This file is indexed.

/usr/share/doc/geographiclib/html/ellint.mac is in geographiclib-tools 1.21-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*

Written by Charles Karney <charles@karney.com>
http://geographiclib.sourceforge.net/

$Id: 23c6d3303abe67aa05500f9f794547c8f3f122a5 $

*/

/* Implementation of methods given in

B. C. Carlson
Computation of elliptic integrals
Numerical Algorithms 10, 13-26 (1995)

*/

/* fpprec:120$  Should be set outside */
etol:0.1b0^fpprec$ /* For Carlson */
ca:sqrt(etol)$  /* For Bulirsch */
eps:0.1b0^fpprec$ /* For eirx */
pi:bfloat(%pi)$
ratprint:false$
rf(x,y,z) := block(
  [a0:(x+y+z)/3, q,x0:x,y0:y,z0:z,an,ln,xx,yy,zz,n,e2,e3],
  q:(3*etol)^(-1/6)*max(abs(a0-x),abs(a0-y),abs(a0-z)),
  an:a0,
  n:0,
  while q >= abs(an) do (
    n:n+1,
    ln:sqrt(x0)*sqrt(y0)+sqrt(y0)*sqrt(z0)+sqrt(z0)*sqrt(x0),
    an:(an+ln)/4,
    x0:(x0+ln)/4,
    y0:(y0+ln)/4,
    z0:(z0+ln)/4,
    q:q/4),
  xx:(a0-x)/(4^n*an),
  yy:(a0-y)/(4^n*an),
  zz:-xx-yy,
  e2:xx*yy-zz^2,
  e3:xx*yy*zz,
  (1-e2/10+e3/14+e2^2/24-3*e2*e3/44) / sqrt(an))$
rd(x,y,z) := block(
  [a0:(x+y+3*z)/5, q,x0:x,y0:y,z0:z,an,ln,xx,yy,zz,n,e2,e3,e4,e5,s],
  q:(etol/4)^(-1/6)*max(abs(a0-x),abs(a0-y),abs(a0-z)),
  an:a0,
  n:0,
  s:0,
  while q >= abs(an) do (
    ln:sqrt(x0)*sqrt(y0)+sqrt(y0)*sqrt(z0)+sqrt(z0)*sqrt(x0),
    s:s+1/(4^n*sqrt(z0)*(z0+ln)),
    n:n+1,
    an:(an+ln)/4,
    x0:(x0+ln)/4,
    y0:(y0+ln)/4,
    z0:(z0+ln)/4,
    q:q/4),
  xx:(a0-x)/(4^n*an),
  yy:(a0-y)/(4^n*an),
  zz:-(xx+yy)/3,
  e2:xx*yy-6*zz^2,
  e3:(3*xx*yy-8*zz^2)*zz,
  e4:3*(xx*yy-zz^2)*zz^2,
  e5:xx*yy*zz^3,
  (1-3*e2/14+e3/6+9*e2^2/88-3*e4/22-9*e2*e3/52+3*e5/26)/(4^n*an*sqrt(an))
  +3*s)$

/* R_G(x,y,0) */
rg0(x,y) := block(
  [x0:sqrt(x),y0:sqrt(y),xn,yn,t,s,n],
  xn:x0,
  yn:y0,
  n:0,
  s:0,
  while abs(xn-yn) >= 2.7b0 * sqrt(etol) * abs(xn) do (
    t:(xn+yn)/2,
    yn:sqrt(xn*yn),
    xn:t,
    n:n+1,
    s:s+(xn-yn)^2*2^(n-2)),
   ((x0+y0)^2/4 - s)*pi/(2*(xn+yn)) )$

/* k^2 = m */
ec(m):=2*rg0(1b0-m,1b0)$
kc(m):=rf(0b0,1b0-m,1b0)$

/* Implementation of methods given in

Roland Bulirsch
Numerical Calculation of Elliptic Integrals and Elliptic Functions
Numericshe Mathematik 7, 78-90 (1965)

*/

sncndn(x,mc):=block([bo, a, b, c, d, l, sn, cn, dn, m, n],
  local(m, n),
  if mc # 0 then (
    bo:is(mc < 0b0),
    if bo then (
      d:1-mc,
      mc:-mc/d,
      d:sqrt(d),
      x:d*x),
    dn:a:1,
    for i:0 thru 12 do (
      l:i,
      m[i]:a,
      n[i]:mc:sqrt(mc),
      c:(a+mc)/2,
      if abs(a-mc)<=ca*a then return(false),
      mc:a*mc,
      a:c
      ),
    x:c*x,
    sn:sin(x),
    cn:sin(pi/2-x),
    if sn#0b0 then (
      a:cn/sn,
      c:a*c,
      for i:l step -1 thru 0 do (
        b:m[i],
        a:c*a,
        c:dn*c,
        dn:(n[i]+a)/(b+a),
        a:c/b
        ),
      a:1/sqrt(c*c+1b0),
      sn:if sn<0b0 then -a else a,
      cn:c*sn
      ),
    if bo then (
      a:dn,
      dn:cn,
      cn:a,
      sn:sn/d
      )
    ) else /* mc = 0 */ (
    sn:tanh(x),
    dn:cn:sech(x)
/*    d:exp(x), a:1/d, b:a+d, cn:dn:2/b,
    if x < 0.3b0 then (
      d:x*x*x*x,
      d:(d*(d*(d*(d+93024b0)+3047466240b0)+24135932620800b0)+
        20274183401472000b0)/60822550204416000b0,
      sn:cn*(x*x*x*d+sin(x))
      ) else
    sn:(d-a)/b */
    ),
  [sn,cn,dn]
  )$

/* Versions of incomplete functions in terms of Jacobi elliptic function
with u = am(phi) real and in [0,K(m)] */
eirx(sn,cn,dn,m,ec):=block([t],
  t:if abs(sn) < eps then abs(sn) else
  (rf((cn/sn)^2,(dn/sn)^2,1/sn^2)-m/3b0*rd((cn/sn)^2,(dn/sn)^2,1/sn^2)),
  if cn < 0 then t:2*ec - t,
  if sn < 0 then t:-t,
  t)$