This file is indexed.

/usr/share/doc/geographiclib/html/Geod.1.html is in geographiclib-tools 1.21-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
<?xml version="1.0" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head><link href="http://search.cpan.org/s/style.css" rel="stylesheet" type="text/css">
<title>Geod -- perform geodesic calculations</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<link rev="made" href="mailto:root@localhost" />
</head>

<body style="background-color: white">


<!-- INDEX BEGIN -->
<div name="index">
<p><a name="__index__"></a></p>
<!--

<ul>

	<li><a href="#name">NAME</a></li>
	<li><a href="#synopsis">SYNOPSIS</a></li>
	<li><a href="#description">DESCRIPTION</a></li>
	<li><a href="#options">OPTIONS</a></li>
	<li><a href="#input">INPUT</a></li>
	<li><a href="#auxiliary_sphere">AUXILIARY SPHERE</a></li>
	<li><a href="#additional_quantities">ADDITIONAL QUANTITIES</a></li>
	<li><a href="#precision">PRECISION</a></li>
	<li><a href="#errors">ERRORS</a></li>
	<li><a href="#examples">EXAMPLES</a></li>
	<li><a href="#see_also">SEE ALSO</a></li>
	<li><a href="#author">AUTHOR</a></li>
	<li><a href="#history">HISTORY</a></li>
</ul>

-->


</div>
<!-- INDEX END -->

<p>
</p>
<hr />
<h1><a name="name">NAME</a></h1>
<p>Geod -- perform geodesic calculations</p>
<p>
</p>
<hr />
<h1><a name="synopsis">SYNOPSIS</a></h1>
<p><strong>Geod</strong> [ <strong>-i</strong> | <strong>-l</strong> <em>lat1</em> <em>lon1</em> <em>azi1</em> ] [ <strong>-a</strong> ] [ <strong>-e</strong> <em>a</em> <em>f</em> ]
[ <strong>-d</strong> | <strong>-:</strong> ] [ <strong>-b</strong> ] [ <strong>-f</strong> ] [ <strong>-p</strong> <em>prec</em> ]
[ <strong>--comment-delimiter</strong> <em>commentdelim</em> ]
[ <strong>--version</strong> | <strong>-h</strong> | <strong>--help</strong> ]
[ <strong>--input-file</strong> <em>infile</em> | <strong>--input-string</strong> <em>instring</em> ]
[ <strong>--line-separator</strong> <em>linesep</em> ]
[ <strong>--output-file</strong> <em>outfile</em> ]</p>
<p>
</p>
<hr />
<h1><a name="description">DESCRIPTION</a></h1>
<p>The shortest path between two points on the ellipsoid at (<em>lat1</em>,
<em>lon1</em>) and (<em>lat2</em>, <em>lon2</em>) is called the geodesic.  Its length is
<em>s12</em> and the geodesic from point 1 to point 2 has azimuths <em>azi1</em> and
<em>azi2</em> at the two end points.</p>
<p><strong>Geod</strong> operates in one of three modes:</p>
<ol>
<li>
<p>By default, <strong>Geod</strong> accepts lines on the standard input containing
<em>lat1</em> <em>lon1</em> <em>azi1</em> <em>s12</em> and prints <em>lat2</em> <em>lon2</em> <em>azi2</em>
on standard output.  This is the direct geodesic calculation.</p>
</li>
<li>
<p>Command line arguments <strong>-l</strong> <em>lat1</em> <em>lon1</em> <em>azi1</em> specify a geodesic line.
<strong>Geod</strong> then accepts a sequence of <em>s12</em> values (one per line) on
standard input and prints <em>lat2</em> <em>lon2</em> <em>azi2</em> for each.  This
generates a sequence of points on a single geodesic.</p>
</li>
<li>
<p>With the <strong>-i</strong> command line argument, <strong>Geod</strong> performs the inverse
geodesic calculation.  It reads lines containing <em>lat1</em> <em>lon1</em> <em>lat2</em>
<em>lon2</em> and prints the corresponding values of <em>azi1</em> <em>azi2</em> <em>s12</em>.</p>
</li>
</ol>
<p>
</p>
<hr />
<h1><a name="options">OPTIONS</a></h1>
<dl>
<dt><strong><a name="i" class="item"><strong>-i</strong></a></strong></dt>

<dd>
<p>perform an inverse geodesic calculation (see 3 above).</p>
</dd>
<dt><strong><a name="l" class="item"><strong>-l</strong></a></strong></dt>

<dd>
<p>line mode (see 2 above); generate a sequence of points along the
geodesic specified by <em>lat1</em> <em>lon1</em> <em>azi1</em>.</p>
</dd>
<dt><strong><a name="a" class="item"><strong>-a</strong></a></strong></dt>

<dd>
<p>arc mode; on input <em>and</em> output <em>s12</em> is replaced by <em>a12</em> the arc
length (in degrees) on the auxiliary sphere.  See <a href="#auxiliary_sphere">AUXILIARY SPHERE</a>.</p>
</dd>
<dt><strong><a name="e" class="item"><strong>-e</strong></a></strong></dt>

<dd>
<p>specify the ellipsoid via <em>a</em> <em>f</em>; the equatorial radius is <em>a</em> and
the flattening is <em>f</em>.  Setting <em>f</em> = 0 results in a sphere.  Specify
<em>f</em> &lt; 0 for a prolate ellipsoid.  A simple fraction, e.g., 1/297,
is allowed for <em>f</em>.  (Also, if <em>f</em> &gt; 1, the flattening is set to
1/<em>f</em>.)  By default, the WGS84 ellipsoid is used, <em>a</em> = 6378137 m,
<em>f</em> = 1/298.257223563.</p>
</dd>
<dt><strong><a name="d" class="item"><strong>-d</strong></a></strong></dt>

<dd>
<p>output angles as degrees, minutes, seconds instead of decimal degrees.</p>
</dd>
<dt><strong><a name="__" class="item"><strong>-:</strong></a></strong></dt>

<dd>
<p>like <strong>-d</strong>, except use : as a separator instead of the d, ', and &quot;
delimiters.</p>
</dd>
<dt><strong><a name="b" class="item"><strong>-b</strong></a></strong></dt>

<dd>
<p>report the <em>back</em> azimuth at point 2 instead of the forward azimuth.</p>
</dd>
<dt><strong><a name="f" class="item"><strong>-f</strong></a></strong></dt>

<dd>
<p>full output; each line of output consists of 12 quantities: <em>lat1</em>
<em>lon1</em> <em>azi1</em> <em>lat2</em> <em>lon2</em> <em>azi2</em> <em>s12</em> <em>a12</em> <em>m12</em> <em>M12</em>
<em>M21</em> <em>S12</em>.  <em>a12</em> is described in <a href="#auxiliary_sphere">AUXILIARY SPHERE</a>.  The four
quantities <em>m12</em>, <em>M12</em>, <em>M21</em>, and <em>S12</em> are described in
<a href="#additional_quantities">ADDITIONAL QUANTITIES</a>.</p>
</dd>
<dt><strong><a name="p" class="item"><strong>-p</strong></a></strong></dt>

<dd>
<p>set the output precision to <em>prec</em> (default 3); <em>prec</em> is the
precision relative to 1 m.  See <a href="#precision">PRECISION</a>.</p>
</dd>
<dt><strong><a name="comment_delimiter" class="item"><strong>--comment-delimiter</strong></a></strong></dt>

<dd>
<p>set the comment delimiter to <em>commentdelim</em> (e.g., &quot;#&quot; or &quot;//&quot;).  If
set, the input lines will be scanned for this delimiter and, if found,
the delimiter and the rest of the line will be removed prior to
processing and subsequently appended to the output line (separated by a
space).</p>
</dd>
<dt><strong><a name="version" class="item"><strong>--version</strong></a></strong></dt>

<dd>
<p>print version and exit.</p>
</dd>
<dt><strong><a name="h" class="item"><strong>-h</strong></a></strong></dt>

<dd>
<p>print usage and exit.</p>
</dd>
<dt><strong><a name="help" class="item"><strong>--help</strong></a></strong></dt>

<dd>
<p>print full documentation and exit.</p>
</dd>
<dt><strong><a name="input_file" class="item"><strong>--input-file</strong></a></strong></dt>

<dd>
<p>read input from the file <em>infile</em> instead of from standard input; a file
name of &quot;-&quot; stands for standard input.</p>
</dd>
<dt><strong><a name="input_string" class="item"><strong>--input-string</strong></a></strong></dt>

<dd>
<p>read input from the string <em>instring</em> instead of from standard input.
All occurrences of the line separator character (default is a semicolon)
in <em>instring</em> are converted to newlines before the reading begins.</p>
</dd>
<dt><strong><a name="line_separator" class="item"><strong>--line-separator</strong></a></strong></dt>

<dd>
<p>set the line separator character to <em>linesep</em>.  By default this is a
semicolon.</p>
</dd>
<dt><strong><a name="output_file" class="item"><strong>--output-file</strong></a></strong></dt>

<dd>
<p>write output to the file <em>outfile</em> instead of to standard output; a
file name of &quot;-&quot; stands for standard output.</p>
</dd>
</dl>
<p>
</p>
<hr />
<h1><a name="input">INPUT</a></h1>
<p><strong>Geod</strong> measures all angles in degrees and all lengths (<em>s12</em>) in
meters.  On input angles (latitude, longitude, azimuth, arc length) can
be as decimal degrees or degrees (d), minutes ('), seconds (&quot;).  A
decimal point can only appear in the least significant component and the
designator (d, ', or &quot;) for this component is optional; thus <code>40d30</code>,
<code>40d30'</code>, <code>40.5d</code>, and <code>40.5</code> are all equivalent.  By default,
latitude precedes longitude for each point; however on input either may
be given first by appending (or prepending) <em>N</em> or <em>S</em> to the latitude
and <em>E</em> or <em>W</em> to the longitude.  Azimuths are measured clockwise from
north; however this may be overridden with <em>E</em> or <em>W</em>.</p>
<p>
</p>
<hr />
<h1><a name="auxiliary_sphere">AUXILIARY SPHERE</a></h1>
<p>Geodesics on the ellipsoid can be transferred to the <em>auxiliary sphere</em>
on which the distance is measured in terms of the arc length <em>a12</em>
(measured in degrees) instead of <em>s12</em>.  In terms of <em>a12</em>, 180
degrees is the distance from one equator crossing to the next or from
the minimum latitude to the maximum latitude.  Geodesics with <em>a12</em>
&gt; 180 degrees do not correspond to shortest paths.  With the <strong>-a</strong>
flag, <em>s12</em> (on both input and output) is replaced by <em>a12</em>.  The
<strong>-a</strong> flag does <em>not</em> affect the full output given by the <strong>-f</strong> flag
(which always includes both <em>s12</em> and <em>a12</em>).</p>
<p>
</p>
<hr />
<h1><a name="additional_quantities">ADDITIONAL QUANTITIES</a></h1>
<p>The <strong>-f</strong> flag reports four additional quantities.</p>
<p>The reduced length of the geodesic, <em>m12</em>, is defined such that if the
initial azimuth is perturbed by d<em>azi1</em> (radians) then the second point
is displaced by <em>m12</em> d<em>azi1</em> in the direction perpendicular to the
geodesic.  <em>m12</em> is given in meters.  On a curved surface the
reduced length obeys a symmetry relation, <em>m12</em> + <em>m21</em> = 0.  On a
flat surface, we have <em>m12</em> = <em>s12</em>.</p>
<p><em>M12</em> and <em>M21</em> are geodesic scales.  If two geodesics are parallel at
point 1 and separated by a small distance <em>dt</em>, then they are separated
by a distance <em>M12</em> <em>dt</em> at point 2.  <em>M21</em> is defined similarly
(with the geodesics being parallel to one another at point 2).  <em>M12</em>
and <em>M21</em> are dimensionless quantities.  On a flat surface, we have
<em>M12</em> = <em>M21</em> = 1.</p>
<p>If points 1, 2, and 3 lie on a single geodesic, then the following
addition rules hold,
<em>m13</em> = <em>m12</em> <em>M23</em> + <em>m23</em> <em>M21</em>,
<em>M13</em> = <em>M12</em> <em>M23</em> - (1 - <em>M12</em> <em>M21</em>) <em>m23</em> / <em>m12</em>, and
<em>M31</em> = <em>M32</em> <em>M21</em> - (1 - <em>M23</em> <em>M32</em>) <em>m12</em> / <em>m23</em>.</p>
<p>Finally, <em>S12</em> is the area between the geodesic from point 1 to point 2
and the equator; i.e., it is the area, measured counter-clockwise, of
the quadrilateral with corners (<em>lat1</em>,<em>lon1</em>), (0,<em>lon1</em>),
(0,<em>lon2</em>), and (<em>lat2</em>,<em>lon2</em>).  It is given in meters^2.</p>
<p>
</p>
<hr />
<h1><a name="precision">PRECISION</a></h1>
<p><em>prec</em> gives precision of the output with <em>prec</em> = 0 giving 1 m
precision, <em>prec</em> = 3 giving 1 mm precision, etc.  <em>prec</em> is the
number of digits after the decimal point for lengths.  For decimal
degrees, the number of digits after the decimal point is 5 + <em>prec</em>.
For DMS (degree, minute, seconds) output, the number of digits after the
decimal point in the seconds component is 1 + <em>prec</em>.  The minimum
value of <em>prec</em> is 0 and the maximum is 10.</p>
<p>
</p>
<hr />
<h1><a name="errors">ERRORS</a></h1>
<p>An illegal line of input will print an error message to standard output
beginning with <code>ERROR:</code> and causes <strong>Geod</strong> to return an exit code of 1.
However, an error does not cause <strong>Geod</strong> to terminate; following lines
will be converted.</p>
<p>
</p>
<hr />
<h1><a name="examples">EXAMPLES</a></h1>
<p>Route from JFK Airport to Singapore Changi Airport:</p>
<pre>
   echo 40:38:23N 073:46:44W 01:21:33N 103:59:22E |
   Geod -i -: -p 0</pre>
<pre>
   003:18:29.9 177:29:09.2 15347628</pre>
<p>Waypoints on the route at intervals of 2000km:</p>
<pre>
   for ((i = 0; i &lt;= 16; i += 2)); do echo ${i}000000;done |
   Geod -l 40:38:23N 073:46:44W 003:18:29.9 -: -p 0</pre>
<pre>
   40:38:23.0N 073:46:44.0W 003:18:29.9
   58:34:45.1N 071:49:36.7W 004:48:48.8
   76:22:28.4N 065:32:17.8W 010:41:38.4
   84:50:28.0N 075:04:39.2E 150:55:00.9
   67:26:20.3N 098:00:51.2E 173:27:20.3
   49:33:03.2N 101:06:52.6E 176:07:54.3
   31:34:16.5N 102:30:46.3E 177:03:08.4
   13:31:56.0N 103:26:50.7E 177:24:55.0
   04:32:05.7S 104:14:48.7E 177:28:43.6</pre>
<p>
</p>
<hr />
<h1><a name="see_also">SEE ALSO</a></h1>
<p>The algorithms are described in C. F. F. Karney, <em>Geodesics on an
ellipsoid of revolution</em>, Feb. 2011; preprint
<a href="http://arxiv.org/abs/1102.1215">http://arxiv.org/abs/1102.1215</a>.  See also C. F. F. Karney,
<em>Algorithms for geodesics</em>, Sept. 2011; preprint
<a href="http://arxiv.org/abs/1109.4448">http://arxiv.org/abs/1109.4448</a>.</p>
<p>
</p>
<hr />
<h1><a name="author">AUTHOR</a></h1>
<p><strong>Geod</strong> was written by Charles Karney.</p>
<p>
</p>
<hr />
<h1><a name="history">HISTORY</a></h1>
<p><strong>Geod</strong> was added to GeographicLib, <a href="http://geographiclib.sf.net">http://geographiclib.sf.net</a>, in
2009-03.</p>

</body>

</html>