makeupgain), *(makeupgain);

   ctl_group(x)  = knob_group(hgroup("[3] Compression Control", x));

   ratio = ctl_group(hslider("[0] Ratio [style:knob]  [tooltip: A compression Ratio of N means that for each N dB increase in input signal level above Threshold, the output level goes up 1 dB]",
     5, 1, 20, 0.1));

   threshold = ctl_group(hslider("[1] Threshold [unit:dB] [style:knob]  [tooltip: When the signal level exceeds the Threshold (in dB), its level is compressed according to the Ratio]",
     -30, -100, 10, 0.1));

   env_group(x)  = knob_group(hgroup("[4] Compression Response", x));

   attack = env_group(hslider("[1] Attack [unit:ms] [style:knob]  [tooltip: Time constant in ms (1/e smoothing time) for the compression gain to approach (exponentially) a new lower target level (the compression `kicking in')]",
     50, 0, 500, 0.1)) : *(0.001) : max(1/SR);

   release = env_group(hslider("[2] Release [unit:ms] [style: knob]  [tooltip: Time constant in ms (1/e smoothing time) for the compression gain to approach (exponentially) a new higher target level (the compression 'releasing')]",
     500, 0, 1000, 0.1)) : *(0.001) : max(1/SR);

   makeupgain = comp_group(hslider("[5] Makeup Gain [unit:dB]  [tooltip: The compressed-signal output level is increased by this amount (in dB) to make up for the level lost due to compression]",
     40, -96, 96, 0.1)) : db2linear;
};

//------------------------------- limiter_* ------------------------------------
// USAGE:
//     _ : limiter_1176_R4_mono   : _;
//   _,_ : limiter_1176_R4_stereo : _,_;
//
// DESCRIPTION:
//   A limiter guards against hard-clipping.  It can be can be
//   implemented as a compressor having a high threshold (near the
//   clipping level), fast attack and release, and high ratio.  Since
//   the ratio is so high, some knee smoothing is
//   desirable ("soft limiting").  This example is intended
//   to get you started using compressor_* as a limiter, so all
//   parameters are hardwired to nominal values here.
//
// REFERENCE: http://en.wikipedia.org/wiki/1176_Peak_Limiter
//   Ratios: 4 (moderate compression), 8 (severe compression),
//          12 (mild limiting), or 20 to 1 (hard limiting)
//   Att: 20-800 MICROseconds (Note: scaled by ratio in the 1176)
//   Rel: 50-1100 ms (Note: scaled by ratio in the 1176)
//   Mike Shipley likes 4:1 (Grammy-winning mixer for Queen, Tom Petty, etc.)
//     Faster attack gives "more bite" (e.g. on vocals)
//     He hears a bright, clear eq effect as well (not implemented here)
//
limiter_1176_R4_mono = compressor_mono(4,-6,0.0008,0.5);
limiter_1176_R4_stereo = compressor_stereo(4,-6,0.0008,0.5);

//========================== Schroeder Reverberators  ======================

//------------------------------ jcrev,satrev ------------------------------
// USAGE:
//     _ :  jcrev : _,_,_,_
//     _ : satrev : _,_
//
// DESCRIPTION:
//   These artificial reverberators take a mono signal and output stereo
//   (satrev) and quad (jcrev).  They were implemented by John Chowning
//   in the MUS10 computer-music language (descended from Music V by Max
//   Mathews).  They are Schroeder Reverberators, well tuned for their size.
//   Nowadays, the more expensive freeverb is more commonly used (see the
//   Faust examples directory).

// The reverb below was made from a listing of "RV", dated April 14, 1972,
// which was recovered from an old SAIL DART backup tape.
// John Chowning thinks this might be the one that became the
// well known and often copied JCREV:

jcrev = *(0.06) : allpass_chain <: comb_bank :> _ <: mix_mtx with {

  rev1N = component("filter.lib").rev1;

  rev12(len,g) = rev1N(2048,len,g);
  rev14(len,g) = rev1N(4096,len,g);

  allpass_chain =
    rev2(512,347,0.7) :
    rev2(128,113,0.7) :
    rev2( 64, 37,0.7);

  comb_bank =
    rev12(1601,.802),
    rev12(1867,.773),
    rev14(2053,.753),
    rev14(2251,.733);

    mix_mtx = _,_,_,_ <: psum, -psum, asum, -asum : _,_,_,_ with {
    psum = _,_,_,_ :> _;
    asum = *(-1),_,*(-1),_ :> _;
  };
};

// The reverb below was made from a listing of "SATREV", dated May 15, 1971,
// which was recovered from an old SAIL DART backup tape.
// John Chowning thinks this might be the one used on his
// often-heard brass canon sound examples, one of which can be found at
// https://ccrma.stanford.edu/~jos/wav/FM_BrassCanon2.wav

satrev = *(0.2) <: comb_bank :> allpass_chain <: _,*(-1) with {

  rev1N = component("filter.lib").rev1;

  rev11(len,g) = rev1N(1024,len,g);
  rev12(len,g) = rev1N(2048,len,g);

  comb_bank =
    rev11( 778,.827),
    rev11( 901,.805),
    rev11(1011,.783),
    rev12(1123,.764);

  rev2N = component("filter.lib").rev2;

  allpass_chain =
    rev2N(128,125,0.7) :
    rev2N( 64, 42,0.7) :
    rev2N( 16, 12,0.7);
};

//-------------------------------- freeverb --------------------------------
// Freeverb is a widely used, free, open-source Schroeder reverb contributed
// by ``Jezar at Dreampoint.'' See <faust_distribution>/examples/freeverb.dsp

//=============== Feedback Delay Network (FDN) Reverberators  ==============

//-------------------------------- fdnrev0 ---------------------------------
// Pure Feedback Delay Network Reverberator (generalized for easy scaling).
//
// USAGE:
//   <1,2,4,...,N signals> <:
//   fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl) :>
//   <1,2,4,...,N signals>
//
// WHERE
//   N = 2, 4, 8, ...  (power of 2)
//   MAXDELAY = power of 2 at least as large as longest delay-line length
//   delays = N delay lines, N a power of 2, lengths perferably coprime
//   BBSO = odd positive integer = order of bandsplit desired at freqs
//   freqs  = NB-1 crossover frequencies separating desired frequency bands
//   durs   = NB decay times (t60) desired for the various bands
//   loopgainmax = scalar gain between 0 and 1 used to "squelch" the reverb
//   nonl = nonlinearity (0 to 0.999..., 0 being linear)
//
// REFERENCE:
//   https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html
//
// DEPENDENCIES: filter.lib (filterbank)

fdnrev0(MAXDELAY, delays, BBSO, freqs, durs, loopgainmax, nonl)
  = (bus(2*N) :> bus(N) : delaylines(N)) ~
    (delayfilters(N,freqs,durs) : feedbackmatrix(N))
with {
  N = count(delays);
  NB = count(durs);
//assert(count(freqs)+1==NB);
  delayval(i) = take(i+1,delays);
  dlmax(i) = MAXDELAY; // must hardwire this from argument for now
//dlmax(i) = 2^max(1,nextpow2(delayval(i))) // try when slider min/max is known
//           with { nextpow2(x) = ceil(log(x)/log(2.0)); };
// -1 is for feedback delay:
  delaylines(N) = par(i,N,(delay(dlmax(i),(delayval(i)-1))));
  delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
  feedbackmatrix(N) = bhadamard(N);
  vbutterfly(n) = bus(n) <: (bus(n):>bus(n/2)) , ((bus(n/2),(bus(n/2):par(i,n/2,*(-1)))) :> bus(n/2));
  bhadamard(2) = bus(2) <: +,-;
  bhadamard(n) = bus(n) <: (bus(n):>bus(n/2)) , ((bus(n/2),(bus(n/2):par(i,n/2,*(-1)))) :> bus(n/2))
                 : (bhadamard(n/2) , bhadamard(n/2));

  // Experimental nonlinearities:
  // nonlinallpass = apnl(nonl,-nonl);
  // s = nonl*PI;
  // nonlinallpass(x) = allpassnn(3,(s*x,s*x*x,s*x*x*x)); // filter.lib
     nonlinallpass = _; // disabled by default (rather expensive)

  filter(i,freqs,durs) = filterbank(BBSO,freqs) : par(j,NB,*(g(j,i)))
                         :> *(loopgainmax) / sqrt(N) : nonlinallpass
  with {
    dur(j) = take(j+1,durs);
    n60(j) = dur(j)*SR; // decay time in samples
    g(j,i) = exp(-3.0*log(10.0)*delayval(i)/n60(j));
        // ~ 1.0 - 6.91*delayval(i)/(SR*dur(j)); // valid for large dur(j)
  };
};

// ---------- prime_power_delays -----
// Prime Power Delay Line Lengths
//
// USAGE:
//   bus(N) : prime_power_delays(N,pathmin,pathmax) : bus(N);
//
// WHERE
//   N = positive integer up to 16
//       (for higher powers of 2, extend 'primes' array below.)
//   pathmin = minimum acoustic ray length in the reverberator (in meters)
//   pathmax = maximum acoustic ray length (meters) - think "room size"
//
// DEPENDENCIES:
//   math.lib (SR, selector, take)
//   music.lib (db2linear)
//
// REFERENCE:
//   https://ccrma.stanford.edu/~jos/pasp/Prime_Power_Delay_Line.html
//
prime_power_delays(N,pathmin,pathmax) = par(i,N,delayvals(i)) with {
  Np = 16;
  primes = 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53;
  prime(n) = primes : selector(n,Np); // math.lib

  // Prime Power Bounds [matlab: floor(log(maxdel)./log(primes(53)))]
  maxdel=8192; // more than 63 meters at 44100 samples/sec & 343 m/s
  ppbs = 13,8,5,4, 3,3,3,3, 2,2,2,2, 2,2,2,2; // 8192 is enough for all
  ppb(i) = take(i+1,ppbs);

  // Approximate desired delay-line lengths using powers of distinct primes:
  c = 343; // soundspeed in m/s at 20 degrees C for dry air
  dmin = SR*pathmin/c;
  dmax = SR*pathmax/c;
  dl(i) = dmin * (dmax/dmin)^(i/float(N-1)); // desired delay in samples
  ppwr(i) = floor(0.5+log(dl(i))/log(prime(i))); // best prime power
  delayvals(i) = prime(i)^ppwr(i); // each delay a power of a distinct prime
};

//--------------------- stereo_reverb_tester --------------------
// Handy test inputs for reverberator demos below.

stereo_reverb_tester(revin_group,x,y) = inx,iny with {
  ck_group(x) = revin_group(vgroup("[1] Input Config",x));
  mutegain = 1 - ck_group(checkbox("[1] Mute Ext Inputs
         [tooltip: When this is checked, the stereo external audio inputs are disabled (good for hearing the impulse response or pink-noise response alone)]"));
  pinkin = ck_group(checkbox("[2] Pink Noise
         [tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise (useful for adjusting the EQ sections)]"));

  impulsify = _ <: _,mem : - : >(0);
  imp_group(x) = revin_group(hgroup("[2] Impulse Selection",x));
  pulseL =  imp_group(button("[1] Left
         [tooltip: Send impulse into LEFT channel]")) : impulsify;
  pulseC =  imp_group(button("[2] Center
         [tooltip: Send impulse into LEFT and RIGHT channels]")) : impulsify;
  pulseR =  imp_group(button("[3] Right
         [tooltip: Send impulse into RIGHT channel]")) : impulsify;

  inx = x*mutegain + (pulseL+pulseC) + pn;
  iny = y*mutegain + (pulseR+pulseC) + pn;
  pn = 0.1*pinkin*component("oscillator.lib").pink_noise;
};

//------------------------- fdnrev0_demo ---------------------------
// USAGE: _,_ : fdnrev0_demo(N,NB,BBSO) : _,_
// WHERE
//    N = Feedback Delay Network (FDN) order
//      = number of delay lines used = order of feedback matrix
//      = 2, 4, 8, or 16 [extend primes array below for 32, 64, ...]
//   NB = number of frequency bands
//      = number of (nearly) independent T60 controls
//      = integer 3 or greater
// BBSO = Butterworth band-split order
//      = order of lowpass/highpass bandsplit used at each crossover freq
//      = odd positive integer

fdnrev0_demo(N,NB,BBSO,x,y) = stereo_reverb_tester(revin_group,x,y)
	  <: fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl)
          :> *(gain),*(gain)
with {
  MAXDELAY = 8192; // sync w delays and prime_power_delays above
  defdurs = (8.4,6.5,5.0,3.8,2.7); // NB default durations (sec)
  deffreqs = (500,1000,2000,4000); // NB-1 default crossover frequencies (Hz)
  deflens = (56.3,63.0); // 2 default min and max path lengths

  fdn_group(x)  = vgroup("FEEDBACK DELAY NETWORK (FDN) REVERBERATOR, ORDER 16
    [tooltip: See Faust's effect.lib for documentation and references]", x);

  freq_group(x)  = fdn_group(vgroup("[1] Band Crossover Frequencies", x));
  t60_group(x)  = fdn_group(hgroup("[2] Band Decay Times (T60)", x));
  path_group(x)  = fdn_group(vgroup("[3] Room Dimensions", x));
  revin_group(x)  = fdn_group(hgroup("[4] Input Controls", x));
  nonl_group(x) = revin_group(vgroup("[4] Nonnlinearity",x));
  quench_group(x) = revin_group(vgroup("[3] Reverb State",x));

  nonl = nonl_group(hslider("[style:knob] [tooltip: nonlinear mode coupling]",
	    0, -0.999, 0.999, 0.001));
  loopgainmax = 1.0-0.5*quench_group(button("[1] Quench
         [tooltip: Hold down 'Quench' to clear the reverberator]"));

  pathmin = path_group(hslider("[1] min acoustic ray length [unit:m]
    [tooltip: This length (in meters) determines the shortest delay-line used in the FDN reverberator.
    	      Think of it as the shortest wall-to-wall separation in the room.]",
	    46, 0.1, 63, 0.1));
  pathmax = path_group(hslider("[2] max acoustic ray length [unit:m]
    [tooltip: This length (in meters) determines the longest delay-line used in the FDN reverberator.
    	      Think of it as the largest wall-to-wall separation in the room.]",
	    63, 0.1, 63, 0.1));

  durvals(i) = t60_group(vslider("[%i] %i [unit:s]
    [tooltip: T60 is the 60dB decay-time in seconds. For concert halls, an overall reverberation time (T60) near 1.9 seconds is typical [Beranek 2004]. Here we may set T60 independently in each frequency band.  In real rooms, higher frequency bands generally decay faster due to absorption and scattering.]",
    take(i+1,defdurs), 0.1, 10, 0.1));
  durs = par(i,NB,durvals(NB-1-i));

  freqvals(i) = freq_group(hslider("[%i] Band %i upper edge in Hz [unit:Hz]
    [tooltip: Each delay-line signal is split into frequency-bands for separate decay-time control in each band]",
    take(i+1,deffreqs), 100, 10000, 1));
  freqs = par(i,NB-1,freqvals(i));

  delays = prime_power_delays(N,pathmin,pathmax);

  gain = hslider("[3] Output Level (dB) [unit:dB]
    [tooltip: Output scale factor]", -40, -70, 20, 0.1) : db2linear;
     // (can cause infinite loop:) with { db2linear(x) = pow(10, x/20.0); };
};

//------------------------------- zita_rev_fdn -------------------------------
// Internal 8x8 late-reverberation FDN used in the FOSS Linux reverb zita-rev1
// by Fons Adriaensen <fons@linuxaudio.org>.  This is an FDN reverb with
// allpass comb filters in each feedback delay in addition to the
// damping filters.
//
// USAGE:
//   bus(8) : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) : bus(8)
//
// WHERE
//   f1    = crossover frequency (Hz) separating dc and midrange frequencies
//   f2    = frequency (Hz) above f1 where T60 = t60m/2 (see below)
//   t60dc = desired decay time (t60) at frequency 0 (sec)
//   t60m  = desired decay time (t60) at midrange frequencies (sec)
//   fsmax = maximum sampling rate to be used (Hz)
//
// REFERENCES:
//   http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html
//   https://ccrma.stanford.edu/~jos/pasp/Zita_Rev1.html
//
// DEPENDENCIES:
//   filter.lib (allpass_comb, lowpass, smooth)
//   math.lib (hadamard, take, etc.)

zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) =
  ((bus(2*N) :> allpass_combs(N) : feedbackmatrix(N)) ~
   (delayfilters(N,freqs,durs) : fbdelaylines(N)))
with {
  N = 8;

  // Delay-line lengths in seconds:
  apdelays = (0.020346, 0.024421, 0.031604, 0.027333, 0.022904,
              0.029291, 0.013458, 0.019123); // feedforward delays in seconds
  tdelays = ( 0.153129, 0.210389, 0.127837, 0.256891, 0.174713,
              0.192303, 0.125000, 0.219991); // total delays in seconds
  tdelay(i) = floor(0.5 + SR*take(i+1,tdelays)); // samples
  apdelay(i) = floor(0.5 + SR*take(i+1,apdelays));
  fbdelay(i) = tdelay(i) - apdelay(i);
  // NOTE: Since SR is not bounded at compile time, we can't use it to
  // allocate delay lines; hence, the fsmax parameter:
  tdelaymaxfs(i) = floor(0.5 + fsmax*take(i+1,tdelays));
  apdelaymaxfs(i) = floor(0.5 + fsmax*take(i+1,apdelays));
  fbdelaymaxfs(i) = tdelaymaxfs(i) - apdelaymaxfs(i);
  nextpow2(x) = ceil(log(x)/log(2.0));
  maxapdelay(i) = int(2.0^max(1.0,nextpow2(apdelaymaxfs(i))));
  maxfbdelay(i) = int(2.0^max(1.0,nextpow2(fbdelaymaxfs(i))));

  apcoeff(i) = select2(i&1,0.6,-0.6);  // allpass comb-filter coefficient
  allpass_combs(N) =
    par(i,N,(allpass_comb(maxapdelay(i),apdelay(i),apcoeff(i)))); // filter.lib
  fbdelaylines(N) = par(i,N,(delay(maxfbdelay(i),(fbdelay(i)))));
  freqs = (f1,f2); durs = (t60dc,t60m);
  delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs));
  feedbackmatrix(N) = hadamard(N); // math.lib

  staynormal = 10.0^(-20); // let signals decay well below LSB, but not to zero

  special_lowpass(g,f) = smooth(p) with {
    // unity-dc-gain lowpass needs gain g at frequency f => quadratic formula:
    p = mbo2 - sqrt(max(0,mbo2*mbo2 - 1.0)); // other solution is unstable
    mbo2 = (1.0 - gs*c)/(1.0 - gs); // NOTE: must ensure |g|<1 (t60m finite)
    gs = g*g;
    c = cos(2.0*PI*f/float(SR));
  };

  filter(i,freqs,durs) = lowshelf_lowpass(i)/sqrt(float(N))+staynormal
  with {
    lowshelf_lowpass(i) = gM*low_shelf1_l(g0/gM,f(1)):special_lowpass(gM,f(2));
    low_shelf1_l(G0,fx,x) = x + (G0-1)*lowpass(1,fx,x); // filter.lib
    g0 = g(0,i);
    gM = g(1,i);
    f(k) = take(k,freqs);
    dur(j) = take(j+1,durs);
    n60(j) = dur(j)*SR; // decay time in samples
    g(j,i) = exp(-3.0*log(10.0)*tdelay(i)/n60(j));
  };
};

// Stereo input delay used by zita_rev1 in both stereo and ambisonics mode:
zita_in_delay(rdel) = zita_delay_mono(rdel), zita_delay_mono(rdel) with {
  zita_delay_mono(rdel) = delay(8192,SR*rdel*0.001) * 0.3;
};

// Stereo input mapping used by zita_rev1 in both stereo and ambisonics mode:
zita_distrib2(N) = _,_ <: fanflip(N) with {
   fanflip(4) = _,_,*(-1),*(-1);
   fanflip(N) = fanflip(N/2),fanflip(N/2);
};

//--------------------------- zita_rev_fdn_demo ------------------------------
// zita_rev_fdn_demo = zita_rev_fdn (above) + basic GUI
//
// USAGE:
//   bus(8) : zita_rev_fdn_demo(f1,f2,t60dc,t60m,fsmax) : bus(8)
//
// WHERE
//   (args and references as for zita_rev_fdn above)

zita_rev_fdn_demo = zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
with {
  fsmax = 48000.0;
  fdn_group(x) = hgroup(
    "Zita_Rev Internal FDN Reverb [tooltip: ~ Zita_Rev's internal 8x8 Feedback Delay Network (FDN) & Schroeder allpass-comb reverberator.  See Faust's effect.lib for documentation and references]",x);
  t60dc = fdn_group(vslider("[1] Low RT60 [unit:s] [style:knob]
    [style:knob]
    [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
    3, 1, 8, 0.1));
  f1 = fdn_group(vslider("[2] LF X [unit:Hz] [style:knob]
    [tooltip: Crossover frequency (Hz) separating low and middle frequencies]",
    200, 50, 1000, 1));
  t60m = fdn_group(vslider("[3] Mid RT60 [unit:s] [style:knob]
    [tooltip: T60 = time (in seconds) to decay 60dB in middle band]",
    2, 1, 8, 0.1));
  f2 = fdn_group(vslider("[4] HF Damping [unit:Hz] [style:knob]
    [tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
    6000, 1500, 0.49*fsmax, 1));
};

//---------------------------- zita_rev1_stereo ---------------------------
// Extend zita_rev_fdn to include zita_rev1 input/output mapping in stereo mode.
//
// USAGE:
//   _,_ : zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) : _,_
//
// WHERE
//   rdel  = delay (in ms) before reverberation begins (e.g., 0 to ~100 ms)
//   (remaining args and refs as for zita_rev_fdn above)

zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) =
   zita_in_delay(rdel)
 : zita_distrib2(N)
 : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
 : output2(N)
with {
 N = 8;
 output2(N) = outmix(N) : *(t1),*(t1);
 t1 = 0.37; // zita-rev1 linearly ramps from 0 to t1 over one buffer
 outmix(4) = !,butterfly(2),!; // probably the result of some experimenting!
 outmix(N) = outmix(N/2),par(i,N/2,!);
};

//----------------------------- zita_rev1_ambi ---------------------------
// Extend zita_rev_fdn to include zita_rev1 input/output mapping in
// "ambisonics mode", as provided in the Linux C++ version.
//
// USAGE:
//   _,_ : zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) : _,_,_,_
//
// WHERE
//   rgxyz = relative gain of lanes 1,4,2 to lane 0 in output (e.g., -9 to 9)
//   (remaining args and references as for zita_rev1_stereo above)

zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) =
   zita_in_delay(rdel)
 : zita_distrib2(N)
 : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
 : output4(N) // ambisonics mode
with {
  N=8;
  output4(N) = select4 : *(t0),*(t1),*(t1),*(t1);
  select4 = _,_,_,!,_,!,!,! : _,_,cross with { cross(x,y) = y,x; };
  t0 = 1.0/sqrt(2.0);
  t1 = t0 * 10.0^(0.05 * rgxyz);
};

//---------------------------------- zita_rev1 ------------------------------
// Example GUI for zita_rev1_stereo (mostly following the Linux zita-rev1 GUI).
//
// Only the dry/wet and output level parameters are "dezippered" here.  If
// parameters are to be varied in real time, use "smooth(0.999)" or the like
// in the same way.
//
// REFERENCE:
//   http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html
//
// DEPENDENCIES:
//   filter.lib (peak_eq_rm)

zita_rev1(x,y) = zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax,x,y)
	  : out_eq : dry_wet(x,y) : out_level
with {

  fsmax = 48000.0;  // highest sampling rate that will be used

  fdn_group(x) = hgroup(
    "[0] Zita_Rev1 [tooltip: ~ ZITA REV1 FEEDBACK DELAY NETWORK (FDN) & SCHROEDER ALLPASS-COMB REVERBERATOR (8x8). See Faust's effect.lib for documentation and references]", x);

  in_group(x) = fdn_group(hgroup("[1] Input", x));

  rdel = in_group(vslider("[1] In Delay [unit:ms] [style:knob]
                  [tooltip: Delay in ms before reverberation begins]",
                  60,20,100,1));

  freq_group(x) = fdn_group(hgroup("[2] Decay Times in Bands (see tooltips)", x));

  f1 = freq_group(vslider("[1] LF X [unit:Hz] [style:knob]
       [tooltip: Crossover frequency (Hz) separating low and middle frequencies]",
       200, 50, 1000, 1));

  t60dc = freq_group(vslider("[2] Low RT60 [unit:s] [style:knob]
          [style:knob] [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
	  3, 1, 8, 0.1));

  t60m = freq_group(vslider("[3] Mid RT60 [unit:s] [style:knob]
          [tooltip: T60 = time (in seconds) to decay 60dB in middle band]",
	  2, 1, 8, 0.1));

  f2 = freq_group(vslider("[4] HF Damping [unit:Hz] [style:knob]
       [tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
       6000, 1500, 0.49*fsmax, 1));

  out_eq = pareq_stereo(eq1f,eq1l,eq1q) : pareq_stereo(eq2f,eq2l,eq2q);
// Zolzer style peaking eq (not used in zita-rev1) (filter.lib):
// pareq_stereo(eqf,eql,Q) = peak_eq(eql,eqf,eqf/Q), peak_eq(eql,eqf,eqf/Q);
// Regalia-Mitra peaking eq with "Q" hard-wired near sqrt(g)/2 (filter.lib):
  pareq_stereo(eqf,eql,Q) = peak_eq_rm(eql,eqf,tpbt), peak_eq_rm(eql,eqf,tpbt)
  with {
    tpbt = wcT/sqrt(max(0,g)); // tan(PI*B/SR), B bw in Hz (Q^2 ~ g/4)
    wcT = 2*PI*eqf/SR;  // peak frequency in rad/sample
    g = db2linear(eql); // peak gain
  };

  eq1_group(x) = fdn_group(hgroup("[3] RM Peaking Equalizer 1", x));

  eq1f = eq1_group(vslider("[1] Eq1 Freq [unit:Hz] [style:knob]
       [tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 1]",
       315, 40, 2500, 1));

  eq1l = eq1_group(vslider("[2] Eq1 Level [unit:dB] [style:knob]
       [tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 1]",
       0, -15, 15, 0.1));

  eq1q = eq1_group(vslider("[3] Eq1 Q [style:knob]
       [tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 1]",
       3, 0.1, 10, 0.1));

  eq2_group(x) = fdn_group(hgroup("[4] RM Peaking Equalizer 2", x));

  eq2f = eq2_group(vslider("[1] Eq2 Freq [unit:Hz] [style:knob]
       [tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 2]",
       315, 40, 2500, 1));

  eq2l = eq2_group(vslider("[2] Eq2 Level [unit:dB] [style:knob]
       [tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 2]",
       0, -15, 15, 0.1));

  eq2q = eq2_group(vslider("[3] Eq2 Q [style:knob]
       [tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 2]",
       3, 0.1, 10, 0.1));

  out_group(x)  = fdn_group(hgroup("[5] Output", x));

  dry_wet(x,y) = *(wet) + dry*x, *(wet) + dry*y with {
    wet = 0.5*(drywet+1.0);
    dry = 1.0-wet;
  };

  drywet = out_group(vslider("[1] Dry/Wet Mix [style:knob]
       [tooltip: -1 = dry, 1 = wet]",
       0, -1.0, 1.0, 0.01)) : smooth(0.999);

  out_level = *(gain),*(gain);

  gain = out_group(vslider("[2] Level [unit:dB] [style:knob]
    [tooltip: Output scale factor]", -20, -70, 40, 0.1))
    : smooth(0.999) : db2linear;

};

//---------------------------------- mesh_square ------------------------------
// Square Rectangular Digital Waveguide Mesh
//
// USAGE:
//   bus(4*N) : mesh_square(N) : bus(4*N);
//
// WHERE
//   N = number of nodes along each edge - a power of two (1,2,4,8,...)
//
// EXAMPLE: Reflectively terminated mesh impulsed at one corner:
//   mesh_square_test(N,x) = mesh_square(N)~(busi(4*N,x)) // input to corner
//      with { busi(N,x) = bus(N) : par(i,N,*(-1)) : par(i,N-1,_), +(x); };
//   process = 1-1' : mesh_square_test(4); // all modes excited forever
//
// REQUIRES: math.lib.
//
// REFERENCE:
//   https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Mesh.html

// four-port scattering junction:
mesh_square(1)
  = bus(4) <: par(i,4,*(-1)), (bus(4) :> (*(.5)) <: bus(4)) :> bus(4);

// rectangular NxN square waveguide mesh:
mesh_square(N) = bus(4*N) : (route_inputs(N/2) : par(i,4,mesh_square(N/2)))
	  ~(prune_feedback(N/2))
	  : prune_outputs(N/2) : route_outputs(N/2) : bus(4*N)
with {
  block(N) = par(i,N,!);

  // select block i of N, block size = M:
  s(i,N,M) = par(j, M*N, Sv(i, j))
     with { Sv(i,i) = bus(N); Sv(i,j) = block(N); };

  // prune mesh outputs down to the signals which make it out:
  prune_outputs(N)
    = bus(16*N) :
      block(N), bus(N),   block(N), bus(N),
      block(N), bus(N),   bus(N),   block(N),
      bus(N),   block(N), block(N), bus(N),
      bus(N),   block(N), bus(N),   block(N)
      : bus(8*N);

  // collect mesh outputs into standard order (N,W,E,S):
  route_outputs(N)
    = bus(8*N)
      <: s(4,N,8),s(5,N,8), s(0,N,8),s(2,N,8),
         s(3,N,8),s(7,N,8), s(1,N,8),s(6,N,8)
      : bus(8*N);

  // collect signals used as feedback:
  prune_feedback(N) = bus(16*N) :
      bus(N),   block(N), bus(N),   block(N),
      bus(N),   block(N), block(N), bus(N),
      block(N), bus(N),   bus(N),   block(N),
      block(N), bus(N),   block(N), bus(N) :
      bus(8*N);

  // route mesh inputs (feedback, external inputs):
  route_inputs(N) = bus(8*N), bus(8*N)
  <:s(8,N,16),s(4,N,16), s(12,N,16),s(3,N,16),
    s(9,N,16),s(6,N,16), s(1,N,16),s(14,N,16),
    s(0,N,16),s(10,N,16), s(13,N,16),s(7,N,16),
    s(2,N,16),s(11,N,16), s(5,N,16),s(15,N,16)
    : bus(16*N);
};