This file is indexed.

/usr/share/doc/geographiclib/html/geodseries30.html is in geographiclib-tools 1.21-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
<html>
  <head>
    <!-- $Id: 257134e59663a19309d7799554235047d1b3381f $ -->
    <title>
      Series for geodesic calculations
    </title>
  <body>
    <h2>
      Series for geodesic calculations
    </h2>
This extends the series given
<a href="geodesic.html#geodseries">here</a> to 30th order in the
flattening.  See
    <blockquote>
      Charles F. F. Karney,
      <a href="http://arxiv.org/abs/1102.1215">Geodesics
        on an ellipsoid of revolution</a>,
      Feb. 2011; preprint
      <a href="http://arxiv.org/abs/1102.1215">arxiv:1102.1215</a>;
      resource page
      <a href="http://geographiclib.sf.net/geod.html">geod.html</a>.
    </blockquote>

    <pre>
// Generated by Maxima on 2010-05-01 06:36:46-04:00

A1 = (1 + 1/4 * eps^2
        + 1/64 * eps^4
        + 1/256 * eps^6
        + 25/16384 * eps^8
        + 49/65536 * eps^10
        + 441/1048576 * eps^12
        + 1089/4194304 * eps^14
        + 184041/1073741824 * eps^16
        + 511225/4294967296 * eps^18
        + 5909761/68719476736 * eps^20
        + 17631601/274877906944 * eps^22
        + 863948449/17592186044416 * eps^24
        + 2704312009/70368744177664 * eps^26
        + 34493775625/1125899906842624 * eps^28
        + 111759833025/4503599627370496 * eps^30) / (1 - eps);

C1[1] = - 1/2 * eps
        + 3/16 * eps^3
        - 1/32 * eps^5
        + 19/2048 * eps^7
        - 3/4096 * eps^9
        + 53/65536 * eps^11
        + 29/131072 * eps^13
        + 13827/67108864 * eps^15
        + 17321/134217728 * eps^17
        + 205579/2147483648 * eps^19
        + 302847/4294967296 * eps^21
        + 29656189/549755813888 * eps^23
        + 46250107/1099511627776 * eps^25
        + 588536103/17592186044416 * eps^27
        + 951224759/35184372088832 * eps^29;
C1[2] = - 1/16 * eps^2
        + 1/32 * eps^4
        - 9/2048 * eps^6
        + 7/4096 * eps^8
        + 1/65536 * eps^10
        + 27/131072 * eps^12
        + 5735/67108864 * eps^14
        + 8995/134217728 * eps^16
        + 96543/2147483648 * eps^18
        + 142801/4294967296 * eps^20
        + 13684121/549755813888 * eps^22
        + 21112497/1099511627776 * eps^24
        + 265707563/17592186044416 * eps^26
        + 425659393/35184372088832 * eps^28
        + 1417935787335/144115188075855872 * eps^30;
C1[3] = - 1/48 * eps^3
        + 3/256 * eps^5
        - 3/2048 * eps^7
        + 17/24576 * eps^9
        + 3/65536 * eps^11
        + 843/8388608 * eps^13
        + 9719/201326592 * eps^15
        + 9801/268435456 * eps^17
        + 54189/2147483648 * eps^19
        + 3873871/206158430208 * eps^21
        + 7822227/549755813888 * eps^23
        + 24333681/2199023255552 * eps^25
        + 462823139/52776558133248 * eps^27
        + 127352837355/18014398509481984 * eps^29;
C1[4] = - 5/512 * eps^4
        + 3/512 * eps^6
        - 11/16384 * eps^8
        + 3/8192 * eps^10
        + 651/16777216 * eps^12
        + 1009/16777216 * eps^14
        + 16763/536870912 * eps^16
        + 1569/67108864 * eps^18
        + 2263733/137438953472 * eps^20
        + 1698897/137438953472 * eps^22
        + 41547591/4398046511104 * eps^24
        + 16273415/2199023255552 * eps^26
        + 212683932395/36028797018963968 * eps^28
        + 172435304205/36028797018963968 * eps^30;
C1[5] = - 7/1280 * eps^5
        + 7/2048 * eps^7
        - 3/8192 * eps^9
        + 117/524288 * eps^11
        + 253/8388608 * eps^13
        + 13419/335544320 * eps^15
        + 5855/268435456 * eps^17
        + 70025/4294967296 * eps^19
        + 800595/68719476736 * eps^21
        + 4842105/549755813888 * eps^23
        + 74591411/10995116277760 * eps^25
        + 6021893805/1125899906842624 * eps^27
        + 77302095005/18014398509481984 * eps^29;
C1[6] = - 7/2048 * eps^6
        + 9/4096 * eps^8
        - 117/524288 * eps^10
        + 467/3145728 * eps^12
        + 1569/67108864 * eps^14
        + 3813/134217728 * eps^16
        + 206677/12884901888 * eps^18
        + 103137/8589934592 * eps^20
        + 4770087/549755813888 * eps^22
        + 21782093/3298534883328 * eps^24
        + 5765474835/1125899906842624 * eps^26
        + 9142699905/2251799813685248 * eps^28
        + 1415580640915/432345564227567616 * eps^30;
C1[7] = - 33/14336 * eps^7
        + 99/65536 * eps^9
        - 77/524288 * eps^11
        + 55/524288 * eps^13
        + 1233/67108864 * eps^15
        + 11345/536870912 * eps^17
        + 52591/4294967296 * eps^19
        + 552591/60129542144 * eps^21
        + 3685111/549755813888 * eps^23
        + 722278195/140737488355328 * eps^25
        + 4507296795/1125899906842624 * eps^27
        + 1795935355/562949953421312 * eps^29;
C1[8] = - 429/262144 * eps^8
        + 143/131072 * eps^10
        - 429/4194304 * eps^12
        + 325/4194304 * eps^14
        + 31525/2147483648 * eps^16
        + 8733/536870912 * eps^18
        + 165251/17179869184 * eps^20
        + 124411/17179869184 * eps^22
        + 2996969235/562949953421312 * eps^24
        + 1153418845/281474976710656 * eps^26
        + 28941724625/9007199254740992 * eps^28
        + 23168297355/9007199254740992 * eps^30;
C1[9] = - 715/589824 * eps^9
        + 429/524288 * eps^11
        - 39/524288 * eps^13
        + 11921/201326592 * eps^15
        + 6399/536870912 * eps^17
        + 55233/4294967296 * eps^19
        + 199205/25769803776 * eps^21
        + 25677825/4398046511104 * eps^23
        + 608155005/140737488355328 * eps^25
        + 33866001805/10133099161583616 * eps^27
        + 1482164085/562949953421312 * eps^29;
C1[10] = - 2431/2621440 * eps^10
        + 663/1048576 * eps^12
        - 3757/67108864 * eps^14
        + 6239/134217728 * eps^16
        + 42177/4294967296 * eps^18
        + 446131/42949672960 * eps^20
        + 27835817/4398046511104 * eps^22
        + 42180321/8796093022208 * eps^24
        + 4019599397/1125899906842624 * eps^26
        + 6244603111/2251799813685248 * eps^28
        + 316153750539/144115188075855872 * eps^30;
C1[11] = - 4199/5767168 * eps^11
        + 4199/8388608 * eps^13
        - 2907/67108864 * eps^15
        + 10013/268435456 * eps^17
        + 35207/4294967296 * eps^19
        + 4694805/549755813888 * eps^21
        + 23148175/4398046511104 * eps^23
        + 70365265/17592186044416 * eps^25
        + 3370190355/1125899906842624 * eps^27
        + 42049539055/18014398509481984 * eps^29;
C1[12] = - 29393/50331648 * eps^12
        + 6783/16777216 * eps^14
        - 18411/536870912 * eps^16
        + 6137/201326592 * eps^18
        + 7611495/1099511627776 * eps^20
        + 7835163/1099511627776 * eps^22
        + 468146111/105553116266496 * eps^24
        + 59462469/17592186044416 * eps^26
        + 91557125181/36028797018963968 * eps^28
        + 214950398465/108086391056891904 * eps^30;
C1[13] = - 52003/109051904 * eps^13
        + 22287/67108864 * eps^15
        - 7429/268435456 * eps^17
        + 869193/34359738368 * eps^19
        + 3247347/549755813888 * eps^21
        + 26486133/4398046511104 * eps^23
        + 66500935/17592186044416 * eps^25
        + 12703797/4398046511104 * eps^27
        + 39283195529/18014398509481984 * eps^29;
C1[14] = - 185725/469762048 * eps^14
        + 37145/134217728 * eps^16
        - 780045/34359738368 * eps^18
        + 1461765/68719476736 * eps^20
        + 22372215/4398046511104 * eps^22
        + 45260895/8796093022208 * eps^24
        + 57244355/17592186044416 * eps^26
        + 306953515/123145302310912 * eps^28
        + 272204273085/144115188075855872 * eps^30;
C1[15] = - 22287/67108864 * eps^15
        + 1002915/4294967296 * eps^17
        - 648945/34359738368 * eps^19
        + 1243265/68719476736 * eps^21
        + 19425915/4398046511104 * eps^23
        + 78089301/17592186044416 * eps^25
        + 12427015/4398046511104 * eps^27
        + 610648965/281474976710656 * eps^29;
C1[16] = - 9694845/34359738368 * eps^16
        + 1710855/8589934592 * eps^18
        - 4372185/274877906944 * eps^20
        + 4272135/274877906944 * eps^22
        + 543781755/140737488355328 * eps^24
        + 271745805/70368744177664 * eps^26
        + 5567912565/2251799813685248 * eps^28
        + 4284219735/2251799813685248 * eps^30;
C1[17] = - 17678835/73014444032 * eps^17
        + 5892945/34359738368 * eps^19
        - 930465/68719476736 * eps^21
        + 59239605/4398046511104 * eps^23
        + 59859915/17592186044416 * eps^25
        + 930465/274877906944 * eps^27
        + 613284315/281474976710656 * eps^29;
C1[18] = - 21607465/103079215104 * eps^18
        + 10235115/68719476736 * eps^20
        - 51175575/4398046511104 * eps^22
        + 103488385/8796093022208 * eps^24
        + 53036505/17592186044416 * eps^26
        + 52551045/17592186044416 * eps^28
        + 278415054335/144115188075855872 * eps^30;
C1[19] = - 119409675/652835028992 * eps^19
        + 71645805/549755813888 * eps^21
        - 44352165/4398046511104 * eps^23
        + 182060985/17592186044416 * eps^25
        + 2953215/1099511627776 * eps^27
        + 47776802115/18014398509481984 * eps^29;
C1[20] = - 176726319/1099511627776 * eps^20
        + 126233085/1099511627776 * eps^22
        - 309844845/35184372088832 * eps^24
        + 161159235/17592186044416 * eps^26
        + 86652277095/36028797018963968 * eps^28
        + 426519840213/180143985094819840 * eps^30;
C1[21] = - 547010035/3848290697216 * eps^21
        + 447553665/4398046511104 * eps^23
        - 136211985/17592186044416 * eps^25
        + 9182417465/1125899906842624 * eps^27
        + 38976086565/18014398509481984 * eps^29;
C1[22] = - 6116566755/48378511622144 * eps^22
        + 797813055/8796093022208 * eps^24
        - 7712192865/1125899906842624 * eps^26
        + 16434948933/2251799813685248 * eps^28
        + 281701652697/144115188075855872 * eps^30;
C1[23] = - 11435320455/101155069755392 * eps^23
        + 11435320455/140737488355328 * eps^25
        - 6861192273/1125899906842624 * eps^27
        + 3694488147/562949953421312 * eps^29;
C1[24] = - 57176602275/562949953421312 * eps^24
        + 20583576819/281474976710656 * eps^26
        - 49083913953/9007199254740992 * eps^28
        + 160153129039/27021597764222976 * eps^30;
C1[25] = - 322476036831/3518437208883200 * eps^25
        + 74417546961/1125899906842624 * eps^27
        - 2756205443/562949953421312 * eps^29;
C1[26] = - 1215486600363/14636698788954112 * eps^26
        + 135054066707/2251799813685248 * eps^28
        - 636683457333/144115188075855872 * eps^30;
C1[27] = - 2295919134019/30399297484750848 * eps^27
        + 983965343151/18014398509481984 * eps^29;
C1[28] = - 2483341104143/36028797018963968 * eps^28
        + 1798281489207/36028797018963968 * eps^30;
C1[29] = - 32968493968795/522417556774977536 * eps^29;
C1[30] = - 125280277081421/2161727821137838080 * eps^30;

C1'[1] = + 1/2 * eps
         - 9/32 * eps^3
         + 205/1536 * eps^5
         - 4879/73728 * eps^7
         + 9039/327680 * eps^9
         - 1050467/88473600 * eps^11
         + 512031157/118908518400 * eps^13
         - 1086005273/591900180480 * eps^15
         + 4075676109451/7671026339020800 * eps^17
         - 794840669327713/2761569482047488000 * eps^19
         + 2239087029841367/77148607752437760000 * eps^21
         - 40730402540905726093/641567822069272412160000 * eps^23
         - 97668067278655185143/4927240873492012125388800 * eps^25
         - 741941887011669089199917/28784819522671853552271360000 * eps^27
         - 68324470839108426239947872773/3917038240645185831393086668800000 * eps^29;
C1'[2] = + 5/16 * eps^2
         - 37/96 * eps^4
         + 1335/4096 * eps^6
         - 86171/368640 * eps^8
         + 4119073/28311552 * eps^10
         - 18357853/220200960 * eps^12
         + 167645485631/3805072588800 * eps^14
         - 2133468723257/95887829237760 * eps^16
         + 59947666093201/5682241732608000 * eps^18
         - 29889474712770151/6075452860504473600 * eps^20
         + 3112904386445139443/1458108686521073664000 * eps^22
         - 4531132450329984761/4728107532256542720000 * eps^24
         + 1671560053825711640749861/4483789194877731034103808000 * eps^26
         - 1539092646053487110737563637/8743388930011575516502425600000 * eps^28
         + 3620358411657954539738131669/69636235389247748113654874112000 * eps^30;
C1'[3] = + 29/96 * eps^3
         - 75/128 * eps^5
         + 2901/4096 * eps^7
         - 443327/655360 * eps^9
         + 1152507/2097152 * eps^11
         - 1170339447/2936012800 * eps^13
         + 14896648073/56371445760 * eps^15
         - 1719099273321/10522669875200 * eps^17
         + 440255022166233/4629974745088000 * eps^19
         - 4689329894241941/88895515105689600 * eps^21
         + 4309464445273351209/154085559516528640000 * eps^23
         - 77740899024366984327/5423811694981808128000 * eps^25
         + 4025440507207669842667/569500227973089853440000 * eps^27
         - 10783702637849849812840017/3158827931157405053747200000 * eps^29;
C1'[4] = + 539/1536 * eps^4
         - 2391/2560 * eps^6
         + 1082857/737280 * eps^8
         - 2722891/1548288 * eps^10
         + 6190623251/3523215360 * eps^12
         - 2198240553463/1426902220800 * eps^14
         + 835898387989583/684913065984000 * eps^16
         - 62186045114429/69759664128000 * eps^18
         + 39435262997832698047/64804830512047718400 * eps^20
         - 14876456230497799912553/37910825849547915264000 * eps^22
         + 1136134446936925800945877/4717791661277073899520000 * eps^24
         - 45093458223482404762480843/318450937136202488217600000 * eps^26
         + 3448586228525796468187820868401/43044376270826217927396556800000 * eps^28
         - 9267292123878690223760617403717/211395714574502092487880867840000 * eps^30;
C1'[5] = + 3467/7680 * eps^5
         - 28223/18432 * eps^7
         + 1361343/458752 * eps^9
         - 211942939/49545216 * eps^11
         + 289319933243/57076088832 * eps^13
         - 2641923029237/507343011840 * eps^15
         + 164922300524827/34441342746624 * eps^17
         - 326226244879987219/81006038140059648 * eps^19
         + 905728657830831557/288021468942434304 * eps^21
         - 78322584746542259177147/33968099961194932076544 * eps^23
         + 13053248693785337495272007/8152343990686783698370560 * eps^25
         - 1878086576945897568602243/1771373509087498680139776 * eps^27
         + 39401408426156638969274880529/58540351728323656381259317248 * eps^29;
C1'[6] = + 38081/61440 * eps^6
         - 733437/286720 * eps^8
         + 10820079/1835008 * eps^10
         - 547525831/55050240 * eps^12
         + 45741465549/3355443200 * eps^14
         - 41464506827097/2583691264000 * eps^16
         + 33307900611667019/1984274890752000 * eps^18
         - 29549592050928009/1851989898035200 * eps^20
         + 1510642276897435153959/107859891661570048000 * eps^22
         - 3379725045215031439859/294163340895191040000 * eps^24
         + 3068085809843886425921127/345151653317024153600000 * eps^26
         - 120481724276440955567319861/18440959762938147635200000 * eps^28
         + 5351579260607165516870592929/1166336466888888019845120000 * eps^30;
C1'[7] = + 459485/516096 * eps^7
         - 709743/163840 * eps^9
         + 983638957/84934656 * eps^11
         - 570327360331/25480396800 * eps^13
         + 2524677004673/72477573120 * eps^15
         - 3979901788209089/86103356866560 * eps^17
         + 145501072048061969477/2686424734236672000 * eps^19
         - 767257565495432565461/13372425343755878400 * eps^21
         + 576429350583276368332877/10315870979468820480000 * eps^23
         - 15049813241233902040230469/297097084208702029824000 * eps^25
         + 1656087831553847819569877/38371513250126757888000 * eps^27
         - 222870544090985685701249717628901/6400184226857542607280537600000 * eps^29;
C1'[8] = + 109167851/82575360 * eps^8
         - 550835669/74317824 * eps^10
         + 29797006823/1321205760 * eps^12
         - 13775344174277/280284364800 * eps^14
         + 51602655250575029/602723498065920 * eps^16
         - 229269121915303969/1813751267328000 * eps^18
         + 83019178881141641377/506287738375372800 * eps^20
         - 132324024533588768532907/691082762882383872000 * eps^22
         + 396326201752354956063673999/1935504271293158522880000 * eps^24
         - 703889408095319694872984797279/3464746196041883071807488000 * eps^26
         + 673066976958864232412288090929279/3563738944500222588144844800000 * eps^28
         - 3842435239091994304467908471778509/23172222559128113984248479744000 * eps^30;
C1'[9] = + 83141299/41287680 * eps^9
         - 1172993649/91750400 * eps^11
         + 1409193884757/32296140800 * eps^13
         - 8205463797521/77510737920 * eps^15
         + 6267340235329209/30709016166400 * eps^17
         - 9985904736500570067/30094835843072000 * eps^19
         + 6818098564242858298663/14445521204674560000 * eps^21
         - 81179814711559538793297/134824864576962560000 * eps^23
         + 8228623619106009640781583/11735156212778821222400 * eps^25
         - 10637423815896802535794719059/14082187455334585466880000 * eps^27
         + 2713138463299280056775410984179/3567487488684761651609600000 * eps^29;
C1'[10] = + 9303339907/2972712960 * eps^10
         - 32258337779/1453326336 * eps^12
         + 105458791111591/1255673954304 * eps^14
         - 21991423000897853/97942568435712 * eps^16
         + 440758100714976799/928640648871936 * eps^18
         - 4436414286264685342183/5265392479103877120 * eps^20
         + 11983230751430888047165/9190503236254040064 * eps^22
         - 438407397616490706337835/243037752247606837248 * eps^24
         + 503750725100748248754169576435/221743756546680516595679232 * eps^26
         - 200204949675864221817037957885535/75836364738964736675722297344 * eps^28
         + 15426622123776978643737455613179549/5392808159215270163606918922240 * eps^30;
C1'[11] = + 230944143253/46714060800 * eps^11
         - 13820996202863/356725555200 * eps^13
         + 530891275077073/3297729576960 * eps^15
         - 5861919724284516433/12465417800908800 * eps^17
         + 25885301781901909490837/23933602177744896000 * eps^19
         - 110706057667150724184229/53185782617210880000 * eps^21
         + 2719521302806552306469953613/781192775081593405440000 * eps^23
         - 233567275961905041708130573/44996703844699780153344 * eps^25
         + 798884301221118236917664805229/113666887205034582343680000 * eps^27
         - 9934805882969858378831722690837171/1133916936886434459864268800000 * eps^29;
C1'[12] = + 306777964441/38755368960 * eps^12
         - 57044595387963/839699660800 * eps^14
         + 11568981229047951/37618544803840 * eps^16
         - 687397289384966383/705347715072000 * eps^18
         + 233327560280127272763/96303474697830400 * eps^20
         - 3739229605202668172763/744163213574144000 * eps^22
         + 65835782650063594518691/7289762092154880000 * eps^24
         - 14792936433071373028889379/1024668970784915456000 * eps^26
         + 74599042152248060866262559758871/3567487488684761651609600000 * eps^28
         - 16680060316657855648846944446971/599337898099039957470412800 * eps^30;
C1'[13] = + 2615671472444983/204047017574400 * eps^13
         - 1167820427927323/9766352977920 * eps^15
         + 24715664579918728243/42190644864614400 * eps^17
         - 5067175041833532570683/2531438691876864000 * eps^19
         + 93543614041472271515281/17487017757219225600 * eps^21
         - 11792083140833533278156043493/991513906834330091520000 * eps^23
         + 8268814159710166088320187726251/361704273213163617386496000 * eps^25
         - 24380431693719066689532645995167/625167879627690202890240000 * eps^27
         + 40946727771183021563590563999653687303/680582760477888662474430873600000 * eps^29;
C1'[14] = + 34216519493594561/1632376140595200 * eps^14
         - 1477329715340046517/6995897745408000 * eps^16
         + 9229913663063228233/8291434364928000 * eps^18
         - 18633370679636805385039/4566922048202342400 * eps^20
         + 613651924549596407462456317/52610941995290984448000 * eps^22
         - 30737516008559329681484121827/1110675442122809671680000 * eps^24
         + 271813271604582464710892651024459/4798117909970537781657600000 * eps^26
         - 20699812425639174189936631117519897/201520952218762586829619200000 * eps^28
         + 1211662551734777607545609062337329843/7206133351721085009678827520000 * eps^30;
C1'[15] = + 177298287500753/5129801564160 * eps^15
         - 5627790514610829/15047417921536 * eps^17
         + 17279798906736629091/8185795349315584 * eps^19
         - 115931060832532759571/14032792027398144 * eps^21
         + 2003356613292569725398363/79631417158142001152 * eps^23
         - 101051987173195622011224471/1592628343162840023040 * eps^25
         + 756303360522076489366917931/5488442290284248694784 * eps^27
         - 5815559636408944974046175630559/21975722930298131773915136 * eps^29;
C1'[16] = + 1259425185539653127243/21939135329599488000 * eps^16
         - 2293308899647899314723/3453382412992512000 * eps^18
         + 21460336637287899464532611/5370700328685954662400 * eps^20
         - 25456489696915892609916529129/1530649593675497078784000 * eps^22
         + 2553846684009183021840672953/47515526935735173120000 * eps^24
         - 29538537350054556934382434071434011/205719305389986807388569600000 * eps^26
         + 3770295466320560881269963263089000511/11433662446938214136964710400000 * eps^28
         - 519676261197496743489350631148600190213/777234965004088823221667758080000 * eps^30;
C1'[17] = + 1789450487559418666447/18648265030159564800 * eps^17
         - 233343808292218091539949/197452217966395392000 * eps^19
         + 20146628393835035886855197/2667798856079297740800 * eps^21
         - 239929099187527215432793286501/7203056911414103900160000 * eps^23
         + 62988069927933679012075753421807/553194770796603179532288000 * eps^25
         - 3378232317776013495553552510617097/10517530210207023413329920000 * eps^27
         + 7314657081705017862640836634319879174339/9405196215175528617136147660800000 * eps^29;
C1'[18] = + 212221079284639273481/1315574252568576000 * eps^18
         - 1260552943986821598063/598192737065369600 * eps^20
         + 3546697789798651658576181/248848178619193753600 * eps^22
         - 78517248057208956823851421/1182310350905671680000 * eps^24
         + 1067601202019151639052958889147/4459359360855952064512000 * eps^26
         - 40116098461444544658667493570308857/56410895914827793616076800000 * eps^28
         + 392210563613343460551402383435826349/216617840312938727485734912000 * eps^30;
C1'[19] = + 69532546869173713149501223/255108265612582846464000 * eps^19
         - 112316728120020126447652781/29837224048255303680000 * eps^21
         + 4848022300045341835150543297447/180455531043848076656640000 * eps^23
         - 125642956497967669586988251237879/952805203911517844747059200 * eps^25
         + 33298130071722823747096176158055463/66596830966654998455255040000 * eps^27
         - 6563632449843987460043036353052098320209/4207587780473262802403013427200000 * eps^29;
C1'[20] = + 5810177473683430838091097/12559176153234847825920 * eps^20
         - 4618600293785993240609142923/685731017966622691295232 * eps^22
         + 1356670146516048832626691899799/26819702036027909703991296 * eps^24
         - 2172503519024023685991761815076867/8327517482186665963089297408 * eps^26
         + 3793117143067735304052463936462682647/3654590529325348262658617376768 * eps^28
         - 48227737126007159325773215007655970673/14212296502931909910339067576320 * eps^30;
C1'[21] = + 80853671585727628548617/102547326354063360000 * eps^21
         - 33710670766735229663452761/2793193841644011520000 * eps^23
         + 7824467166805891507557010233/82231626697999699148800 * eps^25
         - 12690496274820158383049352282653/24669488009399909744640000 * eps^27
         + 56382836432185917384773311978295199/26314120543359903727616000000 * eps^29;
C1'[22] = + 924898009889615635728755915083/685731017966622691295232000 * eps^22
         - 34498885534979583771510062454227/1593112465983062818160640000 * eps^24
         + 579153806014612787074377437506223/3238703930845567705625395200 * eps^26
         - 1569950058036065954085485531335819511/1552386282642142415290368000000 * eps^28
         + 13441093380769154612428393473490856259941/3053881893191980641891039313920000 * eps^30;
C1'[23] = + 4016551943902862119978017069801911/1734899475455555408976936960000 * eps^23
         - 7042743315770579684284446742015447/181032988743188390501941248000 * eps^25
         + 600397969311873169056555916083822001/1787980135735193980266086400000 * eps^27
         - 223977408534083722217209433995298286356287/112964584975749555673211338752000000 * eps^29;
C1'[24] = + 33730424938117851020161782371647/8461634387224169042411520000 * eps^24
         - 2466848731962947446637554898208789/35256809946767371010048000000 * eps^26
         + 9241553981242966860439405699656735351/14666832937855226340179968000000 * eps^28
         - 34121931746328650162120952716097657509/8800099762713135804107980800000 * eps^30;
C1'[25] = + 251959060076566669691445659637541/36604472449172158079513395200 * eps^25
         - 10775075917257378388661547627353189/85536969693571680015929573376 * eps^27
         + 7072923673224417550895367212096744699801/5986219287034920454234815263145984 * eps^29;
C1'[26] = + 18043464502912016496703680586663352917/1514094087670302902379872256000000 * eps^26
         - 15705330809648579467084357186039173723679/69182452928935378770280316928000000 * eps^28
         + 762509129435444486126998095414252687404107/344374876801811663212062022041600000 * eps^30;
C1'[27] = + 819021838914972651233426418104059459/39600448932209111118485913600000 * eps^27
         - 4425211305648392775905209005851207973/10807140059472272040132608000000 * eps^29;
C1'[28] = + 137344334847260471742767128830849077140799/3817741892241658452955877081088000000 * eps^28
         - 3056545074816755404384556140143837530441/4134995887021777596105338388480000 * eps^30;
C1'[29] = + 2381352350093111938327626556685002210278872879/37975078602127776631552109325582336000000 * eps^29;
C1'[30] = + 20034557328168749612075941075238883149/182929433787470496587153418485760 * eps^30;

A2 = (1 + 1/4 * eps^2
        + 9/64 * eps^4
        + 25/256 * eps^6
        + 1225/16384 * eps^8
        + 3969/65536 * eps^10
        + 53361/1048576 * eps^12
        + 184041/4194304 * eps^14
        + 41409225/1073741824 * eps^16
        + 147744025/4294967296 * eps^18
        + 2133423721/68719476736 * eps^20
        + 7775536041/274877906944 * eps^22
        + 457028729521/17592186044416 * eps^24
        + 1690195005625/70368744177664 * eps^26
        + 25145962430625/1125899906842624 * eps^28
        + 93990019574025/4503599627370496 * eps^30) * (1 - eps);

C2[1] = + 1/2 * eps
        + 1/16 * eps^3
        + 1/32 * eps^5
        + 41/2048 * eps^7
        + 59/4096 * eps^9
        + 727/65536 * eps^11
        + 1171/131072 * eps^13
        + 498409/67108864 * eps^15
        + 848479/134217728 * eps^17
        + 11768921/2147483648 * eps^19
        + 20705249/4294967296 * eps^21
        + 2359256231/549755813888 * eps^23
        + 4242171053/1099511627776 * eps^25
        + 61534748221/17592186044416 * eps^27
        + 112374407161/35184372088832 * eps^29;
C2[2] = + 3/16 * eps^2
        + 1/32 * eps^4
        + 35/2048 * eps^6
        + 47/4096 * eps^8
        + 557/65536 * eps^10
        + 875/131072 * eps^12
        + 365987/67108864 * eps^14
        + 615099/134217728 * eps^16
        + 8448195/2147483648 * eps^18
        + 14747697/4294967296 * eps^20
        + 1669842701/549755813888 * eps^22
        + 2986894505/1099511627776 * eps^24
        + 43136495023/17592186044416 * eps^26
        + 78481301201/35184372088832 * eps^28
        + 294392827406755/144115188075855872 * eps^30;
C2[3] = + 5/48 * eps^3
        + 5/256 * eps^5
        + 23/2048 * eps^7
        + 191/24576 * eps^9
        + 385/65536 * eps^11
        + 39277/8388608 * eps^13
        + 778613/201326592 * eps^15
        + 879927/268435456 * eps^17
        + 6084639/2147483648 * eps^19
        + 512739193/206158430208 * eps^21
        + 1215236729/549755813888 * eps^23
        + 4364918719/2199023255552 * eps^25
        + 94882584065/52776558133248 * eps^27
        + 29549676515117/18014398509481984 * eps^29;
C2[4] = + 35/512 * eps^4
        + 7/512 * eps^6
        + 133/16384 * eps^8
        + 47/8192 * eps^10
        + 73859/16777216 * eps^12
        + 59533/16777216 * eps^14
        + 1587387/536870912 * eps^16
        + 169365/67108864 * eps^18
        + 301539693/137438953472 * eps^20
        + 265958173/137438953472 * eps^22
        + 7594835095/4398046511104 * eps^24
        + 3421780579/2199023255552 * eps^26
        + 50930607972739/36028797018963968 * eps^28
        + 46591933629593/36028797018963968 * eps^30;
C2[5] = + 63/1280 * eps^5
        + 21/2048 * eps^7
        + 51/8192 * eps^9
        + 2343/524288 * eps^11
        + 29099/8388608 * eps^13
        + 946609/335544320 * eps^15
        + 635521/268435456 * eps^17
        + 8729875/4294967296 * eps^19
        + 122017589/68719476736 * eps^21
        + 864489227/549755813888 * eps^23
        + 15483449661/10995116277760 * eps^25
        + 1433014740399/1125899906842624 * eps^27
        + 20884832418219/18014398509481984 * eps^29;
C2[6] = + 77/2048 * eps^6
        + 33/4096 * eps^8
        + 2607/524288 * eps^10
        + 11363/3145728 * eps^12
        + 189893/67108864 * eps^14
        + 311117/134217728 * eps^16
        + 25213345/12884901888 * eps^18
        + 14502017/8589934592 * eps^20
        + 814144243/549755813888 * eps^22
        + 4341484325/3298534883328 * eps^24
        + 1331147570487/1125899906842624 * eps^26
        + 2412694071441/2251799813685248 * eps^28
        + 422949801695839/432345564227567616 * eps^30;
C2[7] = + 429/14336 * eps^7
        + 429/65536 * eps^9
        + 2145/524288 * eps^11
        + 1573/524288 * eps^13
        + 158899/67108864 * eps^15
        + 1047631/536870912 * eps^17
        + 7110437/4294967296 * eps^19
        + 86245121/60129542144 * eps^21
        + 694168021/549755813888 * eps^23
        + 158428784829/140737488355328 * eps^25
        + 1141580229945/1125899906842624 * eps^27
        + 518508038199/562949953421312 * eps^29;
C2[8] = + 6435/262144 * eps^8
        + 715/131072 * eps^10
        + 14443/4194304 * eps^12
        + 10673/4194304 * eps^14
        + 4339205/2147483648 * eps^16
        + 898561/536870912 * eps^18
        + 24498667/17179869184 * eps^20
        + 21302303/17179869184 * eps^22
        + 616428279683/562949953421312 * eps^24
        + 275528165297/281474976710656 * eps^26
        + 7960491282361/9007199254740992 * eps^28
        + 7246735300607/9007199254740992 * eps^30;
C2[9] = + 12155/589824 * eps^9
        + 2431/524288 * eps^11
        + 1547/524288 * eps^13
        + 441779/201326592 * eps^15
        + 940321/536870912 * eps^17
        + 6258091/4294967296 * eps^19
        + 32109515/25769803776 * eps^21
        + 4780137299/4398046511104 * eps^23
        + 135454151123/140737488355328 * eps^25
        + 8739550412095/10133099161583616 * eps^27
        + 439310252633/562949953421312 * eps^29;
C2[10] = + 46189/2621440 * eps^10
        + 4199/1048576 * eps^12
        + 172159/67108864 * eps^14
        + 257431/134217728 * eps^16
        + 6604381/4294967296 * eps^18
        + 55148051/42949672960 * eps^20
        + 4844658589/4398046511104 * eps^22
        + 8475408793/8796093022208 * eps^24
        + 963016659745/1125899906842624 * eps^26
        + 1729685026007/2251799813685248 * eps^28
        + 100354915132471/144115188075855872 * eps^30;
C2[11] = + 88179/5767168 * eps^11
        + 29393/8388608 * eps^13
        + 151487/67108864 * eps^15
        + 455107/268435456 * eps^17
        + 5860189/4294967296 * eps^19
        + 628398115/549755813888 * eps^21
        + 4324974541/4398046511104 * eps^23
        + 15169948479/17592186044416 * eps^25
        + 863724574545/1125899906842624 * eps^27
        + 12434905703529/18014398509481984 * eps^29;
C2[12] = + 676039/50331648 * eps^12
        + 52003/16777216 * eps^14
        + 1077205/536870912 * eps^16
        + 304589/201326592 * eps^18
        + 1343185487/1099511627776 * eps^20
        + 1128482143/1099511627776 * eps^22
        + 93435460751/105553116266496 * eps^24
        + 13685462553/17592186044416 * eps^26
        + 24983462965221/36028797018963968 * eps^28
        + 67559103579581/108086391056891904 * eps^30;
C2[13] = + 1300075/109051904 * eps^13
        + 185725/67108864 * eps^15
        + 482885/268435456 * eps^17
        + 46765555/34359738368 * eps^19
        + 605955125/549755813888 * eps^21
        + 4083133535/4398046511104 * eps^23
        + 14117902665/17592186044416 * eps^25
        + 776981055/1099511627776 * eps^27
        + 11367459987135/18014398509481984 * eps^29;
C2[14] = + 5014575/469762048 * eps^14
        + 334305/134217728 * eps^16
        + 55828935/34359738368 * eps^18
        + 84736485/68719476736 * eps^20
        + 4403236035/4398046511104 * eps^22
        + 7434490215/8796093022208 * eps^24
        + 12878639895/17592186044416 * eps^26
        + 79525490115/123145302310912 * eps^28
        + 83239672976625/144115188075855872 * eps^30;
C2[15] = + 646323/67108864 * eps^15
        + 9694845/4294967296 * eps^17
        + 50755365/34359738368 * eps^19
        + 77241935/68719476736 * eps^21
        + 4023100545/4398046511104 * eps^23
        + 13613065131/17592186044416 * eps^25
        + 738265615/1099511627776 * eps^27
        + 166992644595/281474976710656 * eps^29;
C2[16] = + 300540195/34359738368 * eps^16
        + 17678835/8589934592 * eps^18
        + 371255535/274877906944 * eps^20
        + 283171515/274877906944 * eps^22
        + 118236358635/140737488355328 * eps^24
        + 50102128545/70368744177664 * eps^26
        + 1393471517565/2251799813685248 * eps^28
        + 1233068062875/2251799813685248 * eps^30;
C2[17] = + 583401555/73014444032 * eps^17
        + 64822395/34359738368 * eps^19
        + 85292625/68719476736 * eps^21
        + 4172515215/4398046511104 * eps^23
        + 13636584885/17592186044416 * eps^25
        + 2894056305/4398046511104 * eps^27
        + 161224515885/281474976710656 * eps^29;
C2[18] = + 756261275/103079215104 * eps^18
        + 119409675/68719476736 * eps^20
        + 5039088285/4398046511104 * eps^22
        + 7718413945/8796093022208 * eps^24
        + 12634163925/17592186044416 * eps^26
        + 10741625085/17592186044416 * eps^28
        + 76701028811195/144115188075855872 * eps^30;
C2[19] = + 4418157975/652835028992 * eps^19
        + 883631595/549755813888 * eps^21
        + 4670624145/4398046511104 * eps^23
        + 14333193015/17592186044416 * eps^25
        + 2937289215/4398046511104 * eps^27
        + 10243215614805/18014398509481984 * eps^29;
C2[20] = + 6892326441/1099511627776 * eps^20
        + 1641030105/1099511627776 * eps^22
        + 34760001315/35184372088832 * eps^24
        + 13355260815/17592186044416 * eps^26
        + 22452476602335/36028797018963968 * eps^28
        + 95701981543233/180143985094819840 * eps^30;
C2[21] = + 22427411435/3848290697216 * eps^21
        + 6116566755/4398046511104 * eps^23
        + 16222198785/17592186044416 * eps^25
        + 798965451635/1125899906842624 * eps^27
        + 10507463872035/18014398509481984 * eps^29;
C2[22] = + 263012370465/48378511622144 * eps^22
        + 11435320455/8796093022208 * eps^24
        + 972002238675/1125899906842624 * eps^26
        + 1498026979605/2251799813685248 * eps^28
        + 78899312939325/144115188075855872 * eps^30;
C2[23] = + 514589420475/101155069755392 * eps^23
        + 171529806825/140737488355328 * eps^25
        + 912538572309/1125899906842624 * eps^27
        + 352031942007/562949953421312 * eps^29;
C2[24] = + 2687300306925/562949953421312 * eps^24
        + 322476036831/281474976710656 * eps^26
        + 6871220169399/9007199254740992 * eps^28
        + 15922598844211/27021597764222976 * eps^30;
C2[25] = + 15801325804719/3518437208883200 * eps^25
        + 1215486600363/1125899906842624 * eps^27
        + 405162200121/562949953421312 * eps^29;
C2[26] = + 61989816618513/14636698788954112 * eps^26
        + 2295919134019/2251799813685248 * eps^28
        + 98068545867383/144115188075855872 * eps^30;
C2[27] = + 121683714103007/30399297484750848 * eps^27
        + 17383387729001/18014398509481984 * eps^29;
C2[28] = + 136583760727865/36028797018963968 * eps^28
        + 32968493968795/36028797018963968 * eps^30;
C2[29] = + 1879204156221315/522417556774977536 * eps^29;
C2[30] = + 7391536347803839/2161727821137838080 * eps^30;

A3 = 1 - (1/2 - 1/2*n) * eps
       - (1/4 + 1/8*n - 3/8*n^2) * eps^2
       - (1/16 + 3/16*n + 1/16*n^2 - 5/16*n^3) * eps^3
       - (3/64 + 1/32*n + 5/32*n^2 + 5/128*n^3 - 35/128*n^4) * eps^4
       - (3/128 + 5/128*n + 5/256*n^2 + 35/256*n^3 + 7/256*n^4 - 63/256*n^5) * eps^5
       - (5/256 + 15/1024*n + 35/1024*n^2 + 7/512*n^3 + 63/512*n^4 + 21/1024*n^5 - 231/1024*n^6) * eps^6
       - (25/2048 + 35/2048*n + 21/2048*n^2 + 63/2048*n^3 + 21/2048*n^4 + 231/2048*n^5 + 33/2048*n^6 - 429/2048*n^7) * eps^7
       - (175/16384 + 35/4096*n + 63/4096*n^2 + 63/8192*n^3 + 231/8192*n^4 + 33/4096*n^5 + 429/4096*n^6 + 429/32768*n^7 - 6435/32768*n^8) * eps^8
       - (245/32768 + 315/32768*n + 105/16384*n^2 + 231/16384*n^3 + 99/16384*n^4 + 429/16384*n^5 + 429/65536*n^6 + 6435/65536*n^7 + 715/65536*n^8 - 12155/65536*n^9) * eps^9
       - (441/65536 + 735/131072*n + 1155/131072*n^2 + 165/32768*n^3 + 429/32768*n^4 + 1287/262144*n^5 + 6435/262144*n^6 + 715/131072*n^7 + 12155/131072*n^8 + 2431/262144*n^9 - 46189/262144*n^10) * eps^10
       - (1323/262144 + 1617/262144*n + 1155/262144*n^2 + 2145/262144*n^3 + 2145/524288*n^4 + 6435/524288*n^5 + 2145/524288*n^6 + 12155/524288*n^7 + 2431/524288*n^8 + 46189/524288*n^9 + 4199/524288*n^10 - 88179/524288*n^11) * eps^11
       - (4851/1048576 + 2079/524288*n + 3003/524288*n^2 + 15015/4194304*n^3 + 32175/4194304*n^4 + 3575/1048576*n^5 + 12155/1048576*n^6 + 7293/2097152*n^7 + 46189/2097152*n^8 + 4199/1048576*n^9 + 88179/1048576*n^10 + 29393/4194304*n^11 - 676039/4194304*n^12) * eps^12
       - (7623/2097152 + 9009/2097152*n + 27027/8388608*n^2 + 45045/8388608*n^3 + 25025/8388608*n^4 + 60775/8388608*n^5 + 12155/4194304*n^6 + 46189/4194304*n^7 + 12597/4194304*n^8 + 88179/4194304*n^9 + 29393/8388608*n^10 + 676039/8388608*n^11 + 52003/8388608*n^12 - 1300075/8388608*n^13) * eps^13
       - (14157/4194304 + 99099/33554432*n + 135135/33554432*n^2 + 45045/16777216*n^3 + 85085/16777216*n^4 + 85085/33554432*n^5 + 230945/33554432*n^6 + 20995/8388608*n^7 + 88179/8388608*n^8 + 88179/33554432*n^9 + 676039/33554432*n^10 + 52003/16777216*n^11 + 1300075/16777216*n^12 + 185725/33554432*n^13 - 5014575/33554432*n^14) * eps^14
       - (184041/67108864 + 212355/67108864*n + 165165/67108864*n^2 + 255255/67108864*n^3 + 153153/67108864*n^4 + 323323/67108864*n^5 + 146965/67108864*n^6 + 440895/67108864*n^7 + 146965/67108864*n^8 + 676039/67108864*n^9 + 156009/67108864*n^10 + 1300075/67108864*n^11 + 185725/67108864*n^12 + 5014575/67108864*n^13 + 334305/67108864*n^14) * eps^15
       - (2760615/1073741824 + 306735/134217728*n + 401115/134217728*n^2 + 561561/268435456*n^3 + 969969/268435456*n^4 + 264537/134217728*n^5 + 617253/134217728*n^6 + 1028755/536870912*n^7 + 3380195/536870912*n^8 + 260015/134217728*n^9 + 1300075/134217728*n^10 + 557175/268435456*n^11 + 5014575/268435456*n^12 + 334305/134217728*n^13) * eps^16
       - (4601025/2147483648 + 5214495/2147483648*n + 1042899/536870912*n^2 + 1524237/536870912*n^3 + 969969/536870912*n^4 + 1851759/536870912*n^5 + 1851759/1073741824*n^6 + 4732273/1073741824*n^7 + 1820105/1073741824*n^8 + 6500375/1073741824*n^9 + 928625/536870912*n^10 + 5014575/536870912*n^11 + 1002915/536870912*n^12) * eps^17
       - (8690825/4294967296 + 15643485/8589934592*n + 19815081/8589934592*n^2 + 1801371/1073741824*n^3 + 2909907/1073741824*n^4 + 6789783/4294967296*n^5 + 14196819/4294967296*n^6 + 3276189/2147483648*n^7 + 9100525/2147483648*n^8 + 6500375/4294967296*n^9 + 25072875/4294967296*n^10 + 1671525/1073741824*n^11) * eps^18
       - (29548805/17179869184 + 33025135/17179869184*n + 27020565/17179869184*n^2 + 37828791/17179869184*n^3 + 12609597/8589934592*n^4 + 22309287/8589934592*n^5 + 12012693/8589934592*n^6 + 27301575/8589934592*n^7 + 11700675/8589934592*n^8 + 35102025/8589934592*n^9 + 11700675/8589934592*n^10) * eps^19
       - (112285459/68719476736 + 51038845/34359738368*n + 63047985/34359738368*n^2 + 189143955/137438953472*n^3 + 290020731/137438953472*n^4 + 22309287/17179869184*n^5 + 42902475/17179869184*n^6 + 42902475/34359738368*n^7 + 105306075/34359738368*n^8 + 21061215/17179869184*n^9) * eps^20
       - (193947611/137438953472 + 214363149/137438953472*n + 357271915/274877906944*n^2 + 483367885/274877906944*n^3 + 334639305/274877906944*n^4 + 557732175/274877906944*n^5 + 79676025/68719476736*n^6 + 165480975/68719476736*n^7 + 77224455/68719476736*n^8) * eps^21
       - (370263621/274877906944 + 1357633277/1099511627776*n + 1643450809/1099511627776*n^2 + 632096465/549755813888*n^3 + 929553625/549755813888*n^4 + 1195140375/1099511627776*n^5 + 2151252675/1099511627776*n^6 + 143416845/137438953472*n^7) * eps^22
       - (2591845347/2199023255552 + 2838687761/2199023255552*n + 2401966567/2199023255552*n^2 + 3160482325/2199023255552*n^3 + 2257487375/2199023255552*n^4 + 3585421125/2199023255552*n^5 + 2151252675/2199023255552*n^6) * eps^23
       - (19870814327/17592186044416 + 4585572537/4398046511104*n + 5459014925/4398046511104*n^2 + 8578452025/8796093022208*n^3 + 12190431825/8796093022208*n^4 + 4063477275/4398046511104*n^5) * eps^24
       - (35156056117/35184372088832 + 38213104475/35184372088832*n + 16377044775/17592186044416*n^2 + 21056200425/17592186044416*n^3 + 15441213645/17592186044416*n^4) * eps^25
       - (67607800225/70368744177664 + 125557343275/140737488355328*n + 147393402975/140737488355328*n^2 + 29478680595/35184372088832*n^3) * eps^26
       - (241456429375/281474976710656 + 260772943725/281474976710656*n + 226003217895/281474976710656*n^2) * eps^27
       - (931331941875/1125899906842624 + 434621572875/562949953421312*n) * eps^28
       - 1676397495375/2251799813685248 * eps^29;

C3[1] = + (1/4 - 1/4*n) * eps
        + (1/8 - 1/8*n^2) * eps^2
        + (3/64 + 3/64*n - 1/64*n^2 - 5/64*n^3) * eps^3
        + (5/128 + 1/64*n + 1/64*n^2 - 1/64*n^3 - 7/128*n^4) * eps^4
        + (3/128 + 11/512*n + 3/512*n^2 + 1/256*n^3 - 7/512*n^4 - 21/512*n^5) * eps^5
        + (21/1024 + 5/512*n + 13/1024*n^2 + 1/512*n^3 - 1/1024*n^4 - 3/256*n^5 - 33/1024*n^6) * eps^6
        + (243/16384 + 189/16384*n + 83/16384*n^2 + 127/16384*n^3 + 3/16384*n^4 - 51/16384*n^5 - 165/16384*n^6 - 429/16384*n^7) * eps^7
        + (435/32768 + 109/16384*n + 1/128*n^2 + 45/16384*n^3 + 39/8192*n^4 - 11/16384*n^5 - 33/8192*n^6 - 143/16384*n^7 - 715/32768*n^8) * eps^8
        + (345/32768 + 953/131072*n + 259/65536*n^2 + 365/65536*n^3 + 95/65536*n^4 + 47/16384*n^5 - 143/131072*n^6 - 143/32768*n^7 - 1001/131072*n^8 - 2431/131072*n^9) * eps^9
        + (2511/262144 + 317/65536*n + 1355/262144*n^2 + 165/65536*n^3 + 531/131072*n^4 + 89/131072*n^5 + 107/65536*n^6 - 169/131072*n^7 - 1157/262144*n^8 - 221/32768*n^9 - 4199/262144*n^10) * eps^10
        + (8401/1048576 + 5327/1048576*n + 807/262144*n^2 + 8243/2097152*n^3 + 3415/2097152*n^4 + 6235/2097152*n^5 + 429/2097152*n^6 + 845/1048576*n^7 - 2873/2097152*n^8 - 9061/2097152*n^9 - 12597/2097152*n^10 - 29393/2097152*n^11) * eps^11
        + (15477/2097152 + 969/262144*n + 15445/4194304*n^2 + 2237/1048576*n^3 + 6429/2097152*n^4 + 2183/2097152*n^5 + 9169/4194304*n^6 - 197/2097152*n^7 + 1019/4194304*n^8 - 2907/2097152*n^9 - 8721/2097152*n^10 - 11305/2097152*n^11 - 52003/4194304*n^12) * eps^12
        + (26789/4194304 + 63733/16777216*n + 40995/16777216*n^2 + 1517/524288*n^3 + 25475/16777216*n^4 + 40625/16777216*n^5 + 5365/8388608*n^6 + 839/524288*n^7 - 595/2097152*n^8 - 2431/16777216*n^9 - 22933/16777216*n^10 - 33269/8388608*n^11 - 81719/16777216*n^12 - 185725/16777216*n^13) * eps^13
        + (199327/33554432 + 49237/16777216*n + 93101/33554432*n^2 + 29853/16777216*n^3 + 78579/33554432*n^4 + 285/262144*n^5 + 64637/33554432*n^6 + 3015/8388608*n^7 + 38843/33554432*n^8 - 6783/16777216*n^9 - 13889/33554432*n^10 - 22287/16777216*n^11 - 126293/33554432*n^12 - 37145/8388608*n^13 - 334305/33554432*n^14) * eps^14
        + (5651931/1073741824 + 3197305/1073741824*n + 2129255/1073741824*n^2 + 2385073/1073741824*n^3 + 1438067/1073741824*n^4 + 2065081/1073741824*n^5 + 830627/1073741824*n^6 + 1651687/1073741824*n^7 + 172907/1073741824*n^8 + 879393/1073741824*n^9 - 515185/1073741824*n^10 - 645031/1073741824*n^11 - 1374365/1073741824*n^12 - 3825935/1073741824*n^13 - 4345965/1073741824*n^14) * eps^15
        + (10594535/2147483648 + 2577049/1073741824*n + 2340339/1073741824*n^2 + 1599809/1073741824*n^3 + 1974139/1073741824*n^4 + 1095805/1073741824*n^5 + 855347/536870912*n^6 + 580477/1073741824*n^7 + 330109/268435456*n^8 + 20577/1073741824*n^9 + 598443/1073741824*n^10 - 564167/1073741824*n^11 - 783541/1073741824*n^12 - 1317555/1073741824*n^13) * eps^16
        + (9550675/2147483648 + 20752127/8589934592*n + 7056899/4294967296*n^2 + 7580255/4294967296*n^3 + 4992507/4294967296*n^4 + 3321125/2147483648*n^5 + 3349163/4294967296*n^6 + 5700229/4294967296*n^7 + 1567945/4294967296*n^8 + 263547/268435456*n^9 - 355965/4294967296*n^10 + 1518119/4294967296*n^11 - 2366355/4294967296*n^12) * eps^17
        + (72058593/17179869184 + 8629549/4294967296*n + 30360645/17179869184*n^2 + 5413229/4294967296*n^3 + 12734831/8589934592*n^4 + 3957093/4294967296*n^5 + 11280727/8589934592*n^6 + 2549757/4294967296*n^7 + 9531415/8589934592*n^8 + 993989/4294967296*n^9 + 6705875/8589934592*n^10 - 671807/4294967296*n^11) * eps^18
        + (263253385/68719476736 + 138258975/68719476736*n + 23816915/17179869184*n^2 + 198093717/137438953472*n^3 + 69240987/68719476736*n^4 + 87088843/68719476736*n^5 + 50514007/68719476736*n^6 + 77115649/68719476736*n^7 + 30761115/68719476736*n^8 + 63886991/68719476736*n^9 + 8860067/68719476736*n^10) * eps^19
        + (499116509/137438953472 + 29445517/17179869184*n + 403691887/274877906944*n^2 + 37063307/34359738368*n^3 + 336216217/274877906944*n^4 + 56373745/68719476736*n^5 + 9400419/8589934592*n^6 + 40361177/68719476736*n^7 + 4136725/4294967296*n^8 + 22806365/68719476736*n^9) * eps^20
        + (921106197/274877906944 + 1880398291/1099511627776*n + 326574877/274877906944*n^2 + 661516723/549755813888*n^3 + 482354011/549755813888*n^4 + 1162954687/1099511627776*n^5 + 185209863/274877906944*n^6 + 261495221/274877906944*n^7 + 64353371/137438953472*n^8) * eps^21
        + (7015755337/2199023255552 + 408123935/274877906944*n + 2737209361/2199023255552*n^2 + 128335869/137438953472*n^3 + 2262026963/2199023255552*n^4 + 100083329/137438953472*n^5 + 2032983351/2199023255552*n^6 + 152722157/274877906944*n^7) * eps^22
        + (52217815849/17592186044416 + 25998927035/17592186044416*n + 18152051013/17592186044416*n^2 + 17993187773/17592186044416*n^3 + 13531950573/17592186044416*n^4 + 15783055573/17592186044416*n^5 + 1342789487/2199023255552*n^6) * eps^23
        + (99797592861/35184372088832 + 22918110427/17592186044416*n + 9429859753/8796093022208*n^2 + 14370219019/17592186044416*n^3 + 15464224607/17592186044416*n^4 + 5696035625/8796093022208*n^5) * eps^24
        + (93477766213/35184372088832 + 182178015931/140737488355328*n + 63784112813/70368744177664*n^2 + 15523581719/17592186044416*n^3 + 47802611279/70368744177664*n^4) * eps^25
        + (716876091533/281474976710656 + 81306684531/70368744177664*n + 263375014467/281474976710656*n^2 + 50762313771/70368744177664*n^3) * eps^26
        + (2701098070323/1125899906842624 + 1291014428313/1125899906842624*n + 905405918351/1125899906842624*n^2) * eps^27
        + (5192918413211/2251799813685248 + 1164465998161/1125899906842624*n) * eps^28
        + 4914956648311/2251799813685248 * eps^29;
C3[2] = + (1/16 - 3/32*n + 1/32*n^2) * eps^2
        + (3/64 - 1/32*n - 3/64*n^2 + 1/32*n^3) * eps^3
        + (3/128 + 1/128*n - 9/256*n^2 - 3/128*n^3 + 7/256*n^4) * eps^4
        + (5/256 + 1/256*n - 1/128*n^2 - 7/256*n^3 - 3/256*n^4 + 3/128*n^5) * eps^5
        + (27/2048 + 69/8192*n - 39/8192*n^2 - 47/4096*n^3 - 41/2048*n^4 - 45/8192*n^5 + 165/8192*n^6) * eps^6
        + (187/16384 + 39/8192*n + 31/16384*n^2 - 63/8192*n^3 - 185/16384*n^4 - 119/8192*n^5 - 33/16384*n^6 + 143/8192*n^7) * eps^7
        + (287/32768 + 47/8192*n + 31/65536*n^2 - 3/2048*n^3 - 537/65536*n^4 - 41/4096*n^5 - 693/65536*n^6 + 1001/65536*n^8) * eps^8
        + (255/32768 + 249/65536*n + 43/16384*n^2 - 119/65536*n^3 - 25/8192*n^4 - 507/65536*n^5 - 35/4096*n^6 - 507/65536*n^7 + 39/32768*n^8 + 221/16384*n^9) * eps^9
        + (1675/262144 + 2127/524288*n + 753/524288*n^2 + 357/524288*n^3 - 3109/1048576*n^4 - 3873/1048576*n^5 - 1821/262144*n^6 - 1885/262144*n^7 - 2977/524288*n^8 + 1989/1048576*n^9 + 12597/1048576*n^10) * eps^10
        + (6065/1048576 + 1551/524288*n + 75/32768*n^2 - 5/262144*n^3 - 1085/2097152*n^4 - 1815/524288*n^5 - 8057/2097152*n^6 - 1597/262144*n^7 - 12633/2097152*n^8 - 4369/1048576*n^9 + 4845/2097152*n^10 + 11305/1048576*n^11) * eps^11
        + (10377/2097152 + 1585/524288*n + 12521/8388608*n^2 + 73/65536*n^3 - 7799/8388608*n^4 - 645/524288*n^5 - 1883/524288*n^6 - 7843/2097152*n^7 - 2769/524288*n^8 - 21165/4194304*n^9 - 25517/8388608*n^10 + 10659/4194304*n^11 + 81719/8388608*n^12) * eps^12
        + (2381/524288 + 19679/8388608*n + 3951/2097152*n^2 + 4591/8388608*n^3 + 1267/4194304*n^4 - 6211/4194304*n^5 - 6839/4194304*n^6 - 3691/1048576*n^7 - 29513/8388608*n^8 - 38199/8388608*n^9 - 17765/4194304*n^10 - 18411/8388608*n^11 + 22287/8388608*n^12 + 37145/4194304*n^13) * eps^13
        + (267955/67108864 + 1262293/536870912*n + 723929/536870912*n^2 + 300995/268435456*n^3 - 28407/268435456*n^4 - 136037/536870912*n^5 - 962677/536870912*n^6 - 122923/67108864*n^7 - 897497/268435456*n^8 - 1743367/536870912*n^9 - 2103053/536870912*n^10 - 957049/268435456*n^11 - 52003/33554432*n^12 + 1448655/536870912*n^13 + 4345965/536870912*n^14) * eps^14
        + (3976491/1073741824 + 1022503/536870912*n + 1663043/1073741824*n^2 + 377461/536870912*n^3 + 604683/1073741824*n^4 - 298493/536870912*n^5 - 671633/1073741824*n^6 - 1045847/536870912*n^7 - 2047913/1073741824*n^8 - 1673607/536870912*n^9 - 3182937/1073741824*n^10 - 1808097/536870912*n^11 - 3232489/1073741824*n^12 - 565915/536870912*n^13 + 2890755/1073741824*n^14) * eps^15
        + (7129743/2147483648 + 1015025/536870912*n + 5052845/4294967296*n^2 + 1096857/1073741824*n^3 + 1006901/4294967296*n^4 + 10157/67108864*n^5 - 3691453/4294967296*n^6 - 232785/268435456*n^7 - 8591613/4294967296*n^8 - 2045245/1073741824*n^9 - 12341583/4294967296*n^10 - 1443525/536870912*n^11 - 12440079/4294967296*n^12 - 2737805/1073741824*n^13) * eps^16
        + (6667727/2147483648 + 6786587/4294967296*n + 2765703/2147483648*n^2 + 3065499/4294967296*n^3 + 1341327/2147483648*n^4 - 481047/4294967296*n^5 - 80463/536870912*n^6 - 4538443/4294967296*n^7 - 2183311/2147483648*n^8 - 8533921/4294967296*n^9 - 3983383/2147483648*n^10 - 11294905/4294967296*n^11 - 5218401/2147483648*n^12) * eps^17
        + (48519273/17179869184 + 53624999/34359738368*n + 35043145/34359738368*n^2 + 31055675/34359738368*n^3 + 25399201/68719476736*n^4 + 10932099/34359738368*n^5 - 25183979/68719476736*n^6 - 12612269/34359738368*n^7 - 80897803/68719476736*n^8 - 37844017/34359738368*n^9 - 132790935/68719476736*n^10 - 61071857/34359738368*n^11) * eps^18
        + (182709161/68719476736 + 45893303/34359738368*n + 37309115/34359738368*n^2 + 2893075/4294967296*n^3 + 21013705/34359738368*n^4 + 7175491/68719476736*n^5 + 2804597/34359738368*n^6 - 37828469/68719476736*n^7 - 17888297/34359738368*n^8 - 85404217/68719476736*n^9 - 39202063/34359738368*n^10) * eps^19
        + (336130837/137438953472 + 180823959/137438953472*n + 487608355/549755813888*n^2 + 218243165/274877906944*n^3 + 227499107/549755813888*n^4 + 104333133/274877906944*n^5 - 13837431/137438953472*n^6 - 27388031/274877906944*n^7 - 93516413/137438953472*n^8 - 172126779/274877906944*n^9) * eps^20
        + (636339537/274877906944 + 630601557/549755813888*n + 510119863/549755813888*n^2 + 339882125/549755813888*n^3 + 157181907/274877906944*n^4 + 57322697/274877906944*n^5 + 53319741/274877906944*n^6 - 35494201/137438953472*n^7 - 65167699/274877906944*n^8) * eps^21
        + (4724647749/2199023255552 + 9924101863/8796093022208*n + 6828890391/8796093022208*n^2 + 3070661829/4398046511104*n^3 + 229152657/549755813888*n^4 + 3452592737/8796093022208*n^5 + 390195853/8796093022208*n^6 + 403726013/8796093022208*n^7) * eps^22
        + (35940468233/17592186044416 + 8781999081/8796093022208*n + 14121810537/17592186044416*n^2 + 4938417863/8796093022208*n^3 + 9227803497/17592186044416*n^4 + 2245716697/8796093022208*n^5 + 2160045085/8796093022208*n^6) * eps^23
        + (67197451821/35184372088832 + 8631642763/8796093022208*n + 48175476253/70368744177664*n^2 + 5424112681/8796093022208*n^3 + 28247205103/70368744177664*n^4 + 421237869/1099511627776*n^5) * eps^24
        + (64142976365/35184372088832 + 61855152171/70368744177664*n + 385976459/549755813888*n^2 + 35768834103/70368744177664*n^3 + 16801928753/35184372088832*n^4) * eps^25
        + (482598495517/281474976710656 + 486224128685/562949953421312*n + 342398306855/562949953421312*n^2 + 2408805385/4398046511104*n^3) * eps^26
        + (1848743160243/1125899906842624 + 439979250473/562949953421312*n + 698099481901/1125899906842624*n^2) * eps^27
        + (3494999262339/2251799813685248 + 1729207092437/2251799813685248*n) * eps^28
        + 6713540223121/4503599627370496 * eps^29;
C3[3] = + (5/192 - 3/64*n + 5/192*n^2 - 1/192*n^3) * eps^3
        + (3/128 - 5/192*n - 1/64*n^2 + 5/192*n^3 - 1/128*n^4) * eps^4
        + (7/512 - 1/384*n - 77/3072*n^2 + 5/3072*n^3 + 65/3072*n^4 - 9/1024*n^5) * eps^5
        + (3/256 - 1/1024*n - 71/6144*n^2 - 47/3072*n^3 + 9/1024*n^4 + 25/1536*n^5 - 55/6144*n^6) * eps^6
        + (139/16384 + 143/49152*n - 383/49152*n^2 - 179/16384*n^3 - 121/16384*n^4 + 547/49152*n^5 + 605/49152*n^6 - 143/16384*n^7) * eps^7
        + (243/32768 + 95/49152*n - 41/16384*n^2 - 147/16384*n^3 - 389/49152*n^4 - 109/49152*n^5 + 557/49152*n^6 + 455/49152*n^7 - 273/32768*n^8) * eps^8
        + (581/98304 + 377/131072*n - 33/16384*n^2 - 907/196608*n^3 - 515/65536*n^4 - 1937/393216*n^5 + 89/98304*n^6 + 2093/196608*n^7 + 455/65536*n^8 - 1547/196608*n^9) * eps^9
        + (1383/262144 + 103/49152*n - 17/262144*n^2 - 127/32768*n^3 - 3853/786432*n^4 - 25/4096*n^5 - 2011/786432*n^6 + 265/98304*n^7 + 1895/196608*n^8 + 85/16384*n^9 - 969/131072*n^10) * eps^10
        + (4649/1048576 + 7447/3145728*n - 77/393216*n^2 - 3663/2097152*n^3 - 9285/2097152*n^4 - 27433/6291456*n^5 - 27545/6291456*n^6 - 2627/3145728*n^7 + 22993/6291456*n^8 + 17969/2097152*n^9 + 8075/2097152*n^10 - 14535/2097152*n^11) * eps^11
        + (8439/2097152 + 241/131072*n + 7829/12582912*n^2 - 1667/1048576*n^3 - 5295/2097152*n^4 - 26867/6291456*n^5 - 14817/4194304*n^6 - 18287/6291456*n^7 + 1505/4194304*n^8 + 25823/6291456*n^9 + 15827/2097152*n^10 + 17765/6291456*n^11 - 81719/12582912*n^12) * eps^12
        + (58663/16777216 + 48239/25165824*n + 81155/201326592*n^2 - 108067/201326592*n^3 - 467735/201326592*n^4 - 550477/201326592*n^5 - 380633/100663296*n^6 - 269125/100663296*n^7 - 174181/100663296*n^8 + 9707/8388608*n^9 + 854981/201326592*n^10 + 444125/67108864*n^11 + 408595/201326592*n^12 - 408595/67108864*n^13) * eps^13
        + (53929/16777216 + 313117/201326592*n + 317377/402653184*n^2 - 114511/201326592*n^3 - 62369/50331648*n^4 - 21877/8388608*n^5 - 1055003/402653184*n^6 - 106461/33554432*n^7 - 381119/201326592*n^8 - 55243/67108864*n^9 + 672619/402653184*n^10 + 846887/201326592*n^11 + 1166353/201326592*n^12 + 142025/100663296*n^13 - 766935/134217728*n^14) * eps^14
        + (9205697/3221225472 + 1685361/1073741824*n + 631247/1073741824*n^2 - 12349/1073741824*n^3 - 1279425/1073741824*n^4 - 1722535/1073741824*n^5 - 8411347/3221225472*n^6 - 7543081/3221225472*n^7 - 2745069/1073741824*n^8 - 1319223/1073741824*n^9 - 150233/1073741824*n^10 + 6386185/3221225472*n^11 + 4360823/1073741824*n^12 + 16332875/3221225472*n^13 + 994175/1073741824*n^14) * eps^15
        + (5698375/2147483648 + 1411153/1073741824*n + 633185/805306368*n^2 - 312125/3221225472*n^3 - 906475/1610612736*n^4 - 4985293/3221225472*n^5 - 1865903/1073741824*n^6 - 2632335/1073741824*n^7 - 2142387/1073741824*n^8 - 2132439/1073741824*n^9 - 137693/201326592*n^10 + 1176251/3221225472*n^11 + 3469849/1610612736*n^12 + 12431155/3221225472*n^13) * eps^16
        + (5151335/2147483648 + 11221815/8589934592*n + 4004635/6442450944*n^2 + 352181/1610612736*n^3 - 7504877/12884901888*n^4 - 23563667/25769803776*n^5 - 7348445/4294967296*n^6 - 924507/536870912*n^7 - 4740015/2147483648*n^8 - 14053273/8589934592*n^9 - 2388169/1610612736*n^10 - 1600145/6442450944*n^11 + 9427907/12884901888*n^12) * eps^17
        + (38568657/17179869184 + 2405303/2147483648*n + 12559943/17179869184*n^2 + 101021/805306368*n^3 - 3473571/17179869184*n^4 - 11685365/12884901888*n^5 - 57369983/51539607552*n^6 - 22445501/12884901888*n^7 - 27767351/17179869184*n^8 - 776185/402653184*n^9 - 22223933/17179869184*n^10 - 6776669/6442450944*n^11) * eps^18
        + (141238745/68719476736 + 227781229/206158430208*n + 15439981/25769803776*n^2 + 129846877/412316860416*n^3 - 17007629/68719476736*n^4 - 34417161/68719476736*n^5 - 227700493/206158430208*n^6 - 82496459/68719476736*n^7 - 347760895/206158430208*n^8 - 100402157/68719476736*n^9 - 338650721/206158430208*n^10) * eps^19
        + (266070741/137438953472 + 24865997/25769803776*n + 546610979/824633720832*n^2 + 23564155/103079215104*n^3 - 1988681/274877906944*n^4 - 35689789/68719476736*n^5 - 18022529/25769803776*n^6 - 82884377/68719476736*n^7 - 62369083/51539607552*n^8 - 108501709/68719476736*n^9) * eps^20
        + (1476084109/824633720832 + 1042422451/1099511627776*n + 1838348957/3298534883328*n^2 + 1148287217/3298534883328*n^3 - 65602265/1099511627776*n^4 - 25911799/103079215104*n^5 - 1166561623/1649267441664*n^6 - 450241025/549755813888*n^7 - 4082983123/3298534883328*n^8) * eps^21
        + (3727307793/2199023255552 + 2771727475/3298534883328*n + 1965618587/3298534883328*n^2 + 299691921/1099511627776*n^3 + 648655007/6597069766656*n^4 - 232283647/824633720832*n^5 - 1414792807/3298534883328*n^6 - 1364945647/1649267441664*n^7) * eps^22
        + (27791243081/17592186044416 + 43484270377/52776558133248*n + 8988365213/17592186044416*n^2 + 6177195751/17592186044416*n^3 + 821647265/17592186044416*n^4 - 5244741905/52776558133248*n^5 - 5898760729/13194139533312*n^6) * eps^23
        + (52866931869/35184372088832 + 13002628835/17592186044416*n + 28235801693/52776558133248*n^2 + 15115493921/52776558133248*n^3 + 1357399595/8796093022208*n^4 - 1176448685/8796093022208*n^5) * eps^24
        + (49596004877/35184372088832 + 101897209187/140737488355328*n + 16392942713/35184372088832*n^2 + 35874509113/105553116266496*n^3 + 11256301655/105553116266496*n^4) * eps^25
        + (378812456237/281474976710656 + 23082024431/35184372088832*n + 406385867693/844424930131968*n^2 + 30062357575/105553116266496*n^3) * eps^26
        + (4287844495145/3377699720527872 + 723291681375/1125899906842624*n + 477936436199/1125899906842624*n^2) * eps^27
        + (2738088177221/2251799813685248 + 1982787518731/3377699720527872*n) * eps^28
        + 41515375436483/36028797018963968 * eps^29;
C3[4] = + (7/512 - 7/256*n + 5/256*n^2 - 7/1024*n^3 + 1/1024*n^4) * eps^4
        + (7/512 - 5/256*n - 7/2048*n^2 + 9/512*n^3 - 21/2048*n^4 + 1/512*n^5) * eps^5
        + (9/1024 - 43/8192*n - 129/8192*n^2 + 39/4096*n^3 + 91/8192*n^4 - 91/8192*n^5 + 11/4096*n^6) * eps^6
        + (127/16384 - 23/8192*n - 165/16384*n^2 - 47/8192*n^3 + 213/16384*n^4 + 11/2048*n^5 - 175/16384*n^6 + 13/4096*n^7) * eps^7
        + (193/32768 + 3/8192*n - 505/65536*n^2 - 227/32768*n^3 + 75/65536*n^4 + 801/65536*n^5 + 165/131072*n^6 - 637/65536*n^7 + 455/131072*n^8) * eps^8
        + (171/32768 + 25/65536*n - 259/65536*n^2 - 471/65536*n^3 - 351/131072*n^4 + 605/131072*n^5 + 41/4096*n^6 - 189/131072*n^7 - 1127/131072*n^8 + 119/32768*n^9) * eps^9
        + (1121/262144 + 339/262144*n - 801/262144*n^2 - 2525/524288*n^3 - 2519/524288*n^4 + 73/131072*n^5 + 1539/262144*n^6 + 1989/262144*n^7 - 1633/524288*n^8 - 3927/524288*n^9 + 969/262144*n^10) * eps^10
        + (2017/524288 + 273/262144*n - 1467/1048576*n^2 - 277/65536*n^3 - 4123/1048576*n^4 - 153/65536*n^5 + 1331/524288*n^6 + 1549/262144*n^7 + 5677/1048576*n^8 - 1071/262144*n^9 - 6783/1048576*n^10 + 969/262144*n^11) * eps^11
        + (55215/16777216 + 11307/8388608*n - 2363/2097152*n^2 - 177843/67108864*n^3 - 268499/67108864*n^4 - 41907/16777216*n^5 - 6403/16777216*n^6 + 118801/33554432*n^7 + 179785/33554432*n^8 + 30345/8388608*n^9 - 154071/33554432*n^10 - 373065/67108864*n^11 + 245157/67108864*n^12) * eps^12
        + (50365/16777216 + 2327/2097152*n - 47759/134217728*n^2 - 76829/33554432*n^3 - 383837/134217728*n^4 - 105473/33554432*n^5 - 74037/67108864*n^6 + 16197/16777216*n^7 + 260819/67108864*n^8 + 153431/33554432*n^9 + 294443/134217728*n^10 - 80465/16777216*n^11 - 639331/134217728*n^12 + 120175/33554432*n^13) * eps^13
        + (2769/1048576 + 654529/536870912*n - 163129/536870912*n^2 - 372645/268435456*n^3 - 1430285/536870912*n^4 - 1335009/536870912*n^5 - 284489/134217728*n^6 + 987/33554432*n^7 + 482449/268435456*n^8 + 2057345/536870912*n^9 + 2007901/536870912*n^10 + 293645/268435456*n^11 - 2581359/536870912*n^12 - 2187185/536870912*n^13 + 937365/268435456*n^14) * eps^14
        + (2615571/1073741824 + 552353/536870912*n + 90895/1073741824*n^2 - 652503/536870912*n^3 - 1983405/1073741824*n^4 - 680875/268435456*n^5 - 2001037/1073741824*n^6 - 156103/134217728*n^7 + 920027/1073741824*n^8 + 1204095/536870912*n^9 + 3815723/1073741824*n^10 + 1584867/536870912*n^11 + 278231/1073741824*n^12 - 315445/67108864*n^13 - 3736005/1073741824*n^14) * eps^15
        + (4692619/2147483648 + 572057/536870912*n + 260179/4294967296*n^2 - 2984769/4294967296*n^3 - 3625809/2147483648*n^4 - 8162427/4294967296*n^5 - 18409849/8589934592*n^6 - 639067/536870912*n^7 - 3156661/8589934592*n^8 + 3027631/2147483648*n^9 + 162319/67108864*n^10 + 13593091/4294967296*n^11 + 9656343/4294967296*n^12 - 1568255/4294967296*n^13) * eps^16
        + (4367867/2147483648 + 3942989/4294967296*n + 2323595/8589934592*n^2 - 2679169/4294967296*n^3 - 2473899/2147483648*n^4 - 15712829/8589934592*n^5 - 14665951/8589934592*n^6 - 14129447/8589934592*n^7 - 2450171/4294967296*n^8 + 529403/2147483648*n^9 + 14965037/8589934592*n^10 + 5189391/2147483648*n^11 + 5874821/2147483648*n^12) * eps^17
        + (31803789/17179869184 + 31805471/34359738368*n + 7655783/34359738368*n^2 - 10716843/34359738368*n^3 - 18130187/17179869184*n^4 - 23156361/17179869184*n^5 - 60088211/34359738368*n^6 - 11928127/8589934592*n^7 - 9775259/8589934592*n^8 - 1657343/34359738368*n^9 + 23786693/34359738368*n^10 + 65561705/34359738368*n^11) * eps^18
        + (119278493/68719476736 + 27869745/34359738368*n + 2944971/8589934592*n^2 - 10021441/34359738368*n^3 - 48412679/68719476736*n^4 - 43782451/34359738368*n^5 - 46594423/34359738368*n^6 - 52867989/34359738368*n^7 - 70453029/68719476736*n^8 - 23159185/34359738368*n^9 + 12551255/34359738368*n^10) * eps^19
        + (109782837/68719476736 + 110884309/137438953472*n + 159981789/549755813888*n^2 - 106745493/1099511627776*n^3 - 717924527/1099511627776*n^4 - 15979315/17179869184*n^5 - 732221291/549755813888*n^6 - 21353761/17179869184*n^7 - 347832177/274877906944*n^8 - 732828227/1099511627776*n^9) * eps^20
        + (414212295/274877906944 + 394066451/549755813888*n + 797767751/2199023255552*n^2 - 13938969/137438953472*n^3 - 922185663/2199023255552*n^4 - 241117663/274877906944*n^5 - 70260475/68719476736*n^6 - 702480169/549755813888*n^7 - 2332298309/2199023255552*n^8) * eps^21
        + (3077054969/2199023255552 + 6225526419/8796093022208*n + 2760680993/8796093022208*n^2 + 107993597/4398046511104*n^3 - 3483012103/8796093022208*n^4 - 5569520181/8796093022208*n^5 - 4345994585/4398046511104*n^6 - 8944055483/8796093022208*n^7) * eps^22
        + (23336011385/17592186044416 + 5594946455/8796093022208*n + 6303559381/17592186044416*n^2 + 78999975/8796093022208*n^3 - 4164504717/17592186044416*n^4 - 330002595/549755813888*n^5 - 3315820133/4398046511104*n^6) * eps^23
        + (43652141925/35184372088832 + 5501899769/8796093022208*n + 22131275675/70368744177664*n^2 + 820267293/8796093022208*n^3 - 16179701905/70368744177664*n^4 - 1872775091/4398046511104*n^5) * eps^24
        + (41556934973/35184372088832 + 39939504101/70368744177664*n + 753834291/2199023255552*n^2 + 5148539461/70368744177664*n^3 - 4176807933/35184372088832*n^4) * eps^25
        + (312802619769/281474976710656 + 78374027619/140737488355328*n + 42845064993/140737488355328*n^2 + 18460662479/140737488355328*n^3) * eps^26
        + (298867963845/281474976710656 + 71700391575/140737488355328*n + 45431388475/140737488355328*n^2) * eps^27
        + (36174484487935/36028797018963968 + 8994085968251/18014398509481984*n) * eps^28
        + 34671257326469/36028797018963968 * eps^29;
C3[5] = + (21/2560 - 9/512*n + 15/1024*n^2 - 7/1024*n^3 + 9/5120*n^4 - 1/5120*n^5) * eps^5
        + (9/1024 - 15/1024*n + 3/2048*n^2 + 57/5120*n^3 - 5/512*n^4 + 9/2560*n^5 - 1/2048*n^6) * eps^6
        + (99/16384 - 91/16384*n - 781/81920*n^2 + 883/81920*n^3 + 319/81920*n^4 - 783/81920*n^5 + 387/81920*n^6 - 13/16384*n^7) * eps^7
        + (179/32768 - 55/16384*n - 79/10240*n^2 - 27/81920*n^3 + 461/40960*n^4 - 139/81920*n^5 - 65/8192*n^6 + 441/81920*n^7 - 35/32768*n^8) * eps^8
        + (141/32768 - 109/131072*n - 217/32768*n^2 - 219/65536*n^3 + 1559/327680*n^4 + 5431/655360*n^5 - 203/40960*n^6 - 1943/327680*n^7 + 369/65536*n^8 - 85/65536*n^9) * eps^9
        + (1013/262144 - 15/32768*n - 5399/1310720*n^2 - 199/40960*n^3 + 1267/1310720*n^4 + 1007/163840*n^5 + 6277/1310720*n^6 - 527/81920*n^7 - 659/163840*n^8 + 459/81920*n^9 - 969/655360*n^10) * eps^10
        + (6787/2097152 + 797/2097152*n - 34683/10485760*n^2 - 257/65536*n^3 - 7753/4194304*n^4 + 72641/20971520*n^5 + 115867/20971520*n^6 + 38817/20971520*n^7 - 142119/20971520*n^8 - 50133/20971520*n^9 + 113373/20971520*n^10 - 6783/4194304*n^11) * eps^11
        + (12315/4194304 + 799/2097152*n - 41519/20971520*n^2 - 19671/5242880*n^3 - 93317/41943040*n^4 + 12949/20971520*n^5 + 18211/4194304*n^6 + 86317/20971520*n^7 - 2971/10485760*n^8 - 135789/20971520*n^9 - 11229/10485760*n^10 + 107217/20971520*n^11 - 14421/8388608*n^12) * eps^12
        + (42753/16777216 + 11749/16777216*n - 534457/335544320*n^2 - 914519/335544320*n^3 - 953267/335544320*n^4 - 128591/335544320*n^5 + 354589/167772160*n^6 + 703457/167772160*n^7 + 433157/167772160*n^8 - 17697/10485760*n^9 - 1961579/335544320*n^10 - 2717/67108864*n^11 + 1600731/335544320*n^12 - 120175/67108864*n^13) * eps^13
        + (78439/33554432 + 41589/67108864*n - 606887/671088640*n^2 - 813811/335544320*n^3 - 795669/335544320*n^4 - 126481/83886080*n^5 + 693943/671088640*n^6 + 92775/33554432*n^7 + 1181311/335544320*n^8 + 409551/335544320*n^9 - 1692661/671088640*n^10 - 1705561/335544320*n^11 + 124729/167772160*n^12 + 148005/33554432*n^13 - 246675/134217728*n^14) * eps^14
        + (11153319/5368709120 + 806753/1073741824*n - 3945181/5368709120*n^2 - 9244317/5368709120*n^3 - 12780537/5368709120*n^4 - 8161927/5368709120*n^5 - 291353/1073741824*n^6 + 10250183/5368709120*n^7 + 15202259/5368709120*n^8 + 14255529/5368709120*n^9 + 710823/5368709120*n^10 - 3162357/1073741824*n^11 - 23067781/5368709120*n^12 + 1424137/1073741824*n^13 + 4351347/1073741824*n^14) * eps^15
        + (4132007/2147483648 + 710105/1073741824*n - 969349/2684354560*n^2 - 1619999/1073741824*n^3 - 5011741/2684354560*n^4 - 9930299/5368709120*n^5 - 1564801/2684354560*n^6 + 3561709/5368709120*n^7 + 1553999/671088640*n^8 + 13695849/5368709120*n^9 + 4792721/2684354560*n^10 - 3635919/5368709120*n^11 - 8283611/2684354560*n^12 - 3808363/1073741824*n^13) * eps^16
        + (3734859/2147483648 + 6155471/8589934592*n - 789297/2684354560*n^2 - 11355613/10737418240*n^3 - 37704683/21474836480*n^4 - 67981809/42949672960*n^5 - 4910633/4294967296*n^6 + 122353/536870912*n^7 + 13584809/10737418240*n^8 + 102204983/42949672960*n^9 + 22521571/10737418240*n^10 + 5393991/5368709120*n^11 - 26677631/21474836480*n^12) * eps^17
        + (27894537/17179869184 + 341135/536870912*n - 6919577/85899345920*n^2 - 9962193/10737418240*n^3 - 116140263/85899345920*n^4 - 35024383/21474836480*n^5 - 93895333/85899345920*n^6 - 9724319/21474836480*n^7 + 71547201/85899345920*n^8 + 16957261/10737418240*n^9 + 38167643/17179869184*n^10 + 4254817/2684354560*n^11) * eps^18
        + (102149077/68719476736 + 45149747/68719476736*n - 5268353/85899345920*n^2 - 438238873/687194767360*n^3 - 21374577/17179869184*n^4 - 229885771/171798691840*n^5 - 111314271/85899345920*n^6 - 190649511/343597383680*n^7 + 21780193/171798691840*n^8 + 42150359/34359738368*n^9 + 575291951/343597383680*n^10) * eps^19
        + (191992897/137438953472 + 10102641/17179869184*n + 91038377/1374389534720*n^2 - 48406631/85899345920*n^3 - 1306192047/1374389534720*n^4 - 111829633/85899345920*n^5 - 775578061/687194767360*n^6 - 75280887/85899345920*n^7 - 41514599/687194767360*n^8 + 38659177/68719476736*n^9) * eps^20
        + (355055163/274877906944 + 653193131/1099511627776*n + 347941049/5497558138880*n^2 - 2051760759/5497558138880*n^3 - 4780409067/5497558138880*n^4 - 2891926301/2748779069440*n^5 - 3246633917/2748779069440*n^6 - 2255299589/2748779069440*n^7 - 500938259/1099511627776*n^8) * eps^21
        + (2684106857/2199023255552 + 589926107/1099511627776*n + 391603487/2748779069440*n^2 - 1831096049/5497558138880*n^3 - 7250179399/10995116277760*n^4 - 687030501/687194767360*n^5 - 2742957537/2748779069440*n^6 - 2629744457/2748779069440*n^7) * eps^22
        + (20014266089/17592186044416 + 9415408371/17592186044416*n + 2280678869/17592186044416*n^2 - 18044662719/87960930222080*n^3 - 10627395203/17592186044416*n^4 - 70583370027/87960930222080*n^5 - 10917838539/10995116277760*n^6) * eps^23
        + (38001723933/35184372088832 + 8573148395/17592186044416*n + 7931117147/43980465111040*n^2 - 16302072297/87960930222080*n^3 - 39871150043/87960930222080*n^4 - 33222569643/43980465111040*n^5) * eps^24
        + (178265154501/175921860444160 + 67917412749/140737488355328*n + 7195977601/43980465111040*n^2 - 17107988587/175921860444160*n^3 - 73408496063/175921860444160*n^4) * eps^25
        + (271858418651/281474976710656 + 3893205391/8796093022208*n + 277112865109/1407374883553280*n^2 - 1966777807/21990232555520*n^3) * eps^26
        + (4103246283741/4503599627370496 + 1965390008631/4503599627370496*n + 4035517048233/22517998136852480*n^2) * eps^27
        + (7848710341433/9007199254740992 + 1814136297259/4503599627370496*n) * eps^28
        + 29752988542989/36028797018963968 * eps^29;
C3[6] = + (11/2048 - 99/8192*n + 275/24576*n^2 - 77/12288*n^3 + 9/4096*n^4 - 11/24576*n^5 + 1/24576*n^6) * eps^6
        + (99/16384 - 275/24576*n + 55/16384*n^2 + 167/24576*n^3 - 407/49152*n^4 + 35/8192*n^5 - 55/49152*n^6 + 1/8192*n^7) * eps^7
        + (143/32768 - 253/49152*n - 1105/196608*n^2 + 481/49152*n^3 - 73/196608*n^4 - 169/24576*n^5 + 1067/196608*n^6 - 11/6144*n^7 + 15/65536*n^8) * eps^8
        + (33/8192 - 221/65536*n - 23/4096*n^2 + 457/196608*n^3 + 267/32768*n^4 - 329/65536*n^5 - 69/16384*n^6 + 375/65536*n^7 - 77/32768*n^8 + 17/49152*n^9) * eps^9
        + (1711/524288 - 4333/3145728*n - 16885/3145728*n^2 - 1343/1572864*n^3 + 17381/3145728*n^4 + 8519/2097152*n^5 - 42985/6291456*n^6 - 4885/3145728*n^7 + 8549/1572864*n^8 - 5797/2097152*n^9 + 969/2097152*n^10) * eps^10
        + (6223/2097152 - 2827/3145728*n - 23731/6291456*n^2 - 8959/3145728*n^3 + 11937/4194304*n^4 + 32207/6291456*n^5 + 5071/12582912*n^6 - 42571/6291456*n^7 + 7489/12582912*n^8 + 10115/2097152*n^9 - 12749/4194304*n^10 + 1197/2097152*n^11) * eps^11
        + (31829/12582912 - 647/4194304*n - 13305/4194304*n^2 - 23369/8388608*n^3 + 981/4194304*n^4 + 53003/12582912*n^5 + 161989/50331648*n^6 - 25313/12582912*n^7 - 288887/50331648*n^8 + 8937/4194304*n^9 + 204725/50331648*n^10 - 80465/25165824*n^11 + 33649/50331648*n^12) * eps^12
        + (19409/8388608 - 143/4194304*n - 108221/50331648*n^2 - 37559/12582912*n^3 - 11319/16777216*n^4 + 110569/50331648*n^5 + 49103/12582912*n^6 + 19233/16777216*n^7 - 6811/2097152*n^8 - 73151/16777216*n^9 + 156973/50331648*n^10 + 165187/50331648*n^11 - 164197/50331648*n^12 + 6325/8388608*n^13) * eps^13
        + (136403/67108864 + 149829/536870912*n - 951655/536870912*n^2 - 1940579/805306368*n^3 - 1290821/805306368*n^4 + 1817813/1610612736*n^5 + 4654573/1610612736*n^6 + 374953/134217728*n^7 - 210217/402653184*n^8 - 1945219/536870912*n^9 - 1593647/536870912*n^10 + 2958659/805306368*n^11 + 2038421/805306368*n^12 - 5245955/1610612736*n^13 + 444015/536870912*n^14) * eps^14
        + (2013531/1073741824 + 153447/536870912*n - 3812959/3221225472*n^2 - 3623809/1610612736*n^3 - 1720969/1073741824*n^4 - 155419/1610612736*n^5 + 2321319/1073741824*n^6 + 1446653/536870912*n^7 + 4820965/3221225472*n^8 - 881605/536870912*n^9 - 11135251/3221225472*n^10 - 927839/536870912*n^11 + 12596617/3221225472*n^12 + 2976545/1610612736*n^13 - 3437005/1073741824*n^14) * eps^15
        + (3610319/2147483648 + 689891/1610612736*n - 4192091/4294967296*n^2 - 5626007/3221225472*n^3 - 23482225/12884901888*n^4 - 63477/134217728*n^5 + 13148195/12884901888*n^6 + 2657655/1073741824*n^7 + 8738873/4294967296*n^8 + 89999/268435456*n^9 - 9718455/4294967296*n^10 - 9643399/3221225472*n^11 - 9027109/12884901888*n^12 + 1580215/402653184*n^13) * eps^16
        + (3357815/2147483648 + 5140585/12884901888*n - 1357887/2147483648*n^2 - 20205383/12884901888*n^3 - 10165433/6442450944*n^4 - 12859795/12884901888*n^5 + 3376837/6442450944*n^6 + 20985541/12884901888*n^7 + 14739271/6442450944*n^8 + 5247007/4294967296*n^9 - 3621415/6442450944*n^10 - 32175059/12884901888*n^11 - 15465929/6442450944*n^12) * eps^17
        + (73325191/51539607552 + 16029851/34359738368*n - 17954851/34359738368*n^2 - 124000031/103079215104*n^3 - 107691583/68719476736*n^4 - 26099447/25769803776*n^5 - 10228585/68719476736*n^6 + 124145675/103079215104*n^7 + 371070857/206158430208*n^8 + 11745371/6442450944*n^9 + 91139599/206158430208*n^10 - 30320905/25769803776*n^11) * eps^18
        + (91563605/68719476736 + 44091817/103079215104*n - 10830499/34359738368*n^2 - 27517235/25769803776*n^3 - 268855985/206158430208*n^4 - 82123075/68719476736*n^5 - 69647705/206158430208*n^6 + 109205227/206158430208*n^7 + 319534237/206158430208*n^8 + 114455667/68719476736*n^9 + 64469791/51539607552*n^10) * eps^19
        + (168518401/137438953472 + 189582913/412316860416*n - 142520949/549755813888*n^2 - 671006539/824633720832*n^3 - 2036680639/1649267441664*n^4 - 888938183/824633720832*n^5 - 275851423/412316860416*n^6 + 73762303/274877906944*n^7 + 200547467/206158430208*n^8 + 445330347/274877906944*n^9) * eps^20
        + (317520693/274877906944 + 231509165/549755813888*n - 214107557/1649267441664*n^2 - 396525643/549755813888*n^3 - 278406799/274877906944*n^4 - 920067617/824633720832*n^5 - 564306103/824633720832*n^6 - 58960025/412316860416*n^7 + 595823299/824633720832*n^8) * eps^21
        + (2358489413/2199023255552 + 11489787637/26388279066624*n - 908814505/8796093022208*n^2 - 2396614237/4398046511104*n^3 - 12411634453/13194139533312*n^4 - 8522185111/8796093022208*n^5 - 21849837611/26388279066624*n^6 - 2193761283/8796093022208*n^7) * eps^22
        + (17864718441/17592186044416 + 10555835899/26388279066624*n - 1055263841/52776558133248*n^2 - 4259460285/8796093022208*n^3 - 40456260929/52776558133248*n^4 - 25125823283/26388279066624*n^5 - 20228133965/26388279066624*n^6) * eps^23
        + (100244499991/105553116266496 + 7127188931/17592186044416*n - 2047769071/211106232532992*n^2 - 19029851431/52776558133248*n^3 - 49723762631/70368744177664*n^4 - 21473509045/26388279066624*n^5) * eps^24
        + (7943510175/8796093022208 + 78919576567/211106232532992*n + 2396202703/52776558133248*n^2 - 67906408573/211106232532992*n^3 - 30263574227/52776558133248*n^4) * eps^25
        + (956603287889/1125899906842624 + 2527332335909/6755399441055744*n + 105375782699/2251799813685248*n^2 - 394588464167/1688849860263936*n^3) * eps^26
        + (3651975781065/4503599627370496 + 780981164949/2251799813685248*n + 378631414483/4503599627370496*n^2) * eps^27
        + (6906351178529/9007199254740992 + 9311073056275/27021597764222976*n) * eps^28
        + 13225333818489/18014398509481984 * eps^29;
C3[7] = + (429/114688 - 143/16384*n + 143/16384*n^2 - 91/16384*n^3 + 39/16384*n^4 - 11/16384*n^5 + 13/114688*n^6 - 1/114688*n^7) * eps^7
        + (143/32768 - 143/16384*n + 65/16384*n^2 + 65/16384*n^3 - 109/16384*n^4 + 507/114688*n^5 - 27/16384*n^6 + 39/114688*n^7 - 1/32768*n^8) * eps^8
        + (429/131072 - 299/65536*n - 13/4096*n^2 + 269/32768*n^3 - 601/229376*n^4 - 989/229376*n^5 + 9475/1835008*n^6 - 4667/1835008*n^7 + 1157/1835008*n^8 - 17/262144*n^9) * eps^9
        + (403/131072 - 13/4096*n - 521/131072*n^2 + 393/114688*n^3 + 1209/229376*n^4 - 11001/1835008*n^5 - 3979/3670016*n^6 + 8821/1835008*n^7 - 833/262144*n^8 + 429/458752*n^9 - 57/524288*n^10) * eps^10
        + (5343/2097152 - 3345/2097152*n - 8863/2097152*n^2 + 2511/3670016*n^3 + 146613/29360128*n^4 + 27159/29360128*n^5 - 185267/29360128*n^6 + 47549/29360128*n^7 + 112179/29360128*n^8 - 103371/29360128*n^9 + 35815/29360128*n^10 - 665/4194304*n^11) * eps^11
        + (9825/4194304 - 2337/2097152*n - 13661/4194304*n^2 - 1405/1048576*n^3 + 205965/58720256*n^4 + 98019/29360128*n^5 - 15733/7340032*n^6 - 145237/29360128*n^7 + 99087/29360128*n^8 + 76233/29360128*n^9 - 106087/29360128*n^10 + 6149/4194304*n^11 - 1771/8388608*n^12) * eps^12
        + (2125/1048576 - 3903/8388608*n - 96259/33554432*n^2 - 410489/234881024*n^3 + 341577/234881024*n^4 + 441667/117440512*n^5 + 102545/117440512*n^6 - 411905/117440512*n^7 - 44531/14680064*n^8 + 996015/234881024*n^9 + 324603/234881024*n^10 - 118019/33554432*n^11 + 55913/33554432*n^12 - 8855/33554432*n^13) * eps^13
        + (31337/16777216 - 9845/33554432*n - 141287/67108864*n^2 - 514903/234881024*n^3 + 213351/469762048*n^4 + 158209/58720256*n^5 + 299101/117440512*n^6 - 132045/117440512*n^7 - 1686973/469762048*n^8 - 284559/234881024*n^9 + 1041819/234881024*n^10 + 72061/234881024*n^11 - 773421/234881024*n^12 + 213785/117440512*n^13 - 148005/469762048*n^14) * eps^14
        + (1780203/1073741824 + 2521/1073741824*n - 1916449/1073741824*n^2 - 14648021/7516192768*n^3 - 606289/1073741824*n^4 + 2068453/1073741824*n^5 + 19266365/7516192768*n^6 + 1015577/1073741824*n^7 - 17180199/7516192768*n^8 - 22143117/7516192768*n^9 + 1831549/7516192768*n^10 + 4498521/1073741824*n^11 - 4339571/7516192768*n^12 - 22471345/7516192768*n^13 + 14517945/7516192768*n^14) * eps^15
        + (3302903/2147483648 + 61025/1073741824*n - 1392303/1073741824*n^2 - 14509913/7516192768*n^3 - 6298927/7516192768*n^4 + 6457051/7516192768*n^5 + 17971091/7516192768*n^6 + 12735795/7516192768*n^7 - 3219137/7516192768*n^8 - 20216205/7516192768*n^9 - 15046077/7516192768*n^10 + 9532867/7516192768*n^11 + 3961599/1073741824*n^12 - 9497345/7516192768*n^13) * eps^16
        + (2983837/2147483648 + 1733855/8589934592*n - 4685403/4294967296*n^2 - 48201865/30064771072*n^3 - 36259515/30064771072*n^4 + 5527869/15032385536*n^5 + 1536743/939524096*n^6 + 63232859/30064771072*n^7 + 73671/117440512*n^8 - 1449355/1073741824*n^9 - 76937885/30064771072*n^10 - 30946235/30064771072*n^11 + 3570999/1879048192*n^12) * eps^17
        + (22292529/17179869184 + 899355/4294967296*n - 13492583/17179869184*n^2 - 44700791/30064771072*n^3 - 70120189/60129542144*n^4 - 3471339/15032385536*n^5 + 72969301/60129542144*n^6 + 478067/268435456*n^7 + 85725937/60129542144*n^8 - 9546319/30064771072*n^9 - 109115611/60129542144*n^10 - 63656897/30064771072*n^11) * eps^18
        + (81611253/68719476736 + 19508379/68719476736*n - 2837849/4294967296*n^2 - 1163707393/962072674304*n^3 - 75492929/60129542144*n^4 - 25075777/60129542144*n^5 + 141589169/240518168576*n^6 + 109200085/68719476736*n^7 + 51248003/34359738368*n^8 + 19485265/30064771072*n^9 - 68932559/68719476736*n^10) * eps^19
        + (153351409/137438953472 + 1171063/4294967296*n - 128254133/274877906944*n^2 - 32936875/30064771072*n^3 - 2152615067/1924145348608*n^4 - 167428859/240518168576*n^5 + 297094515/962072674304*n^6 + 261663431/240518168576*n^7 + 1509210613/962072674304*n^8 + 472288869/481036337152*n^9) * eps^20
        + (1984807995/1924145348608 + 342786907/1099511627776*n - 215809073/549755813888*n^2 - 3403522219/3848290697216*n^3 - 2125818367/1924145348608*n^4 - 5503162739/7696581394432*n^5 - 36779903/481036337152*n^6 + 1607563715/1924145348608*n^7 + 4856829545/3848290697216*n^8) * eps^21
        + (2142375089/2199023255552 + 161430897/549755813888*n - 585488823/2199023255552*n^2 - 3056980555/3848290697216*n^3 - 14718114487/15393162788864*n^4 - 793901309/962072674304*n^5 - 3165663579/15393162788864*n^6 + 420223757/962072674304*n^7) * eps^22
        + (15972732585/17592186044416 + 5524675807/17592186044416*n - 3921720195/17592186044416*n^2 - 78636170271/123145302310912*n^3 - 112176079097/123145302310912*n^4 - 94959230613/123145302310912*n^5 - 12796244065/30786325577728*n^6) * eps^23
        + (30308424633/35184372088832 + 5175108963/17592186044416*n - 2441010467/17592186044416*n^2 - 70491037987/123145302310912*n^3 - 47936493201/61572651155456*n^4 - 49286431235/61572651155456*n^5) * eps^24
        + (227458182793/281474976710656 + 85653158665/281474976710656*n - 16050121299/140737488355328*n^2 - 451259285829/985162418487296*n^3 - 718664673347/985162418487296*n^4) * eps^25
        + (433302064951/562949953421312 + 40095993459/140737488355328*n - 31913675941/562949953421312*n^2 - 57834268753/140737488355328*n^3) * eps^26
        + (3269693185065/4503599627370496 + 1302630681669/4503599627370496*n - 195127280595/4503599627370496*n^2) * eps^27
        + (6249998138435/9007199254740992 + 1221397131411/4503599627370496*n) * eps^28
        + 5922672166091/9007199254740992 * eps^29;
C3[8] = + (715/262144 - 429/65536*n + 455/65536*n^2 - 637/131072*n^3 + 315/131072*n^4 - 55/65536*n^5 + 13/65536*n^6 - 15/524288*n^7 + 1/524288*n^8) * eps^8
        + (429/131072 - 455/65536*n + 1053/262144*n^2 + 35/16384*n^3 - 1361/262144*n^4 + 69/16384*n^5 - 2095/1048576*n^6 + 77/131072*n^7 - 105/1048576*n^8 + 1/131072*n^9) * eps^9
        + (663/262144 - 4173/1048576*n - 1717/1048576*n^2 + 3485/524288*n^3 - 3825/1048576*n^4 - 9469/4194304*n^5 + 18469/4194304*n^6 - 6137/2097152*n^7 + 4455/4194304*n^8 - 885/4194304*n^9 + 19/1048576*n^10) * eps^10
        + (5057/2097152 - 3043/1048576*n - 5771/2097152*n^2 + 3893/1048576*n^3 + 25381/8388608*n^4 - 24103/4194304*n^5 + 8933/8388608*n^6 + 14179/4194304*n^7 - 28533/8388608*n^8 + 399/262144*n^9 - 2925/8388608*n^10 + 35/1048576*n^11) * eps^11
        + (4269/2097152 - 3449/2097152*n - 27455/8388608*n^2 + 104101/67108864*n^3 + 268897/67108864*n^4 - 17303/16777216*n^5 - 162199/33554432*n^6 + 27987/8388608*n^7 + 61363/33554432*n^8 - 115233/33554432*n^9 + 127809/67108864*n^10 - 33495/67108864*n^11 + 1771/33554432*n^12) * eps^12
        + (991/524288 - 10081/8388608*n - 365791/134217728*n^2 - 9717/33554432*n^3 + 465795/134217728*n^4 + 27547/16777216*n^5 - 106205/33554432*n^6 - 89529/33554432*n^7 + 289573/67108864*n^8 + 17427/67108864*n^9 - 420741/134217728*n^10 + 146465/67108864*n^11 - 87285/134217728*n^12 + 1265/16777216*n^13) * eps^13
        + (55563/33554432 - 344251/536870912*n - 1348101/536870912*n^2 - 244277/268435456*n^3 + 1091783/536870912*n^4 + 1517573/536870912*n^5 - 219671/268435456*n^6 - 915171/268435456*n^7 - 65579/134217728*n^8 + 2300175/536870912*n^9 - 565193/536870912*n^10 - 705799/268435456*n^11 + 1263413/536870912*n^12 - 426075/536870912*n^13 + 13455/134217728*n^14) * eps^14
        + (1650255/1073741824 - 242867/536870912*n - 2099405/1073741824*n^2 - 798587/536870912*n^3 + 1248445/1073741824*n^4 + 85085/33554432*n^5 + 1183963/1073741824*n^6 - 612017/268435456*n^7 - 2724453/1073741824*n^8 + 612213/536870912*n^9 + 3906577/1073741824*n^10 - 1079195/536870912*n^11 - 2173807/1073741824*n^12 + 651625/268435456*n^13 - 991575/1073741824*n^14) * eps^15
        + (92379/67108864 - 96367/536870912*n - 7319885/4294967296*n^2 - 6313853/4294967296*n^3 + 429327/2147483648*n^4 + 9301893/4294967296*n^5 + 15031227/8589934592*n^6 - 2278773/4294967296*n^7 - 22903967/8589934592*n^8 - 2725917/2147483648*n^9 + 4500833/2147483648*n^10 + 11631693/4294967296*n^11 - 5617393/2147483648*n^12 - 12008165/8589934592*n^13) * eps^16
        + (2756519/2147483648 - 430227/4294967296*n - 11245169/8589934592*n^2 - 6724689/4294967296*n^3 - 53143/268435456*n^4 + 11801191/8589934592*n^5 + 4420815/2147483648*n^6 + 4422845/8589934592*n^7 - 13431985/8589934592*n^8 - 1236311/536870912*n^9 - 519961/8589934592*n^10 + 5300279/2147483648*n^11 + 29579711/17179869184*n^12) * eps^17
        + (20057037/17179869184 + 1437191/34359738368*n - 38619865/34359738368*n^2 - 47458715/34359738368*n^3 - 11051395/17179869184*n^4 + 31753819/34359738368*n^5 + 923369/536870912*n^6 + 22435517/17179869184*n^7 - 20287619/34359738368*n^8 - 16694191/8589934592*n^9 - 53676765/34359738368*n^10 + 60038145/68719476736*n^11) * eps^18
        + (75219653/68719476736 + 2460657/34359738368*n - 3690307/4294967296*n^2 - 45693585/34359738368*n^3 - 12731745/17179869184*n^4 + 3014801/8589934592*n^5 + 102479649/68719476736*n^6 + 95223/67108864*n^7 + 12997523/34359738368*n^8 - 45081435/34359738368*n^9 - 250602523/137438953472*n^10) * eps^19
        + (138411809/137438953472 + 20479031/137438953472*n - 404248825/549755813888*n^2 - 623123853/549755813888*n^3 - 249636485/274877906944*n^4 + 24599285/274877906944*n^5 + 278247109/274877906944*n^6 + 206754789/137438953472*n^7 + 433813329/549755813888*n^8 - 463032277/1099511627776*n^9) * eps^20
        + (260886645/274877906944 + 85615081/549755813888*n - 614045309/1099511627776*n^2 - 577943525/549755813888*n^3 - 959520737/1099511627776*n^4 - 65018321/274877906944*n^5 + 412167595/549755813888*n^6 + 341178333/274877906944*n^7 + 2517056589/2199023255552*n^8) * eps^21
        + (1937599123/2199023255552 + 875827069/4398046511104*n - 2101908333/4398046511104*n^2 - 1944837617/2199023255552*n^3 - 4013825043/4398046511104*n^4 - 1514642649/4398046511104*n^5 + 52220173/137438953472*n^6 + 9631735815/8796093022208*n^7) * eps^22
        + (7338112607/8796093022208 + 858111205/4398046511104*n - 3151357309/8796093022208*n^2 - 3552063895/4398046511104*n^3 - 7304761733/8796093022208*n^4 - 1117242591/2199023255552*n^5 + 3576385429/17592186044416*n^6) * eps^23
        + (439177896603/562949953421312 + 30926258881/140737488355328*n - 43123141703/140737488355328*n^2 - 190181338763/281474976710656*n^3 - 230252313827/281474976710656*n^4 - 74140886391/140737488355328*n^5) * eps^24
        + (208758190031/281474976710656 + 29681117575/140737488355328*n - 126131044829/562949953421312*n^2 - 21573269697/35184372088832*n^3 - 409510620075/562949953421312*n^4) * eps^25
        + (392781497985/562949953421312 + 506107726005/2251799813685248*n - 429816687963/2251799813685248*n^2 - 575742720763/1125899906842624*n^3) * eps^26
        + (2997989980695/4503599627370496 + 481944654003/2251799813685248*n - 599801259897/4503599627370496*n^2) * eps^27
        + (2834595204413/4503599627370496 + 997668129067/4503599627370496*n) * eps^28
        + 2712992943545/4503599627370496 * eps^29;
C3[9] = + (2431/1179648 - 663/131072*n + 1105/196608*n^2 - 833/196608*n^3 + 153/65536*n^4 - 187/196608*n^5 + 221/786432*n^6 - 15/262144*n^7 + 17/2359296*n^8 - 1/2359296*n^9) * eps^9
        + (663/262144 - 1105/196608*n + 1003/262144*n^2 + 187/196608*n^3 - 391/98304*n^4 + 1003/262144*n^5 - 3425/1572864*n^6 + 1921/2359296*n^7 - 13/65536*n^8 + 17/589824*n^9 - 1/524288*n^10) * eps^10
        + (4199/2097152 - 21743/6291456*n - 4199/6291456*n^2 + 33269/6291456*n^3 - 50065/12582912*n^4 - 9443/12582912*n^5 + 14573/4194304*n^6 - 112667/37748736*n^7 + 53599/37748736*n^8 - 15487/37748736*n^9 + 2567/37748736*n^10 - 21/4194304*n^11) * eps^11
        + (8109/4194304 - 5491/2097152*n - 3893/2097152*n^2 + 11305/3145728*n^3 + 11799/8388608*n^4 - 187397/37748736*n^5 + 2753/1179648*n^6 + 24241/12582912*n^7 - 118771/37748736*n^8 + 73177/37748736*n^9 - 693/1048576*n^10 + 4675/37748736*n^11 - 253/25165824*n^12) * eps^12
        + (6953/4194304 - 80971/50331648*n - 252263/100663296*n^2 + 199465/100663296*n^3 + 895717/301989888*n^4 - 52205/25165824*n^5 - 482759/150994944*n^6 + 591815/150994944*n^7 + 2911/37748736*n^8 - 277705/100663296*n^9 + 689963/301989888*n^10 - 276985/301989888*n^11 + 58259/301989888*n^12 - 575/33554432*n^13) * eps^13
        + (52105/33554432 - 122417/100663296*n - 450521/201326592*n^2 + 40603/100663296*n^3 + 1865333/603979776*n^4 + 23971/75497472*n^5 - 972811/301989888*n^6 - 36503/50331648*n^7 + 811127/201326592*n^8 - 149813/100663296*n^9 - 153359/75497472*n^10 + 81805/33554432*n^11 - 43547/37748736*n^12 + 40885/150994944*n^13 - 1755/67108864*n^14) * eps^14
        + (4429673/3221225472 - 788207/1073741824*n - 6941611/3221225472*n^2 - 897577/3221225472*n^3 + 2356975/1073741824*n^4 + 17574277/9663676416*n^5 - 17208913/9663676416*n^6 - 8196295/3221225472*n^7 + 3937649/3221225472*n^8 + 10299955/3221225472*n^9 - 2716857/1073741824*n^10 - 3753553/3221225472*n^11 + 23362279/9663676416*n^12 - 13084435/9663676416*n^13 + 379015/1073741824*n^14) * eps^15
        + (2758463/2147483648 - 1758869/3221225472*n - 5672105/3221225472*n^2 - 973687/1073741824*n^3 + 14858035/9663676416*n^4 + 19887425/9663676416*n^5 - 32501/536870912*n^6 - 24418015/9663676416*n^7 - 5340461/4831838208*n^8 + 2428553/1073741824*n^9 + 19060745/9663676416*n^10 - 29342159/9663676416*n^11 - 2979365/9663676416*n^12 + 21844849/9663676416*n^13) * eps^16
        + (2490257/2147483648 - 7674811/25769803776*n - 20315813/12884901888*n^2 - 4435023/4294967296*n^3 + 27370555/38654705664*n^4 + 26375911/12884901888*n^5 + 1831967/2147483648*n^6 - 54254453/38654705664*n^7 - 10497871/4831838208*n^8 + 3956369/12884901888*n^9 + 32001391/12884901888*n^10 + 28530035/38654705664*n^11 - 59974063/19327352832*n^12) * eps^17
        + (18666393/17179869184 - 889513/4294967296*n - 21696367/17179869184*n^2 - 15580247/12884901888*n^3 + 3662981/12884901888*n^4 + 14977259/9663676416*n^5 + 9479491/6442450944*n^6 - 2887897/6442450944*n^7 - 73237177/38654705664*n^8 - 16269899/12884901888*n^9 + 50631997/38654705664*n^10 + 83059381/38654705664*n^11) * eps^18
        + (68321333/68719476736 - 14723375/206158430208*n - 56990675/51539607552*n^2 - 155817437/137438953472*n^3 - 18588719/103079215104*n^4 + 41892585/34359738368*n^5 + 57054647/38654705664*n^6 + 283540243/618475290624*n^7 - 22561439/17179869184*n^8 - 174386747/103079215104*n^9 - 158151485/618475290624*n^10) * eps^19
        + (128591121/137438953472 - 1479029/51539607552*n - 726294569/824633720832*n^2 - 305943/268435456*n^3 - 295907705/824633720832*n^4 + 113271359/154618822656*n^5 + 1807217413/1236950581248*n^6 + 32409209/38654705664*n^7 - 581666617/1236950581248*n^8 - 111277655/68719476736*n^9) * eps^20
        + (713238475/824633720832 + 53664037/1099511627776*n - 1263187013/1649267441664*n^2 - 1670261267/1649267441664*n^3 - 474955129/824633720832*n^4 + 4600090009/9895604649984*n^5 + 1438755463/1236950581248*n^6 + 314620739/274877906944*n^7 + 247598477/4947802324992*n^8) * eps^21
        + (1797792591/2199023255552 + 110680117/1649267441664*n - 4012013791/6597069766656*n^2 - 1590584081/1649267441664*n^3 - 1351592063/2199023255552*n^4 + 41953639/309237645312*n^5 + 19375684513/19791209299968*n^6 + 85456501/77309411328*n^7) * eps^22
        + (26806607255/35184372088832 + 11900807335/105553116266496*n - 55739761391/105553116266496*n^2 - 88591049429/105553116266496*n^3 - 24583779341/35184372088832*n^4 - 1960568177/105553116266496*n^5 + 212797419253/316659348799488*n^6) * eps^23
        + (50883408771/70368744177664 + 4164850661/35184372088832*n - 14681082863/35184372088832*n^2 - 82400553121/105553116266496*n^3 - 70910402069/105553116266496*n^4 - 67176278281/316659348799488*n^5) * eps^24
        + (190930903235/281474976710656 + 15383945467/105553116266496*n - 38240500283/105553116266496*n^2 - 35530344527/52776558133248*n^3 - 437558257621/633318697598976*n^4) * eps^25
        + (45468475229/70368744177664 + 15280317955/105553116266496*n - 19959778025/70368744177664*n^2 - 32689473503/52776558133248*n^3) * eps^26
        + (24702973639945/40532396646334464 + 726357235713/4503599627370496*n - 3324932711075/13510798882111488*n^2) * eps^27
        + (5246222852159/9007199254740992 + 706735196961/4503599627370496*n) * eps^28
        + 310707493777/562949953421312 * eps^29;
C3[10] = + (4199/2621440 - 4199/1048576*n + 4845/1048576*n^2 - 969/262144*n^3 + 2907/1310720*n^4 - 10659/10485760*n^5 + 741/2097152*n^6 - 95/1048576*n^7 + 17/1048576*n^8 - 19/10485760*n^9 + 1/10485760*n^10) * eps^10
        + (4199/2097152 - 4845/1048576*n + 7429/2097152*n^2 + 969/5242880*n^3 - 12597/4194304*n^4 + 35397/10485760*n^5 - 9329/4194304*n^6 + 2087/2097152*n^7 - 6479/20971520*n^8 + 135/2097152*n^9 - 171/20971520*n^10 + 1/2097152*n^11) * eps^11
        + (6783/4194304 - 12597/4194304*n - 2261/41943040*n^2 + 174743/41943040*n^3 - 164901/41943040*n^4 + 1539/5242880*n^5 + 214809/83886080*n^6 - 29519/10485760*n^7 + 139141/83886080*n^8 - 1631/2621440*n^9 + 12559/83886080*n^10 - 893/41943040*n^11 + 23/16777216*n^12) * eps^12
        + (13243/8388608 - 19703/8388608*n - 101099/83886080*n^2 + 138073/41943040*n^3 + 24719/83886080*n^4 - 337423/83886080*n^5 + 12363/4194304*n^6 + 57103/83886080*n^7 - 27323/10485760*n^8 + 178529/83886080*n^9 - 81173/83886080*n^10 + 4485/16777216*n^11 - 3553/83886080*n^12 + 25/8388608*n^13) * eps^13
        + (92055/67108864 - 822035/536870912*n - 1020015/536870912*n^2 + 574655/268435456*n^3 + 2734037/1342177280*n^4 - 6716637/2684354560*n^5 - 4712349/2684354560*n^6 + 158653/41943040*n^7 - 320995/268435456*n^8 - 4870931/2684354560*n^9 + 6209363/2684354560*n^10 - 1727177/1342177280*n^11 + 272823/671088640*n^12 - 38285/536870912*n^13 + 2925/536870912*n^14) * eps^14
        + (1390515/1073741824 - 638609/536870912*n - 9739457/5368709120*n^2 + 2244193/2684354560*n^3 + 2762359/1073741824*n^4 - 1609109/2684354560*n^5 - 14885329/5368709120*n^6 + 1720321/2684354560*n^7 + 3362447/1073741824*n^8 - 6643351/2684354560*n^9 - 4107621/5368709120*n^10 + 5967063/2684354560*n^11 - 8268441/5368709120*n^12 + 1490177/2684354560*n^13 - 575757/5368709120*n^14) * eps^15
        + (2486055/2147483648 - 416271/536870912*n - 39210607/21474836480*n^2 + 939667/5368709120*n^3 + 9060325/4294967296*n^4 + 2491453/2684354560*n^5 - 46473241/21474836480*n^6 - 3953531/2684354560*n^7 + 44317207/21474836480*n^8 + 9488381/5368709120*n^9 - 64785587/21474836480*n^10 + 739973/2684354560*n^11 + 41224629/21474836480*n^12 - 9171349/5368709120*n^13) * eps^16
        + (2335727/2147483648 - 2563477/4294967296*n - 16701111/10737418240*n^2 - 9668041/21474836480*n^3 + 17992927/10737418240*n^4 + 31720101/21474836480*n^5 - 2271699/2684354560*n^6 - 47531759/21474836480*n^7 + 1536949/10737418240*n^8 + 10243175/4294967296*n^9 + 3586031/10737418240*n^10 - 63134341/21474836480*n^11 + 12279279/10737418240*n^12) * eps^17
        + (16987677/17179869184 - 12817701/34359738368*n - 245571871/171798691840*n^2 - 113240313/171798691840*n^3 + 346569259/343597383680*n^4 + 74555269/42949672960*n^5 + 27207641/343597383680*n^6 - 297892471/171798691840*n^7 - 90518711/68719476736*n^8 + 56969301/42949672960*n^9 + 132544051/68719476736*n^10 - 17233729/21474836480*n^11) * eps^18
        + (63952469/68719476736 - 9581357/34359738368*n - 203499591/171798691840*n^2 - 76181293/85899345920*n^3 + 212001921/343597383680*n^4 + 103062223/68719476736*n^5 + 287585989/343597383680*n^6 - 73169205/68719476736*n^7 - 114638241/68719476736*n^8 - 59443911/343597383680*n^9 + 159059379/85899345920*n^10) * eps^19
        + (588367381/687194767360 - 20787795/137438953472*n - 2904705599/2748779069440*n^2 - 1224194119/1374389534720*n^3 + 476022861/2748779069440*n^4 + 1802954677/1374389534720*n^5 + 739674421/687194767360*n^6 - 326887271/1374389534720*n^7 - 530422339/343597383680*n^8 - 279426503/274877906944*n^9) * eps^20
        + (222258195/274877906944 - 55829477/549755813888*n - 477453485/549755813888*n^2 - 2590977593/2748779069440*n^3 - 58684921/1374389534720*n^4 + 1291134563/1374389534720*n^5 + 1706006381/1374389534720*n^6 + 33790047/137438953472*n^7 - 1348338613/1374389534720*n^8) * eps^21
        + (3301594169/4398046511104 - 453528367/17592186044416*n - 67434894591/87960930222080*n^2 - 38367823899/43980465111040*n^3 - 2503383779/8796093022208*n^4 + 62281465759/87960930222080*n^5 + 98226145519/87960930222080*n^6 + 5981539941/8796093022208*n^7) * eps^22
        + (25036620431/35184372088832 - 3706957/17592186044416*n - 110515260937/175921860444160*n^2 - 75242715363/87960930222080*n^3 - 13113832313/35184372088832*n^4 + 35799902519/87960930222080*n^5 + 181849615997/175921860444160*n^6) * eps^23
        + (46828608507/70368744177664 + 1623985719/35184372088832*n - 77781379687/140737488355328*n^2 - 135023615257/175921860444160*n^3 - 343735176087/703687441776640*n^4 + 21076200917/87960930222080*n^5) * eps^24
        + (22273557181/35184372088832 + 8209167567/140737488355328*n - 79486039261/175921860444160*n^2 - 512388782813/703687441776640*n^3 - 35491170583/70368744177664*n^4) * eps^25
        + (670564680061/1125899906842624 + 196582254575/2251799813685248*n - 4472224828261/11258999068426240*n^2 - 3626987174247/5629499534213120*n^3) * eps^26
        + (2559941004369/4503599627370496 + 206983074593/2251799813685248*n - 7284964906539/22517998136852480*n^2) * eps^27
        + (4841011900185/9007199254740992 + 992966911831/9007199254740992*n) * eps^28
        + 9267877312991/18014398509481984 * eps^29;
C3[11] = + (29393/23068672 - 6783/2097152*n + 8075/2097152*n^2 - 6783/2097152*n^3 + 8721/4194304*n^4 - 4389/4194304*n^5 + 1729/4194304*n^6 - 525/4194304*n^7 + 119/4194304*n^8 - 19/4194304*n^9 + 21/46137344*n^10 - 1/46137344*n^11) * eps^11
        + (6783/4194304 - 8075/2097152*n + 6783/2097152*n^2 - 323/1048576*n^3 - 18753/8388608*n^4 + 12255/4194304*n^5 - 9135/4194304*n^6 + 4711/4194304*n^7 - 219/524288*n^8 + 5131/46137344*n^9 - 85/4194304*n^10 + 105/46137344*n^11 - 1/8388608*n^12) * eps^12
        + (22287/16777216 - 5491/2097152*n + 22287/67108864*n^2 + 218937/67108864*n^3 - 247779/67108864*n^4 + 65849/67108864*n^5 + 58673/33554432*n^6 - 84249/33554432*n^7 + 655201/369098752*n^8 - 300367/369098752*n^9 + 187059/738197504*n^10 - 38619/738197504*n^11 + 4809/738197504*n^12 - 25/67108864*n^13) * eps^13
        + (5491/4194304 - 141151/67108864*n - 98363/134217728*n^2 + 196213/67108864*n^3 - 29417/67108864*n^4 - 52095/16777216*n^5 + 419083/134217728*n^6 - 103155/369098752*n^7 - 718191/369098752*n^8 + 1557273/738197504*n^9 - 1788277/1476395008*n^10 + 325161/738197504*n^11 - 6875/67108864*n^12 + 5187/369098752*n^13 - 117/134217728*n^14) * eps^14
        + (1235475/1073741824 - 1541223/1073741824*n - 1529937/1073741824*n^2 + 2296199/1073741824*n^3 + 1365211/1073741824*n^4 - 2738587/1073741824*n^5 - 7375295/11811160064*n^6 + 38530187/11811160064*n^7 - 23317551/11811160064*n^8 - 10011949/11811160064*n^9 + 24284837/11811160064*n^10 - 18010915/11811160064*n^11 + 7660305/11811160064*n^12 - 1998361/11811160064*n^13 + 300321/11811160064*n^14) * eps^15
        + (2349103/2147483648 - 1224911/1073741824*n - 781795/536870912*n^2 + 1166537/1073741824*n^3 + 1094423/536870912*n^4 - 13807153/11811160064*n^5 - 25077685/11811160064*n^6 + 17157263/11811160064*n^7 + 24268865/11811160064*n^8 - 33106325/11811160064*n^9 + 2076575/5905580032*n^10 + 19838275/11811160064*n^11 - 10084007/5905580032*n^12 + 10078335/11811160064*n^13) * eps^16
        + (2117379/2147483648 - 6739785/8589934592*n - 1646453/1073741824*n^2 + 261625/536870912*n^3 + 8131213/4294967296*n^4 + 20997261/94489280512*n^5 - 101979543/47244640256*n^6 - 530353/1073741824*n^7 + 828023/369098752*n^8 + 43716997/94489280512*n^9 - 65673747/23622320128*n^10 + 31841459/23622320128*n^11 + 52076665/47244640256*n^12) * eps^17
        + (15999297/17179869184 - 665231/1073741824*n - 23300153/17179869184*n^2 - 221463/2147483648*n^3 + 28505205/17179869184*n^4 + 3924281/4294967296*n^5 - 243226535/188978561024*n^6 - 77376389/47244640256*n^7 + 188744355/188978561024*n^8 + 45186567/23622320128*n^9 - 160724471/188978561024*n^10 - 25713125/11811160064*n^11) * eps^18
        + (58546741/68719476736 - 28776169/68719476736*n - 10980371/8589934592*n^2 - 48605103/137438953472*n^3 + 39670397/34359738368*n^4 + 31828611/23622320128*n^5 - 187541869/377957122048*n^6 - 115448809/68719476736*n^7 - 42158467/94489280512*n^8 + 82411933/47244640256*n^9 + 753396595/755914244096*n^10) * eps^19
        + (110659725/137438953472 - 2797611/8589934592*n - 299770405/274877906944*n^2 - 10459603/17179869184*n^3 + 226651699/274877906944*n^4 + 497934925/377957122048*n^5 + 409147909/1511828488192*n^6 - 510313799/377957122048*n^7 - 1751353333/1511828488192*n^8 + 493141905/755914244096*n^9) * eps^20
        + (818467293/1099511627776 - 56886273/274877906944*n - 2178023121/2199023255552*n^2 - 1468259459/2199023255552*n^3 + 936005777/2199023255552*n^4 + 30592744379/24189255811072*n^5 + 483964345/755914244096*n^6 - 2151235101/3023656976384*n^7 - 17107054983/12094627905536*n^8) * eps^21
        + (96937173/137438953472 - 338878191/2199023255552*n - 3672830975/4398046511104*n^2 - 1657202547/2199023255552*n^3 + 445677205/2199023255552*n^4 + 12225739435/12094627905536*n^5 + 45022865775/48378511622144*n^6 - 743433509/3023656976384*n^7) * eps^22
        + (23130670543/35184372088832 - 2857753463/35184372088832*n - 26305948157/35184372088832*n^2 - 25618373853/35184372088832*n^3 - 1549180705/35184372088832*n^4 + 324075281367/387028092977152*n^5 + 367058948627/387028092977152*n^6) * eps^23
        + (43968565791/70368744177664 - 1805535203/35184372088832*n - 2760991455/4398046511104*n^2 - 25963357003/35184372088832*n^3 - 177189123/1099511627776*n^4 + 225673037041/387028092977152*n^5) * eps^24
        + (41252640009/70368744177664 - 1485684057/281474976710656*n - 39333792359/70368744177664*n^2 - 95968855991/140737488355328*n^3 - 41727255371/140737488355328*n^4) * eps^25
        + (314637345025/562949953421312 + 791327487/70368744177664*n - 263720191503/562949953421312*n^2 - 5813138145/8796093022208*n^3) * eps^26
        + (2374498758045/4503599627370496 + 184441277827/4503599627370496*n - 1875159093121/4503599627370496*n^2) * eps^27
        + (4540838699861/9007199254740992 + 223044732129/4503599627370496*n) * eps^28
        + 17213216597955/36028797018963968 * eps^29;
C3[12] = + (52003/50331648 - 22287/8388608*n + 81719/25165824*n^2 - 572033/201326592*n^3 + 129789/67108864*n^4 - 52877/50331648*n^5 + 23023/50331648*n^6 - 5313/33554432*n^7 + 4301/100663296*n^8 - 437/50331648*n^9 + 21/16777216*n^10 - 23/201326592*n^11 + 1/201326592*n^12) * eps^12
        + (22287/16777216 - 81719/25165824*n + 393737/134217728*n^2 - 62491/100663296*n^3 - 658559/402653184*n^4 + 83743/33554432*n^5 - 417197/201326592*n^6 + 60467/50331648*n^7 - 34569/67108864*n^8 + 8287/50331648*n^9 - 15479/402653184*n^10 + 209/33554432*n^11 - 253/402653184*n^12 + 1/33554432*n^13) * eps^13
        + (37145/33554432 - 3692213/1610612736*n + 919885/1610612736*n^2 + 2047345/805306368*n^3 - 1807685/536870912*n^4 + 2268145/1610612736*n^5 + 107525/100663296*n^6 - 287615/134217728*n^7 + 1439165/805306368*n^8 - 1554985/1610612736*n^9 + 196337/536870912*n^10 - 78625/805306368*n^11 + 28451/1610612736*n^12 - 3151/1610612736*n^13 + 27/268435456*n^14) * eps^14
        + (1181211/1073741824 - 1011655/536870912*n - 1258123/3221225472*n^2 + 1368385/536870912*n^3 - 966345/1073741824*n^4 - 1845635/805306368*n^5 + 3249555/1073741824*n^6 - 32195/33554432*n^7 - 4125455/3221225472*n^8 + 1038315/536870912*n^9 - 1464041/1073741824*n^10 + 330167/536870912*n^11 - 602911/3221225472*n^12 + 5049/134217728*n^13 - 14651/3221225472*n^14) * eps^15
        + (2097163/2147483648 - 716243/536870912*n - 13577935/12884901888*n^2 + 26345695/12884901888*n^3 + 539465/805306368*n^4 - 30721445/12884901888*n^5 + 1671665/8589934592*n^6 + 16667215/6442450944*n^7 - 60325345/25769803776*n^8 - 7435/2147483648*n^9 + 3478199/2147483648*n^10 - 20654597/12884901888*n^11 + 11205989/12884901888*n^12 - 1294237/4294967296*n^13) * eps^16
        + (2006267/2147483648 - 4643355/4294967296*n - 29853701/25769803776*n^2 + 15623785/12884901888*n^3 + 19883891/12884901888*n^4 - 37991705/25769803776*n^5 - 12448665/8589934592*n^6 + 47094413/25769803776*n^7 + 6739069/6442450944*n^8 - 2864351/1073741824*n^9 + 30201445/25769803776*n^10 + 1058057/1073741824*n^11 - 10580051/6442450944*n^12) * eps^17
        + (43720079/51539607552 - 26598603/34359738368*n - 43949251/34359738368*n^2 + 71325415/103079215104*n^3 + 6957895/4294967296*n^4 - 2536467/8589934592*n^5 - 198525719/103079215104*n^6 + 13878817/51539607552*n^7 + 34508611/17179869184*n^8 - 52928069/103079215104*n^9 - 220720771/103079215104*n^10 + 66852739/34359738368*n^11) * eps^18
        + (55326431/68719476736 - 64299007/103079215104*n - 120784247/103079215104*n^2 + 15781747/103079215104*n^3 + 106472291/68719476736*n^4 + 14611239/34359738368*n^5 - 150547861/103079215104*n^6 - 103209593/103079215104*n^7 + 99804641/68719476736*n^8 + 123227375/103079215104*n^9 - 12788579/8589934592*n^10) * eps^19
        + (814404171/1099511627776 - 732481345/1649267441664*n - 466819643/412316860416*n^2 - 734752241/6597069766656*n^3 + 2621301201/2199023255552*n^4 + 785792285/824633720832*n^5 - 1433859853/1649267441664*n^6 - 770153889/549755813888*n^7 + 432049963/1649267441664*n^8 + 5608251079/3298534883328*n^9) * eps^20
        + (772604523/1099511627776 - 48760475/137438953472*n - 13077992689/13194139533312*n^2 - 1241891819/3298534883328*n^3 + 4110854519/4398046511104*n^4 + 3534181601/3298534883328*n^5 - 586500377/3298534883328*n^6 - 2275702691/1649267441664*n^7 - 3789336937/6597069766656*n^8) * eps^21
        + (358745439/549755813888 - 12934264661/52776558133248*n - 48333688039/52776558133248*n^2 - 4146286613/8796093022208*n^3 + 31281974437/52776558133248*n^4 + 59718172567/52776558133248*n^5 + 2095950701/8796093022208*n^6 - 25516746833/26388279066624*n^7) * eps^22
        + (21821485195/35184372088832 - 10108238849/52776558133248*n - 27769272537/35184372088832*n^2 - 10217136851/17592186044416*n^3 + 13447296309/35184372088832*n^4 + 2169033311/2199023255552*n^5 + 21069180867/35184372088832*n^6) * eps^23
        + (122479921063/211106232532992 - 2150084801/17592186044416*n - 302356197395/422212465065984*n^2 - 62203620647/105553116266496*n^3 + 20409605765/140737488355328*n^4 + 370492702933/422212465065984*n^5) * eps^24
        + (38901506935/70368744177664 - 12663469807/140737488355328*n - 43169763871/70368744177664*n^2 - 262080088265/422212465065984*n^3 + 4124183297/281474976710656*n^4) * eps^25
        + (292863078097/562949953421312 - 1583046845/35184372088832*n - 29152993591/52776558133248*n^2 - 1996652856445/3377699720527872*n^3) * eps^26
        + (69950118165/140737488355328 - 1807466357/70368744177664*n - 1063027613707/2251799813685248*n^2) * eps^27
        + (16935196336601/36028797018963968 + 223223833507/54043195528445952*n) * eps^28
        + 16221720992423/36028797018963968 * eps^29;
C3[13] = + (185725/218103808 - 37145/16777216*n + 185725/67108864*n^2 - 168245/67108864*n^3 + 120175/67108864*n^4 - 69575/67108864*n^5 + 16445/33554432*n^6 - 6325/33554432*n^7 + 1955/33554432*n^8 - 475/33554432*n^9 + 175/67108864*n^10 - 23/67108864*n^11 + 25/872415232*n^12 - 1/872415232*n^13) * eps^13
        + (37145/33554432 - 185725/67108864*n + 356155/134217728*n^2 - 54625/67108864*n^3 - 39215/33554432*n^4 + 8855/4194304*n^5 - 259325/134217728*n^6 + 41515/33554432*n^7 - 625/1048576*n^8 + 14765/67108864*n^9 - 8297/134217728*n^10 + 11225/872415232*n^11 - 63/33554432*n^12 + 75/436207616*n^13 - 1/134217728*n^14) * eps^14
        + (1002915/1073741824 - 2165335/1073741824*n + 766935/1073741824*n^2 + 2116575/1073741824*n^3 - 3237825/1073741824*n^4 + 1772265/1073741824*n^5 + 558555/1073741824*n^6 - 1889505/1073741824*n^7 + 1846575/1073741824*n^8 - 1148355/1073741824*n^9 + 6621687/13958643712*n^10 - 2147433/13958643712*n^11 + 502623/13958643712*n^12 - 80975/13958643712*n^13 + 8075/13958643712*n^14) * eps^15
        + (2008015/2147483648 - 1815735/1073741824*n - 76705/536870912*n^2 + 2357385/1073741824*n^3 - 19665/16777216*n^4 - 1726035/1073741824*n^5 + 1491465/536870912*n^6 - 1503195/1073741824*n^7 - 363375/536870912*n^8 + 23156505/13958643712*n^9 - 9914347/6979321856*n^10 + 10709897/13958643712*n^11 - 501361/1744830464*n^12 + 1052013/13958643712*n^13) * eps^16
        + (1798255/2147483648 - 10601045/8589934592*n - 1641165/2147483648*n^2 + 4086755/2147483648*n^3 + 913905/4294967296*n^4 - 18130905/8589934592*n^5 + 3204135/4294967296*n^6 + 1017741/536870912*n^7 - 33577953/13958643712*n^8 + 73063651/111669149696*n^9 + 1928075/1744830464*n^10 - 10703707/6979321856*n^11 + 57707979/55834574848*n^12) * eps^17
        + (13840365/17179869184 - 2184195/2147483648*n - 15684505/17179869184*n^2 + 1348605/1073741824*n^3 + 19080865/17179869184*n^4 - 6839475/4294967296*n^5 - 14431629/17179869184*n^6 + 105895953/55834574848*n^7 + 48950133/223338299392*n^8 - 7886043/3489660928*n^9 + 372503147/223338299392*n^10 + 8024167/27917287424*n^11) * eps^18
        + (101195745/137438953472 - 103316805/137438953472*n - 145814825/137438953472*n^2 + 56137605/68719476736*n^3 + 45844365/34359738368*n^4 - 11127843/17179869184*n^5 - 176827545/111669149696*n^6 + 177367791/223338299392*n^7 + 43666839/27917287424*n^8 - 502109665/446676598784*n^9 - 608048583/446676598784*n^10) * eps^19
        + (192942285/274877906944 - 84667255/137438953472*n - 276352515/274877906944*n^2 + 46276975/137438953472*n^3 + 190922955/137438953472*n^4 + 544527/17179869184*n^5 - 80867391/55834574848*n^6 - 46739031/111669149696*n^7 + 1413025611/893353197568*n^8 + 208444667/446676598784*n^9) * eps^20
        + (713651475/1099511627776 - 500804215/1099511627776*n - 2189663055/2199023255552*n^2 + 166841355/2199023255552*n^3 + 2545633095/2199023255552*n^4 + 1301305233/2199023255552*n^5 - 73499007/68719476736*n^6 - 3649124073/3573412790272*n^7 + 10673011569/14293651161088*n^8) * eps^21
        + (1358850675/2199023255552 - 816309985/2199023255552*n - 3925550751/4398046511104*n^2 - 411093181/2199023255552*n^3 + 1069809697/1099511627776*n^4 + 887786559/1099511627776*n^5 - 28489507799/57174604644352*n^6 - 4430888365/3573412790272*n^7) * eps^22
        + (20273133015/35184372088832 - 9511268919/35184372088832*n - 29503243001/35184372088832*n^2 - 10679084579/35184372088832*n^3 + 24333880611/35184372088832*n^4 + 33531947513/35184372088832*n^5 - 43359239675/457396837154816*n^6) * eps^23
        + (38647569279/70368744177664 - 7657024935/35184372088832*n - 25922041023/35184372088832*n^2 - 15045539631/35184372088832*n^3 + 17766942325/35184372088832*n^4 + 31659609403/35184372088832*n^5) * eps^24
        + (36274342699/70368744177664 - 42850331919/281474976710656*n - 11911257957/17592186044416*n^2 - 64900868793/140737488355328*n^3 + 40343787423/140737488355328*n^4) * eps^25
        + (277172296351/562949953421312 - 2094012549/17592186044416*n - 332189237881/562949953421312*n^2 - 35829993671/70368744177664*n^3) * eps^26
        + (1046221099377/2251799813685248 - 170172833119/2251799813685248*n - 604554123131/1125899906842624*n^2) * eps^27
        + (2003125009747/4503599627370496 - 61476552589/1125899906842624*n) * eps^28
        + 15190705138949/36028797018963968 * eps^29;
C3[14] = + (334305/469762048 - 1002915/536870912*n + 1278225/536870912*n^2 - 596505/268435456*n^3 + 444015/268435456*n^4 - 542685/536870912*n^5 + 1924065/3758096384*n^6 - 201825/939524096*n^7 + 9945/134217728*n^8 - 11115/536870912*n^9 + 2457/536870912*n^10 - 207/268435456*n^11 + 25/268435456*n^12 - 27/3758096384*n^13 + 1/3758096384*n^14) * eps^14
        + (1002915/1073741824 - 1278225/536870912*n + 2576115/1073741824*n^2 - 497835/536870912*n^3 - 865605/1073741824*n^4 + 6660225/3758096384*n^5 - 1906125/1073741824*n^6 + 4658355/3758096384*n^7 - 707265/1073741824*n^8 + 146835/536870912*n^9 - 95481/1073741824*n^10 + 11985/536870912*n^11 - 31527/7516192768*n^12 + 299/536870912*n^13 - 351/7516192768*n^14) * eps^15
        + (1710855/2147483648 - 478515/268435456*n + 3411705/4294967296*n^2 + 1630815/1073741824*n^3 - 80250105/30064771072*n^4 + 6633315/3758096384*n^5 + 2765295/30064771072*n^6 - 10456095/7516192768*n^7 + 48041487/30064771072*n^8 - 604737/536870912*n^9 + 2449717/4294967296*n^10 - 1624435/7516192768*n^11 + 1847371/30064771072*n^12 - 48169/3758096384*n^13) * eps^16
        + (1723965/2147483648 - 6533265/4294967296*n + 76935/2147483648*n^2 + 56398185/30064771072*n^3 - 19759875/15032385536*n^4 - 31583175/30064771072*n^5 + 36921495/15032385536*n^6 - 49642983/30064771072*n^7 - 355569/2147483648*n^8 + 40109813/30064771072*n^9 - 20948701/15032385536*n^10 + 26526277/30064771072*n^11 - 5886663/15032385536*n^12) * eps^17
        + (24894855/34359738368 - 78264285/68719476736*n - 36988485/68719476736*n^2 + 418581945/240518168576*n^3 - 60094815/481036337152*n^4 - 107991795/60129542144*n^5 + 522459795/481036337152*n^6 + 303630087/240518168576*n^7 - 1091940219/481036337152*n^8 + 33522753/30064771072*n^9 + 40499933/68719476736*n^10 - 324917351/240518168576*n^11) * eps^18
        + (96292605/137438953472 - 65462715/68719476736*n - 97786455/137438953472*n^2 + 85607565/68719476736*n^3 + 359327175/481036337152*n^4 - 762768759/481036337152*n^5 - 159920877/481036337152*n^6 + 852547365/481036337152*n^7 - 189618327/481036337152*n^8 - 831922211/481036337152*n^9 + 903295221/481036337152*n^10) * eps^19
        + (177052965/274877906944 - 198593385/274877906944*n - 120299805/137438953472*n^2 + 850632495/962072674304*n^3 + 255130545/240518168576*n^4 - 1668127191/1924145348608*n^5 - 2324152365/1924145348608*n^6 + 2128566621/1924145348608*n^7 + 2025323859/1924145348608*n^8 - 2724276899/1924145348608*n^9) * eps^20
        + (338946975/549755813888 - 82552875/137438953472*n - 471549795/549755813888*n^2 + 446058513/962072674304*n^3 + 4645483323/3848290697216*n^4 - 514236729/1924145348608*n^5 - 2539636863/1924145348608*n^6 + 110256645/1924145348608*n^7 + 2860511727/1924145348608*n^8) * eps^21
        + (2519012745/4398046511104 - 8042808615/17592186044416*n - 15323258283/17592186044416*n^2 + 13365078339/61572651155456*n^3 + 2371903421/2199023255552*n^4 + 34764704609/123145302310912*n^5 - 139920418129/123145302310912*n^6 - 38482766489/61572651155456*n^7) * eps^22
        + (19248770055/35184372088832 - 6660671445/17592186044416*n - 28084233477/35184372088832*n^2 - 4351178653/123145302310912*n^3 + 236611923917/246290604621824*n^4 + 68150566051/123145302310912*n^5 - 172847147773/246290604621824*n^6) * eps^23
        + (36031799979/70368744177664 - 5033314047/17592186044416*n - 107266336785/140737488355328*n^2 - 20083658499/123145302310912*n^3 + 727351416229/985162418487296*n^4 + 46669684549/61572651155456*n^5) * eps^24
        + (34437446319/70368744177664 - 33102303575/140737488355328*n - 187327049/274877906944*n^2 - 290583351929/985162418487296*n^3 + 10224940189/17592186044416*n^4) * eps^25
        + (259380435671/562949953421312 - 195750751369/1125899906842624*n - 713851834615/1125899906842624*n^2 - 2727777187263/7881299347898368*n^3) * eps^26
        + (993200127657/2251799813685248 - 158323530281/1125899906842624*n - 631656315671/1125899906842624*n^2) * eps^27
        + (13155294584639/31525197391593472 - 13930847115/140737488355328*n) * eps^28
        + 112658685443/281474976710656 * eps^29;
C3[15] = + (646323/1073741824 - 1710855/1073741824*n + 2217775/1073741824*n^2 - 2124395/1073741824*n^3 + 1638819/1073741824*n^4 - 1049191/1073741824*n^5 + 563615/1073741824*n^6 - 254475/1073741824*n^7 + 96135/1073741824*n^8 - 150423/5368709120*n^9 + 38367/5368709120*n^10 - 4669/3221225472*n^11 + 725/3221225472*n^12 - 27/1073741824*n^13 + 29/16106127360*n^14) * eps^15
        + (1710855/2147483648 - 2217775/1073741824*n + 2331165/1073741824*n^2 - 1059863/1073741824*n^3 - 563615/1073741824*n^4 + 1586793/1073741824*n^5 - 1732315/1073741824*n^6 + 1306305/1073741824*n^7 - 3776409/5368709120*n^8 + 346173/1073741824*n^9 - 1902313/16106127360*n^10 + 36917/1073741824*n^11 - 25153/3221225472*n^12 + 21547/16106127360*n^13) * eps^16
        + (5892945/8589934592 - 6800065/4294967296*n + 3577121/4294967296*n^2 + 4983157/4294967296*n^3 - 10069699/4294967296*n^4 + 7701733/4294967296*n^5 - 502541/2147483648*n^6 - 1414127/1342177280*n^7 + 968223/671088640*n^8 - 6128483/5368709120*n^9 + 41761247/64424509440*n^10 - 18009853/64424509440*n^11 + 5979931/64424509440*n^12) * eps^17
        + (5972985/8589934592 - 5892945/4294967296*n + 22011/134217728*n^2 + 6844087/4294967296*n^3 - 5882157/4294967296*n^4 - 326337/536870912*n^5 + 18126537/8589934592*n^6 - 18908667/10737418240*n^7 + 2622383/10737418240*n^8 + 21415079/21474836480*n^9 - 55870711/42949672960*n^10 + 4095751/4294967296*n^11) * eps^18
        + (86853405/137438953472 - 144315455/137438953472*n - 49728185/137438953472*n^2 + 108068645/68719476736*n^3 - 12628253/34359738368*n^4 - 25408437/17179869184*n^5 + 43573631/34359738368*n^6 + 24761157/34359738368*n^7 - 17319235/8589934592*n^8 + 240067131/171798691840*n^9 + 31601183/257698037760*n^10) * eps^19
        + (168754335/274877906944 - 122304455/137438953472*n - 150252509/274877906944*n^2 + 165190351/137438953472*n^3 + 308731767/687194767360*n^4 - 257790947/171798691840*n^5 + 4546243/68719476736*n^6 + 264538841/171798691840*n^7 - 69252419/85899345920*n^8 - 101279697/85899345920*n^9) * eps^20
        + (9748205/17179869184 - 2961915/4294967296*n - 789535179/1099511627776*n^2 + 2502565179/2748779069440*n^3 + 892979397/1099511627776*n^4 - 4058500961/4123168604160*n^5 - 348426329/412316860416*n^6 + 858120331/687194767360*n^7 + 2315189833/4123168604160*n^8) * eps^21
        + (299705865/549755813888 - 638342925/1099511627776*n - 4003125229/5497558138880*n^2 + 3007831367/5497558138880*n^3 + 16848959603/16492674416640*n^4 - 1323821551/2748779069440*n^5 - 9300135223/8246337208320*n^6 + 169736315/412316860416*n^7) * eps^22
        + (17894468415/35184372088832 - 15913542447/35184372088832*n - 133457144181/175921860444160*n^2 + 56414449099/175921860444160*n^3 + 514339794913/527765581332480*n^4 + 15799330939/527765581332480*n^5 - 116951809217/105553116266496*n^6) * eps^23
        + (34289203599/70368744177664 - 13355533647/35184372088832*n - 37471080293/52776558133248*n^2 + 8836479539/105553116266496*n^3 + 80449237869/87960930222080*n^4 + 171417192913/527765581332480*n^5) * eps^24
        + (32203691103/70368744177664 - 249040377061/844424930131968*n - 484768709513/703687441776640*n^2 - 100719650663/2111062325329920*n^3 + 525315006811/703687441776640*n^4) * eps^25
        + (246854172911/562949953421312 - 104020069985/422212465065984*n - 5286374681359/8444249301319680*n^2 - 384367611317/2111062325329920*n^3) * eps^26
        + (932306372777/2251799813685248 - 425703913753/2251799813685248*n - 3317960448433/5629499534213120*n^2) * eps^27
        + (1788762256877/4503599627370496 - 528241493161/3377699720527872*n) * eps^28
        + 3392857970671/9007199254740992 * eps^29;
C3[16] = + (17678835/34359738368 - 5892945/4294967296*n + 7753875/4294967296*n^2 - 15197595/8589934592*n^3 + 12096045/8589934592*n^4 - 4032015/4294967296*n^5 + 2278965/4294967296*n^6 - 4382625/17179869184*n^7 + 1788111/17179869184*n^8 - 153729/4294967296*n^9 + 44051/4294967296*n^10 - 20677/8589934592*n^11 + 3875/8589934592*n^12 - 279/4294967296*n^13) * eps^16
        + (5892945/8589934592 - 7753875/4294967296*n + 33806895/17179869184*n^2 - 2171085/2147483648*n^3 - 5272635/17179869184*n^4 + 2629575/2147483648*n^5 - 49961925/34359738368*n^6 + 315549/268435456*n^7 - 25144131/34359738368*n^8 + 97991/268435456*n^9 - 2539675/17179869184*n^10 + 104315/2147483648*n^11 - 220193/17179869184*n^12) * eps^17
        + (10235115/17179869184 - 97078515/68719476736*n + 57998985/68719476736*n^2 + 30085035/34359738368*n^3 - 140769915/68719476736*n^4 + 242500755/137438953472*n^5 - 65388765/137438953472*n^6 - 51866007/68719476736*n^7 + 174649629/137438953472*n^8 - 154238733/137438953472*n^9 + 48486449/68719476736*n^10 - 11678227/34359738368*n^11) * eps^18
        + (83431695/137438953472 - 85292625/68719476736*n + 35047515/137438953472*n^2 + 92601495/68719476736*n^3 - 375786495/274877906944*n^4 - 36110133/137438953472*n^5 + 486541497/274877906944*n^6 - 243255915/137438953472*n^7 + 153035871/274877906944*n^8 + 46310869/68719476736*n^9 - 319425953/274877906944*n^10) * eps^19
        + (38149065/68719476736 - 133056495/137438953472*n - 123158505/549755813888*n^2 + 3098731635/2199023255552*n^3 - 1178980065/2199023255552*n^4 - 324619011/274877906944*n^5 + 183751105/137438953472*n^6 + 76834833/274877906944*n^7 - 937074355/549755813888*n^8 + 1685222465/1099511627776*n^9) * eps^20
        + (4652325/8589934592 - 456372855/549755813888*n - 1811480505/4398046511104*n^2 + 1251405303/1099511627776*n^3 + 925958313/4398046511104*n^4 - 1506611625/1099511627776*n^5 + 99867213/274877906944*n^6 + 172997329/137438953472*n^7 - 2305540773/2199023255552*n^8) * eps^21
        + (1106107125/2199023255552 - 11527530885/17592186044416*n - 10297013847/17592186044416*n^2 + 7988241603/8796093022208*n^3 + 10444117217/17592186044416*n^4 - 18068838281/17592186044416*n^5 - 4569806627/8796093022208*n^6 + 11141677047/8796093022208*n^7) * eps^22
        + (17062152465/35184372088832 - 9812616465/17592186044416*n - 21645687783/35184372088832*n^2 + 10515729759/17592186044416*n^3 + 29676530299/35184372088832*n^4 - 2748637785/4398046511104*n^5 - 31988983111/35184372088832*n^6) * eps^23
        + (63917467893/140737488355328 - 15585334599/35184372088832*n - 92640075585/140737488355328*n^2 + 55477610943/140737488355328*n^3 + 60444721971/70368744177664*n^4 - 23535121849/140737488355328*n^5) * eps^24
        + (15353322477/35184372088832 - 52919675455/140737488355328*n - 176994259657/281474976710656*n^2 + 24691209499/140737488355328*n^3 + 119255343701/140737488355328*n^4) * eps^25
        + (231447333341/562949953421312 - 336197745329/1125899906842624*n - 697975437421/1125899906842624*n^2 + 51290363939/1125899906842624*n^3) * eps^26
        + (889178086077/2251799813685248 - 284507373851/1125899906842624*n - 644017953049/1125899906842624*n^2) * eps^27
        + (1683573628847/4503599627370496 - 897506094655/4503599627370496*n) * eps^28
        + 3236675038231/9007199254740992 * eps^29;
C3[17] = + (64822395/146028888064 - 10235115/8589934592*n + 3411705/2147483648*n^2 - 3411705/2147483648*n^3 + 2791395/2147483648*n^4 - 1928355/2147483648*n^5 + 2278965/4294967296*n^6 - 1157013/4294967296*n^7 + 504339/4294967296*n^8 - 187891/4294967296*n^9 + 29667/2147483648*n^10 - 7843/2147483648*n^11 + 1705/2147483648*n^12) * eps^17
        + (10235115/17179869184 - 3411705/2147483648*n + 30705345/17179869184*n^2 - 2171085/2147483648*n^3 - 148335/1073741824*n^4 + 4328685/4294967296*n^5 - 11184459/8589934592*n^6 + 4819539/4294967296*n^7 - 801009/1073741824*n^8 + 860343/2147483648*n^9 - 1518473/8589934592*n^10 + 138105/2147483648*n^11) * eps^18
        + (71645805/137438953472 - 173996955/137438953472*n + 115067505/137438953472*n^2 + 89230245/137438953472*n^3 - 122538195/68719476736*n^4 + 116788191/68719476736*n^5 - 44648835/68719476736*n^6 - 34126939/68719476736*n^7 + 75175279/68719476736*n^8 - 73970743/68719476736*n^9 + 51014623/68719476736*n^10) * eps^19
        + (146703315/274877906944 - 154767345/137438953472*n + 43785795/137438953472*n^2 + 156007965/137438953472*n^3 - 364998495/274877906944*n^4 + 115971/68719476736*n^5 + 24948149/17179869184*n^6 - 117523573/68719476736*n^7 + 53786953/68719476736*n^8 + 26103457/68719476736*n^9) * eps^20
        + (134917425/274877906944 - 982018155/1099511627776*n - 128013105/1099511627776*n^2 + 172486635/137438953472*n^3 - 712641795/1099511627776*n^4 - 1003151847/1099511627776*n^5 + 365003889/274877906944*n^6 - 17906623/274877906944*n^7 - 94572227/68719476736*n^8) * eps^21
        + (1057102635/2199023255552 - 850997895/1099511627776*n - 663815307/2199023255552*n^2 + 1169497413/1099511627776*n^3 + 49560971/2199023255552*n^4 - 669423269/549755813888*n^5 + 1259901225/2199023255552*n^6 + 266092003/274877906944*n^7) * eps^22
        + (15777490455/35184372088832 - 21840324879/35184372088832*n - 16655962689/35184372088832*n^2 + 31191967407/35184372088832*n^3 + 14292320879/35184372088832*n^4 - 35796602007/35184372088832*n^5 - 8516465049/35184372088832*n^6) * eps^23
        + (30518839359/70368744177664 - 18775799295/35184372088832*n - 9098510199/17592186044416*n^2 + 21950540481/35184372088832*n^3 + 93296577/137438953472*n^4 - 25028086871/35184372088832*n^5) * eps^24
        + (28684124199/70368744177664 - 121237396839/281474976710656*n - 80108249325/140737488355328*n^2 + 62476546353/140737488355328*n^3 + 104269770907/140737488355328*n^4) * eps^25
        + (221067686111/562949953421312 - 51971219667/140737488355328*n - 312369078125/562949953421312*n^2 + 34424571581/140737488355328*n^3) * eps^26
        + (835594467657/2251799813685248 - 672205282129/2251799813685248*n - 9778893735/17592186044416*n^2) * eps^27
        + (1608685463477/4503599627370496 - 1123143299/4398046511104*n) * eps^28
        + 3053457067201/9007199254740992 * eps^29;
C3[18] = + (39803225/103079215104 - 71645805/68719476736*n + 96664975/68719476736*n^2 - 12302815/8589934592*n^3 + 10316025/8589934592*n^4 - 29419775/34359738368*n^5 + 18079789/34359738368*n^6 - 4814145/17179869184*n^7 + 20005447/154618822656*n^8 - 15970735/309237645312*n^9 + 608685/34359738368*n^10 - 133331/25769803776*n^11) * eps^18
        + (71645805/137438953472 - 96664975/68719476736*n + 223621755/137438953472*n^2 - 68391425/68719476736*n^3 - 534905/68719476736*n^4 + 28288833/34359738368*n^5 - 79700845/68719476736*n^6 + 328110727/309237645312*n^7 - 51427295/68719476736*n^8 + 132652751/309237645312*n^9 - 42045641/206158430208*n^10) * eps^19
        + (126233085/274877906944 - 313153165/274877906944*n + 450214705/549755813888*n^2 + 128894125/274877906944*n^3 - 851033855/549755813888*n^4 + 27708079/17179869184*n^5 - 635023933/824633720832*n^6 - 10743949/38654705664*n^7 + 2277775685/2473901162496*n^8 - 39095495/38654705664*n^9) * eps^20
        + (259599735/549755813888 - 563308905/549755813888*n + 6216585/17179869184*n^2 + 523725935/549755813888*n^3 - 696028275/549755813888*n^4 + 248241769/1236950581248*n^5 + 360205027/309237645312*n^6 - 1324703563/824633720832*n^7 + 578515831/618475290624*n^8) * eps^21
        + (1919738085/4398046511104 - 14510296015/17592186044416*n - 571757707/17592186044416*n^2 + 9787185553/8796093022208*n^3 - 14198943547/19791209299968*n^4 - 35731280915/52776558133248*n^5 + 200707555277/158329674399744*n^6 - 1602798301/4947802324992*n^7) * eps^22
        + (15095149455/35184372088832 - 12695123317/17592186044416*n - 7461993973/35184372088832*n^2 + 17320543045/17592186044416*n^3 - 38933502733/316659348799488*n^4 - 167508491351/158329674399744*n^5 + 225029316355/316659348799488*n^6) * eps^23
        + (28276211939/70368744177664 - 10324749795/17592186044416*n - 160063685731/422212465065984*n^2 + 44977263973/52776558133248*n^3 + 34943975527/140737488355328*n^4 - 76982106281/79164837199872*n^5) * eps^24
        + (27428616759/70368744177664 - 214928208341/422212465065984*n - 1901680771/4398046511104*n^2 + 266821592123/422212465065984*n^3 + 168025657159/316659348799488*n^4) * eps^25
        + (206917174391/562949953421312 - 1407328813243/3377699720527872*n - 1656940587997/3377699720527872*n^2 + 1604700872215/3377699720527872*n^3) * eps^26
        + (799328663817/2251799813685248 - 405743161697/1125899906842624*n - 17171897611/35184372088832*n^2) * eps^27
        + (1514801868617/4503599627370496 - 1997506016729/6755399441055744*n) * eps^28
        + 1461210130553/4503599627370496 * eps^29;
C3[19] = + (883631595/2611340115968 - 126233085/137438953472*n + 172136025/137438953472*n^2 - 178123365/137438953472*n^3 + 76338585/68719476736*n^4 - 55981629/68719476736*n^5 + 35624673/68719476736*n^6 - 19791485/68719476736*n^7 + 9613007/68719476736*n^8 - 4075291/68719476736*n^9 + 1501423/68719476736*n^10) * eps^19
        + (126233085/274877906944 - 172136025/137438953472*n + 204068505/137438953472*n^2 - 133218315/137438953472*n^3 + 25446195/274877906944*n^4 + 45803151/68719476736*n^5 - 70683875/68719476736*n^6 + 68421991/68719476736*n^7 - 12732847/17179869184*n^8 + 30944913/68719476736*n^9) * eps^20
        + (447553665/1099511627776 - 282901815/274877906944*n + 1744810665/2199023255552*n^2 + 714788607/2199023255552*n^3 - 2949064317/2199023255552*n^4 + 3330058719/2199023255552*n^5 - 466513575/549755813888*n^6 - 52627801/549755813888*n^7 + 415894171/549755813888*n^8) * eps^21
        + (231011535/549755813888 - 2056152345/2199023255552*n + 1715472699/4398046511104*n^2 + 1751396739/2199023255552*n^3 - 2620093247/2199023255552*n^4 + 381959029/1099511627776*n^5 + 4006284039/4398046511104*n^6 - 811840865/549755813888*n^7) * eps^22
        + (13730467455/35184372088832 - 26834758935/35184372088832*n + 1154658519/35184372088832*n^2 + 34587765501/35184372088832*n^3 - 26560472237/35184372088832*n^4 - 16713828219/35184372088832*n^5 + 41375557803/35184372088832*n^6) * eps^23
        + (27079840719/70368744177664 - 23683023159/35184372088832*n - 4885170495/35184372088832*n^2 + 31837181505/35184372088832*n^3 - 8213174937/35184372088832*n^4 - 31695410011/35184372088832*n^5) * eps^24
        + (25457271579/70368744177664 - 156005632095/281474976710656*n - 10545202575/35184372088832*n^2 + 114004448877/140737488355328*n^3 + 16505168273/140737488355328*n^4) * eps^25
        + (198096366191/562949953421312 - 17051245797/35184372088832*n - 202196269517/562949953421312*n^2 + 44120523793/70368744177664*n^3) * eps^26
        + (749484543777/2251799813685248 - 904154339527/2251799813685248*n - 237166138569/562949953421312*n^2) * eps^27
        + (1451001339947/4503599627370496 - 197052059395/562949953421312*n) * eps^28
        + 11027253546199/36028797018963968 * eps^29;
C3[20] = + (328206021/1099511627776 - 447553665/549755813888*n + 616197075/549755813888*n^2 - 2588027715/2199023255552*n^3 + 11313378297/10995116277760*n^4 - 1063650951/1374389534720*n^5 + 139671337/274877906944*n^6 - 161159235/549755813888*n^7 + 81876301/549755813888*n^8 - 91508807/1374389534720*n^9) * eps^20
        + (447553665/1099511627776 - 616197075/549755813888*n + 5973868485/4398046511104*n^2 - 5151407547/5497558138880*n^3 + 745124463/4398046511104*n^4 + 2933098077/5497558138880*n^5 - 999187257/1099511627776*n^6 + 255261409/274877906944*n^7 - 3993414699/5497558138880*n^8) * eps^21
        + (797813055/2199023255552 - 16416787335/17592186044416*n + 67175859231/87960930222080*n^2 + 9242357391/43980465111040*n^3 - 102015059749/87960930222080*n^4 + 124091978953/87960930222080*n^5 - 39356567111/43980465111040*n^6 + 592399119/10995116277760*n^7) * eps^22
        + (13225535115/35184372088832 - 15052072971/17592186044416*n + 71611679859/175921860444160*n^2 + 58313997297/87960930222080*n^3 - 195393281759/175921860444160*n^4 + 4977760923/10995116277760*n^5 + 24290150905/35184372088832*n^6) * eps^23
        + (24669936369/70368744177664 - 12424628601/17592186044416*n + 11746262979/140737488355328*n^2 + 30472467141/35184372088832*n^3 - 541082739303/703687441776640*n^4 - 214208596351/703687441776640*n^5) * eps^24
        + (24401503959/70368744177664 - 88423598371/140737488355328*n - 27848548649/351843720888320*n^2 + 582032816309/703687441776640*n^3 - 443970412913/1407374883553280*n^4) * eps^25
        + (184144866101/562949953421312 - 73617505285/140737488355328*n - 163863036307/703687441776640*n^2 + 4297898591023/5629499534213120*n^3) * eps^26
        + (89787248319/281474976710656 - 64845907663/140737488355328*n - 3332997588781/11258999068426240*n^2) * eps^27
        + (10901346434011/36028797018963968 - 6951464328397/18014398509481984*n) * eps^28
        + 10575447871909/36028797018963968 * eps^29;
C3[21] = + (2038855585/7696581394432 - 797813055/1099511627776*n + 2216147375/2199023255552*n^2 - 2357980807/2199023255552*n^3 + 2098862037/2199023255552*n^4 - 4845520999/6597069766656*n^5 + 5726524817/11544872091648*n^6 - 1139229075/3848290697216*n^7 + 258225257/1649267441664*n^8) * eps^21
        + (797813055/2199023255552 - 2216147375/2199023255552*n + 5478316311/4398046511104*n^2 - 1981576699/2199023255552*n^3 + 751444433/3298534883328*n^4 + 3238984625/7696581394432*n^5 - 10556856095/13194139533312*n^6 + 9949267255/11544872091648*n^7) * eps^22
        + (11435320455/35184372088832 - 29873666615/35184372088832*n + 25744131691/35184372088832*n^2 + 4163629499/35184372088832*n^3 - 739894554773/738871813865472*n^4 + 965405949493/738871813865472*n^5 - 677248006993/738871813865472*n^6) * eps^23
        + (23774829039/70368744177664 - 27620697099/35184372088832*n + 10971634235/26388279066624*n^2 + 405631341473/738871813865472*n^3 - 126601433727/123145302310912*n^4 + 129456725059/246290604621824*n^5) * eps^24
        + (22261029909/70368744177664 - 553102652395/844424930131968*n + 8620472343/70368744177664*n^2 + 2249783201615/2955487255461888*n^3 - 2263819350305/2955487255461888*n^4) * eps^25
        + (176646720641/562949953421312 - 123911959597/211106232532992*n - 51597036833/1688849860263936*n^2 + 39733441489/52776558133248*n^3) * eps^26
        + (1337288787659/4503599627370496 - 2222831651699/4503599627370496*n - 795233577023/4503599627370496*n^2) * eps^27
        + (2614429242859/9007199254740992 - 5913700976995/13510798882111488*n) * eps^28
        + 9945743757025/36028797018963968 * eps^29;
C3[22] = + (11435320455/48378511622144 - 11435320455/17592186044416*n + 16009448637/17592186044416*n^2 - 8620472343/8796093022208*n^3 + 7799474977/8796093022208*n^4 - 12256317821/17592186044416*n^5 + 8491054039/17592186044416*n^6 - 653158003/2199023255552*n^7) * eps^22
        + (11435320455/35184372088832 - 16009448637/17592186044416*n + 40287513603/35184372088832*n^2 - 15188451271/17592186044416*n^3 + 9558755047/35184372088832*n^4 + 5724737791/17592186044416*n^5 - 24704740937/35184372088832*n^6) * eps^23
        + (20583576819/70368744177664 - 27268841085/35184372088832*n + 98343755913/140737488355328*n^2 + 1583352063/35184372088832*n^3 - 121489410719/140737488355328*n^4 + 21194269441/17592186044416*n^5) * eps^24
        + (10731608427/35184372088832 - 101627745377/140737488355328*n + 14719309919/35184372088832*n^2 + 63574719679/140737488355328*n^3 - 66603916857/70368744177664*n^4) * eps^25
        + (322710607507/1125899906842624 - 1370068675847/2251799813685248*n + 343057591489/2251799813685248*n^2 + 751691842047/1125899906842624*n^3) * eps^26
        + (1283746667079/4503599627370496 - 1236043889089/2251799813685248*n + 40279424959/4503599627370496*n^2) * eps^27
        + (2436782869279/9007199254740992 - 4195124656575/9007199254740992*n) * eps^28
        + 4774615334345/18014398509481984 * eps^29;
C3[23] = + (171529806825/809240558043136 - 20583576819/35184372088832*n + 29028121155/35184372088832*n^2 - 31608398591/35184372088832*n^3 + 29028121155/35184372088832*n^4 - 23244740695/35184372088832*n^5 + 16482634311/35184372088832*n^6) * eps^23
        + (20583576819/70368744177664 - 29028121155/35184372088832*n + 37120809477/35184372088832*n^2 - 29028121155/35184372088832*n^3 + 10699253851/35184372088832*n^4 + 8608339377/35184372088832*n^5) * eps^24
        + (74417546961/281474976710656 - 99868465307/140737488355328*n + 46855492531/70368744177664*n^2 - 475207835/35184372088832*n^3 - 26136430925/35184372088832*n^4) * eps^25
        + (77818821763/281474976710656 - 46855492531/70368744177664*n + 117206473721/281474976710656*n^2 + 25946347791/70368744177664*n^3) * eps^26
        + (1173967590711/4503599627370496 - 2549380838081/4503599627370496*n + 787609465729/4503599627370496*n^2) * eps^27
        + (2340726177457/9007199254740992 - 2314357198017/4503599627370496*n) * eps^28
        + 556913250205/2251799813685248 * eps^29;
C3[24] = + (107492012277/562949953421312 - 74417546961/140737488355328*n + 316963625945/422212465065984*n^2 - 697319977079/844424930131968*n^3 + 216409648059/281474976710656*n^4 - 264500680961/422212465065984*n^5) * eps^24
        + (74417546961/281474976710656 - 316963625945/422212465065984*n + 548484883157/562949953421312*n^2 - 41533164779/52776558133248*n^3 + 553046878373/1688849860263936*n^4) * eps^25
        + (135054066707/562949953421312 - 4401660092471/6755399441055744*n + 4279816803577/6755399441055744*n^2 - 202913745545/3377699720527872*n^3) * eps^26
        + (1132800437073/4503599627370496 - 1385801088427/2251799813685248*n + 1851694849861/4503599627370496*n^2) * eps^27
        + (1071403584791/4503599627370496 - 7127072067763/13510798882111488*n) * eps^28
        + 1045457237/4398046511104 * eps^29;
C3[25] = + (1215486600363/7036874417766400 - 135054066707/281474976710656*n + 96467190505/140737488355328*n^2 - 107111846009/140737488355328*n^3 + 504955845471/703687441776640*n^4) * eps^25
        + (135054066707/562949953421312 - 96467190505/140737488355328*n + 507617009347/562949953421312*n^2 - 527575738417/703687441776640*n^3) * eps^26
        + (983965343151/4503599627370496 - 2701746625109/4503599627370496*n + 13560625821127/22517998136852480*n^2) * eps^27
        + (2068389622621/9007199254740992 - 2567357849371/4503599627370496*n) * eps^28
        + 1961943067581/9007199254740992 * eps^29;
C3[26] = + (2295919134019/14636698788954112 - 983965343151/2251799813685248*n + 1413743309125/2251799813685248*n^2 - 395848126555/562949953421312*n^3) * eps^26
        + (983965343151/4503599627370496 - 1413743309125/2251799813685248*n + 3766212175509/4503599627370496*n^2) * eps^27
        + (1798281489207/9007199254740992 - 4987686394593/9007199254740992*n) * eps^28
        + 3788832068455/18014398509481984 * eps^29;
C3[27] = + (17383387729001/121597189939003392 - 1798281489207/4503599627370496*n + 7792553119897/13510798882111488*n^2) * eps^27
        + (1798281489207/9007199254740992 - 7792553119897/13510798882111488*n) * eps^28
        + 6593698793759/36028797018963968 * eps^29;
C3[28] = + (4709784852685/36028797018963968 - 6593698793759/18014398509481984*n) * eps^28
        + 6593698793759/36028797018963968 * eps^29;
C3[29] = + 125280277081421/1044835113549955072 * eps^29;

C4[0] = + (2/3 - 1/15*ep2 + 4/105*ep2^2 - 8/315*ep2^3 + 64/3465*ep2^4 - 128/9009*ep2^5 + 512/45045*ep2^6 - 1024/109395*ep2^7 + 16384/2078505*ep2^8 - 32768/4849845*ep2^9 + 131072/22309287*ep2^10 - 262144/50702925*ep2^11 + 2097152/456326325*ep2^12 - 4194304/1017958725*ep2^13 + 16777216/4508102925*ep2^14 - 33554432/9917826435*ep2^15 + 1073741824/347123925225*ep2^16 - 2147483648/755505013725*ep2^17 + 8589934592/3273855059475*ep2^18 - 17179869184/7064634602025*ep2^19 + 137438953472/60755857577415*ep2^20 - 274877906944/130191123380175*ep2^21 + 1099511627776/556271163533475*ep2^22 - 2199023255552/1185099435353925*ep2^23 + 35184372088832/20146690401016725*ep2^24 - 70368744177664/42710983650155457*ep2^25 + 281474976710656/180700315442965395*ep2^26 - 562949953421312/381478443712926945*ep2^27 + 4503599627370496/3215318311294669965*ep2^28 - 9007199254740992/6763255758240512685*ep2^29)
        - (1/20 - 1/35*ep2 + 2/105*ep2^2 - 16/1155*ep2^3 + 32/3003*ep2^4 - 128/15015*ep2^5 + 256/36465*ep2^6 - 4096/692835*ep2^7 + 8192/1616615*ep2^8 - 32768/7436429*ep2^9 + 65536/16900975*ep2^10 - 524288/152108775*ep2^11 + 1048576/339319575*ep2^12 - 4194304/1502700975*ep2^13 + 8388608/3305942145*ep2^14 - 268435456/115707975075*ep2^15 + 536870912/251835004575*ep2^16 - 2147483648/1091285019825*ep2^17 + 4294967296/2354878200675*ep2^18 - 34359738368/20251952525805*ep2^19 + 68719476736/43397041126725*ep2^20 - 274877906944/185423721177825*ep2^21 + 549755813888/395033145117975*ep2^22 - 8796093022208/6715563467005575*ep2^23 + 17592186044416/14236994550051819*ep2^24 - 70368744177664/60233438480988465*ep2^25 + 140737488355328/127159481237642315*ep2^26 - 1125899906842624/1071772770431556655*ep2^27 + 2251799813685248/2254418586080170895*ep2^28) * k2
        + (1/42 - 1/63*ep2 + 8/693*ep2^2 - 80/9009*ep2^3 + 64/9009*ep2^4 - 128/21879*ep2^5 + 2048/415701*ep2^6 - 4096/969969*ep2^7 + 81920/22309287*ep2^8 - 32768/10140585*ep2^9 + 262144/91265265*ep2^10 - 524288/203591745*ep2^11 + 2097152/901620585*ep2^12 - 4194304/1983565287*ep2^13 + 134217728/69424785045*ep2^14 - 268435456/151101002745*ep2^15 + 1073741824/654771011895*ep2^16 - 2147483648/1412926920405*ep2^17 + 17179869184/12151171515483*ep2^18 - 34359738368/26038224676035*ep2^19 + 137438953472/111254232706695*ep2^20 - 274877906944/237019887070785*ep2^21 + 4398046511104/4029338080203345*ep2^22 - 43980465111040/42710983650155457*ep2^23 + 35184372088832/36140063088593079*ep2^24 - 70368744177664/76295688742585389*ep2^25 + 562949953421312/643063662258933993*ep2^26 - 1125899906842624/1352651151648102537*ep2^27) * k2^2
        - (1/72 - 1/99*ep2 + 10/1287*ep2^2 - 8/1287*ep2^3 + 112/21879*ep2^4 - 1792/415701*ep2^5 + 512/138567*ep2^6 - 10240/3187041*ep2^7 + 4096/1448655*ep2^8 - 32768/13037895*ep2^9 + 65536/29084535*ep2^10 - 1835008/901620585*ep2^11 + 3670016/1983565287*ep2^12 - 16777216/9917826435*ep2^13 + 33554432/21585857535*ep2^14 - 134217728/93538715985*ep2^15 + 268435456/201846702915*ep2^16 - 2147483648/1735881645069*ep2^17 + 30064771072/26038224676035*ep2^18 - 120259084288/111254232706695*ep2^19 + 34359738368/33859983867255*ep2^20 - 549755813888/575619725743335*ep2^21 + 5497558138880/6101569092879351*ep2^22 - 4398046511104/5162866155513297*ep2^23 + 8796093022208/10899384106083627*ep2^24 - 70368744177664/91866237465561999*ep2^25 + 140737488355328/193235878806871791*ep2^26) * k2^3
        + (1/110 - 1/143*ep2 + 4/715*ep2^2 - 56/12155*ep2^3 + 896/230945*ep2^4 - 768/230945*ep2^5 + 3072/1062347*ep2^6 - 6144/2414425*ep2^7 + 16384/7243275*ep2^8 - 32768/16158075*ep2^9 + 917504/500900325*ep2^10 - 1835008/1101980715*ep2^11 + 8388608/5509903575*ep2^12 - 16777216/11992143075*ep2^13 + 67108864/51965953325*ep2^14 - 134217728/112137057175*ep2^15 + 1073741824/964378691705*ep2^16 - 15032385536/14465680375575*ep2^17 + 60129542144/61807907059275*ep2^18 - 17179869184/18811102148475*ep2^19 + 274877906944/319788736524075*ep2^20 - 549755813888/677952121431039*ep2^21 + 2199023255552/2868258975285165*ep2^22 - 13194139533312/18165640176806045*ep2^23 + 105553116266496/153110395775936665*ep2^24 - 211106232532992/322059798011452985*ep2^25) * k2^4
        - (1/156 - 1/195*ep2 + 14/3315*ep2^2 - 224/62985*ep2^3 + 64/20995*ep2^4 - 256/96577*ep2^5 + 5632/2414425*ep2^6 - 45056/21729825*ep2^7 + 90112/48474225*ep2^8 - 2523136/1502700975*ep2^9 + 458752/300540195*ep2^10 - 2097152/1502700975*ep2^11 + 4194304/3270584475*ep2^12 - 16777216/14172532725*ep2^13 + 33554432/30582833775*ep2^14 - 268435456/263012370465*ep2^15 + 3758096384/3945185556975*ep2^16 - 165356240896/185423721177825*ep2^17 + 47244640256/56433306445425*ep2^18 - 755914244096/959366209572225*ep2^19 + 1511828488192/2033856364293117*ep2^20 - 549755813888/782252447805045*ep2^21 + 1099511627776/1651421834255095*ep2^22 - 8796093022208/13919126888721515*ep2^23 + 17592186044416/29278163455586635*ep2^24) * k2^5
        + (1/210 - 1/255*ep2 + 16/4845*ep2^2 - 32/11305*ep2^3 + 128/52003*ep2^4 - 2816/1300075*ep2^5 + 22528/11700675*ep2^6 - 585728/339319575*ep2^7 + 2342912/1502700975*ep2^8 - 425984/300540195*ep2^9 + 13631488/10518906825*ep2^10 - 27262976/22894091325*ep2^11 + 8388608/7631363775*ep2^12 - 16777216/16467679725*ep2^13 + 134217728/141622045635*ep2^14 - 268435456/303475812075*ep2^15 + 11811160064/14263363167525*ep2^16 - 23622320128/30387165009075*ep2^17 + 377957122048/516581805154275*ep2^18 - 755914244096/1095153426927063*ep2^19 + 3573412790272/5475767134635315*ep2^20 - 7146825580544/11559952839785665*ep2^21 + 57174604644352/97433888221050605*ep2^22 - 114349209288704/204947144189106445*ep2^23) * k2^6
        - (1/272 - 1/323*ep2 + 6/2261*ep2^2 - 120/52003*ep2^3 + 528/260015*ep2^4 - 1408/780045*ep2^5 + 36608/22621305*ep2^6 - 146432/100180065*ep2^7 + 26624/20036013*ep2^8 - 851968/701260455*ep2^9 + 1703936/1526272755*ep2^10 - 524288/508757585*ep2^11 + 1048576/1097845315*ep2^12 - 8388608/9441469709*ep2^13 + 16777216/20231720805*ep2^14 - 738197504/950890877835*ep2^15 + 1476395008/2025811000605*ep2^16 - 23622320128/34438787010285*ep2^17 + 236223201280/365051142309021*ep2^18 - 223338299392/365051142309021*ep2^19 + 1340029796352/2311990567957133*ep2^20 - 10720238370816/19486777644210121*ep2^21 + 21440476741632/40989428837821289*ep2^22) * k2^7
        + (1/342 - 1/399*ep2 + 20/9177*ep2^2 - 88/45885*ep2^3 + 704/412965*ep2^4 - 18304/11975985*ep2^5 + 73216/53036505*ep2^6 - 13312/10607301*ep2^7 + 425984/371255535*ep2^8 - 14483456/13736454795*ep2^9 + 4456448/4578818265*ep2^10 - 8912896/9880607835*ep2^11 + 71303168/84973227381*ep2^12 - 142606336/182085487245*ep2^13 + 6274678784/8558017900515*ep2^14 - 12549357568/18232299005445*ep2^15 + 11811160064/18232299005445*ep2^16 - 118111600640/193262369457717*ep2^17 + 111669149696/193262369457717*ep2^18 - 223338299392/407998335521847*ep2^19 + 1786706395136/3438843113684139*ep2^20 - 3573412790272/7233428618439051*ep2^21) * k2^8
        - (1/420 - 1/483*ep2 + 22/12075*ep2^2 - 176/108675*ep2^3 + 4576/3151575*ep2^4 - 18304/13956975*ep2^5 + 3328/2791395*ep2^6 - 106496/97698825*ep2^7 + 3620864/3614856525*ep2^8 - 1114112/1204952175*ep2^9 + 42336256/49403039175*ep2^10 - 338690048/424866136905*ep2^11 + 677380096/910427436225*ep2^12 - 29804724224/42790089502575*ep2^13 + 59609448448/91161495027225*ep2^14 - 56103010304/91161495027225*ep2^15 + 112206020608/193262369457717*ep2^16 - 530428461056/966311847288585*ep2^17 + 55834574848/107367983032065*ep2^18 - 446676598784/904958714127405*ep2^19 + 893353197568/1903533846957645*ep2^20) * k2^9
        + (1/506 - 1/575*ep2 + 8/5175*ep2^2 - 208/150075*ep2^3 + 5824/4652325*ep2^4 - 11648/10235115*ep2^5 + 53248/51175575*ep2^6 - 1810432/1893496275*ep2^7 + 557056/631165425*ep2^8 - 21168128/25877782425*ep2^9 + 169345024/222548928855*ep2^10 - 2370830336/3338233932825*ep2^11 + 9483321344/14263363167525*ep2^12 - 2709520384/4341023572725*ep2^13 + 2550136832/4341023572725*ep2^14 - 5100273664/9202969974177*ep2^15 + 265214230528/506163348579735*ep2^16 - 27917287424/56240372064415*ep2^17 + 223338299392/474025993114355*ep2^18 - 446676598784/997089157930195*ep2^19) * k2^10
        - (1/600 - 1/675*ep2 + 26/19575*ep2^2 - 728/606825*ep2^3 + 1456/1335015*ep2^4 - 6656/6675075*ep2^5 + 226304/246977775*ep2^6 - 69632/82325925*ep2^7 + 2646016/3375362925*ep2^8 - 21168128/29028121155*ep2^9 + 296353792/435421817325*ep2^10 - 1185415168/1860438674025*ep2^11 + 7789871104/13023070718175*ep2^12 - 7331643392/13023070718175*ep2^13 + 14663286784/27608909922531*ep2^14 - 762490912768/1518490045739205*ep2^15 + 80262201344/168721116193245*ep2^16 - 642097610752/1422077979343065*ep2^17 + 1284195221504/2991267473790585*ep2^18) * k2^11
        + (1/702 - 1/783*ep2 + 28/24273*ep2^2 - 280/267003*ep2^3 + 256/267003*ep2^4 - 8704/9879111*ep2^5 + 34816/42809481*ep2^6 - 1323008/1755188721*ep2^7 + 52920320/75473115003*ep2^8 - 148176896/226419345009*ep2^9 + 592707584/967428110493*ep2^10 - 3894935552/6771996773451*ep2^11 + 3665821696/6771996773451*ep2^12 - 183291084800/358915828992903*ep2^13 + 146632867840/303698009147841*ep2^14 - 15435038720/33744223238649*ep2^15 + 123480309760/284415595868613*ep2^16 - 246960619520/598253494758117*ep2^17) * k2^12
        - (1/812 - 1/899*ep2 + 10/9889*ep2^2 - 64/69223*ep2^3 + 2176/2561251*ep2^4 - 26112/33296263*ep2^5 + 992256/1365146783*ep2^6 - 39690240/58701311669*ep2^7 + 5292032/8385901667*ep2^8 - 21168128/35830670759*ep2^9 + 973733888/1755702867191*ep2^10 - 916455424/1755702867191*ep2^11 + 45822771200/93052251961123*ep2^12 - 36658216960/78736520890181*ep2^13 + 34728837120/78736520890181*ep2^14 - 277830696960/663636390360097*ep2^15 + 555661393920/1395924821102273*ep2^16) * k2^13
        + (1/930 - 1/1023*ep2 + 32/35805*ep2^2 - 1088/1324785*ep2^3 + 4352/5740735*ep2^4 - 165376/235370135*ep2^5 + 1323008/2024183161*ep2^6 - 2646016/4337535345*ep2^7 + 10584064/18533105565*ep2^8 - 486866944/908122172685*ep2^9 + 458227712/908122172685*ep2^10 - 4582277120/9626095030461*ep2^11 + 3665821696/8145157333467*ep2^12 - 1157627904/2715052444489*ep2^13 + 9261023232/22884013460693*ep2^14 - 537139347456/1395924821102273*ep2^15) * k2^14
        - (1/1056 - 1/1155*ep2 + 34/42735*ep2^2 - 136/185185*ep2^3 + 5168/7592585*ep2^4 - 41344/65296231*ep2^5 + 82688/139920495*ep2^6 - 330752/597842115*ep2^7 + 15214592/29294263635*ep2^8 - 14319616/29294263635*ep2^9 + 143196160/310519194531*ep2^10 - 114556928/262747010757*ep2^11 + 36175872/87582336919*ep2^12 - 289406976/738193982603*ep2^13 + 16785604608/45029832938783*ep2^14) * k2^15
        + (1/1190 - 1/1295*ep2 + 12/16835*ep2^2 - 456/690235*ep2^3 + 3648/5936021*ep2^4 - 2432/4240015*ep2^5 + 107008/199280705*ep2^6 - 4922368/9764754545*ep2^7 + 78757888/166000827265*ep2^8 - 787578880/1759608769009*ep2^9 + 57278464/135354520693*ep2^10 - 54263808/135354520693*ep2^11 + 434110464/1140845245841*ep2^12 - 25178406912/69591559996301*ep2^13) * k2^16
        - (1/1332 - 1/1443*ep2 + 38/59163*ep2^2 - 1520/2544009*ep2^3 + 4256/7632027*ep2^4 - 187264/358705269*ep2^5 + 1230592/2510936883*ep2^6 - 19689472/42685927011*ep2^7 + 984473600/2262354131583*ep2^8 - 71598080/174027240891*ep2^9 + 7536640/19336360099*ep2^10 - 60293120/162977892263*ep2^11 + 3497000960/9941651428043*ep2^12) * k2^17
        + (1/1482 - 1/1599*ep2 + 40/68757*ep2^2 - 112/206271*ep2^3 + 4928/9694737*ep2^4 - 32384/67863159*ep2^5 + 518144/1153673703*ep2^6 - 25907200/61144706259*ep2^7 + 1884160/4703438943*ep2^8 - 3768320/9929482213*ep2^9 + 30146560/83691350081*ep2^10 - 1748500480/5105172354941*ep2^11) * k2^18
        - (1/1640 - 1/1763*ep2 + 14/26445*ep2^2 - 616/1242915*ep2^3 + 4048/8700405*ep2^4 - 64768/147906885*ep2^5 + 647680/1567812981*ep2^6 - 612352/1567812981*ep2^7 + 3674112/9929482213*ep2^8 - 29392896/83691350081*ep2^9 + 1704787968/5105172354941*ep2^10) * k2^19
        + (1/1806 - 1/1935*ep2 + 44/90945*ep2^2 - 2024/4456305*ep2^3 + 32384/75757185*ep2^4 - 323840/803026161*ep2^5 + 306176/803026161*ep2^6 - 612352/1695277451*ep2^7 + 4898816/14288767087*ep2^8 - 284131328/871614792307*ep2^9) * k2^20
        - (1/1980 - 1/2115*ep2 + 46/103635*ep2^2 - 736/1761795*ep2^3 + 7360/18675027*ep2^4 - 76544/205425297*ep2^5 + 153088/433675627*ep2^6 - 1224704/3655265999*ep2^7 + 71032832/222971225939*ep2^8) * k2^21
        + (1/2162 - 1/2303*ep2 + 16/39151*ep2^2 - 800/2075003*ep2^3 + 8320/22825033*ep2^4 - 149760/433675627*ep2^5 + 1198080/3655265999*ep2^6 - 69488640/222971225939*ep2^7) * k2^22
        - (1/2352 - 1/2499*ep2 + 50/132447*ep2^2 - 520/1456917*ep2^3 + 3120/9227141*ep2^4 - 24960/77771617*ep2^5 + 1447680/4744068637*ep2^6) * k2^23
        + (1/2550 - 1/2703*ep2 + 52/148665*ep2^2 - 312/941545*ep2^3 + 17472/55551155*ep2^4 - 1013376/3388620455*ep2^5) * k2^24
        - (1/2756 - 1/2915*ep2 + 18/55385*ep2^2 - 1008/3267715*ep2^3 + 58464/199330615*ep2^4) * k2^25
        + (1/2970 - 1/3135*ep2 + 56/184965*ep2^2 - 3248/11282865*ep2^3) * k2^26
        - (1/3192 - 1/3363*ep2 + 58/205143*ep2^2) * k2^27
        + (1/3422 - 1/3599*ep2) * k2^28
        - 1/3660 * k2^29;
C4[1] = + (1/180 - 1/315*ep2 + 2/945*ep2^2 - 16/10395*ep2^3 + 32/27027*ep2^4 - 128/135135*ep2^5 + 256/328185*ep2^6 - 4096/6235515*ep2^7 + 8192/14549535*ep2^8 - 32768/66927861*ep2^9 + 65536/152108775*ep2^10 - 524288/1368978975*ep2^11 + 1048576/3053876175*ep2^12 - 4194304/13524308775*ep2^13 + 8388608/29753479305*ep2^14 - 268435456/1041371775675*ep2^15 + 536870912/2266515041175*ep2^16 - 2147483648/9821565178425*ep2^17 + 4294967296/21193903806075*ep2^18 - 34359738368/182267572732245*ep2^19 + 68719476736/390573370140525*ep2^20 - 274877906944/1668813490600425*ep2^21 + 549755813888/3555298306061775*ep2^22 - 8796093022208/60440071203050175*ep2^23 + 17592186044416/128132950950466371*ep2^24 - 70368744177664/542100946328896185*ep2^25 + 140737488355328/1144435331138780835*ep2^26 - 1125899906842624/9645954933884009895*ep2^27 + 2251799813685248/20289767274721538055*ep2^28) * k2
        - (1/252 - 1/378*ep2 + 4/2079*ep2^2 - 40/27027*ep2^3 + 32/27027*ep2^4 - 64/65637*ep2^5 + 1024/1247103*ep2^6 - 2048/2909907*ep2^7 + 40960/66927861*ep2^8 - 16384/30421755*ep2^9 + 131072/273795795*ep2^10 - 262144/610775235*ep2^11 + 1048576/2704861755*ep2^12 - 2097152/5950695861*ep2^13 + 67108864/208274355135*ep2^14 - 134217728/453303008235*ep2^15 + 536870912/1964313035685*ep2^16 - 1073741824/4238780761215*ep2^17 + 8589934592/36453514546449*ep2^18 - 17179869184/78114674028105*ep2^19 + 68719476736/333762698120085*ep2^20 - 137438953472/711059661212355*ep2^21 + 2199023255552/12088014240610035*ep2^22 - 21990232555520/128132950950466371*ep2^23 + 17592186044416/108420189265779237*ep2^24 - 35184372088832/228887066227756167*ep2^25 + 281474976710656/1929190986776801979*ep2^26 - 562949953421312/4057953454944307611*ep2^27) * k2^2
        + (1/360 - 1/495*ep2 + 2/1287*ep2^2 - 8/6435*ep2^3 + 112/109395*ep2^4 - 1792/2078505*ep2^5 + 512/692835*ep2^6 - 2048/3187041*ep2^7 + 4096/7243275*ep2^8 - 32768/65189475*ep2^9 + 65536/145422675*ep2^10 - 1835008/4508102925*ep2^11 + 3670016/9917826435*ep2^12 - 16777216/49589132175*ep2^13 + 33554432/107929287675*ep2^14 - 134217728/467693579925*ep2^15 + 268435456/1009233514575*ep2^16 - 2147483648/8679408225345*ep2^17 + 30064771072/130191123380175*ep2^18 - 120259084288/556271163533475*ep2^19 + 34359738368/169299919336275*ep2^20 - 549755813888/2878098628716675*ep2^21 + 1099511627776/6101569092879351*ep2^22 - 4398046511104/25814330777566485*ep2^23 + 8796093022208/54496920530418135*ep2^24 - 70368744177664/459331187327809995*ep2^25 + 140737488355328/966179394034358955*ep2^26) * k2^3
        - (1/495 - 2/1287*ep2 + 8/6435*ep2^2 - 112/109395*ep2^3 + 1792/2078505*ep2^4 - 512/692835*ep2^5 + 2048/3187041*ep2^6 - 4096/7243275*ep2^7 + 32768/65189475*ep2^8 - 65536/145422675*ep2^9 + 1835008/4508102925*ep2^10 - 3670016/9917826435*ep2^11 + 16777216/49589132175*ep2^12 - 33554432/107929287675*ep2^13 + 134217728/467693579925*ep2^14 - 268435456/1009233514575*ep2^15 + 2147483648/8679408225345*ep2^16 - 30064771072/130191123380175*ep2^17 + 120259084288/556271163533475*ep2^18 - 34359738368/169299919336275*ep2^19 + 549755813888/2878098628716675*ep2^20 - 1099511627776/6101569092879351*ep2^21 + 4398046511104/25814330777566485*ep2^22 - 8796093022208/54496920530418135*ep2^23 + 70368744177664/459331187327809995*ep2^24 - 140737488355328/966179394034358955*ep2^25) * k2^4
        + (5/3276 - 1/819*ep2 + 2/1989*ep2^2 - 32/37791*ep2^3 + 64/88179*ep2^4 - 1280/2028117*ep2^5 + 5632/10140585*ep2^6 - 45056/91265265*ep2^7 + 90112/203591745*ep2^8 - 360448/901620585*ep2^9 + 65536/180324117*ep2^10 - 2097152/6311344095*ep2^11 + 4194304/13736454795*ep2^12 - 16777216/59524637445*ep2^13 + 33554432/128447901855*ep2^14 - 268435456/1104651955953*ep2^15 + 536870912/2367111334185*ep2^16 - 23622320128/111254232706695*ep2^17 + 47244640256/237019887070785*ep2^18 - 755914244096/4029338080203345*ep2^19 + 7559142440960/42710983650155457*ep2^20 - 549755813888/3285460280781189*ep2^21 + 1099511627776/6935971703871399*ep2^22 - 8796093022208/58460332932630363*ep2^23 + 17592186044416/122968286513463867*ep2^24) * k2^5
        - (1/840 - 1/1020*ep2 + 4/4845*ep2^2 - 8/11305*ep2^3 + 32/52003*ep2^4 - 704/1300075*ep2^5 + 5632/11700675*ep2^6 - 146432/339319575*ep2^7 + 585728/1502700975*ep2^8 - 106496/300540195*ep2^9 + 3407872/10518906825*ep2^10 - 6815744/22894091325*ep2^11 + 2097152/7631363775*ep2^12 - 4194304/16467679725*ep2^13 + 33554432/141622045635*ep2^14 - 67108864/303475812075*ep2^15 + 2952790016/14263363167525*ep2^16 - 5905580032/30387165009075*ep2^17 + 94489280512/516581805154275*ep2^18 - 188978561024/1095153426927063*ep2^19 + 893353197568/5475767134635315*ep2^20 - 1786706395136/11559952839785665*ep2^21 + 14293651161088/97433888221050605*ep2^22 - 28587302322176/204947144189106445*ep2^23) * k2^6
        + (7/7344 - 7/8721*ep2 + 2/2907*ep2^2 - 40/66861*ep2^3 + 176/334305*ep2^4 - 1408/3008745*ep2^5 + 36608/87253605*ep2^6 - 1025024/2704861755*ep2^7 + 186368/540972351*ep2^8 - 851968/2704861755*ep2^9 + 1703936/5887052055*ep2^10 - 524288/1962350685*ep2^11 + 1048576/4234546215*ep2^12 - 8388608/36417097449*ep2^13 + 117440512/546256461735*ep2^14 - 5167382528/25674053701545*ep2^15 + 1476395008/7813842430905*ep2^16 - 23622320128/132835321325385*ep2^17 + 236223201280/1408054406049081*ep2^18 - 223338299392/1408054406049081*ep2^19 + 446676598784/2972559301659171*ep2^20 - 3573412790272/25054428399698727*ep2^21 + 7146825580544/52700694220055943*ep2^22) * k2^7
        - (2/2565 - 4/5985*ep2 + 16/27531*ep2^2 - 352/688275*ep2^3 + 2816/6194475*ep2^4 - 73216/179639775*ep2^5 + 292864/795547575*ep2^6 - 53248/159109515*ep2^7 + 1703936/5568833025*ep2^8 - 57933824/206046821925*ep2^9 + 17825792/68682273975*ep2^10 - 35651584/148209117525*ep2^11 + 285212672/1274598410715*ep2^12 - 570425344/2731282308675*ep2^13 + 25098715136/128370268507725*ep2^14 - 50197430272/273484485081675*ep2^15 + 47244640256/273484485081675*ep2^16 - 94489280512/579787108373151*ep2^17 + 446676598784/2898935541865755*ep2^18 - 893353197568/6119975032827705*ep2^19 + 7146825580544/51582646705262085*ep2^20 - 14293651161088/108501429276585765*ep2^21) * k2^8
        + (1/1540 - 1/1771*ep2 + 2/4025*ep2^2 - 16/36225*ep2^3 + 416/1050525*ep2^4 - 1664/4652325*ep2^5 + 3328/10235115*ep2^6 - 106496/358229025*ep2^7 + 3620864/13254473925*ep2^8 - 1114112/4418157975*ep2^9 + 42336256/181144476975*ep2^10 - 338690048/1557842501985*ep2^11 + 677380096/3338233932825*ep2^12 - 2709520384/14263363167525*ep2^13 + 5419040768/30387165009075*ep2^14 - 5100273664/30387165009075*ep2^15 + 10200547328/64420789819239*ep2^16 - 530428461056/3543143440058145*ep2^17 + 55834574848/393682604450905*ep2^18 - 446676598784/3318181951800485*ep2^19 + 893353197568/6979624105511365*ep2^20) * k2^9
        - (5/9108 - 1/2070*ep2 + 4/9315*ep2^2 - 104/270135*ep2^3 + 2912/8374185*ep2^4 - 5824/18423207*ep2^5 + 26624/92116035*ep2^6 - 905216/3408293295*ep2^7 + 278528/1136097765*ep2^8 - 10584064/46580008365*ep2^9 + 84672512/400588071939*ep2^10 - 1185415168/6008821079085*ep2^11 + 4741660672/25674053701545*ep2^12 - 1354760192/7813842430905*ep2^13 + 1275068416/7813842430905*ep2^14 - 12750684160/82826729767593*ep2^15 + 132607115264/911094027443523*ep2^16 - 13958643712/101232669715947*ep2^17 + 111669149696/853246787605839*ep2^18 - 223338299392/1794760484274351*ep2^19) * k2^10
        + (11/23400 - 11/26325*ep2 + 22/58725*ep2^2 - 616/1820475*ep2^3 + 112/364095*ep2^4 - 512/1820475*ep2^5 + 17408/67357575*ep2^6 - 69632/291882825*ep2^7 + 2646016/11967195825*ep2^8 - 21168128/102917884095*ep2^9 + 296353792/1543768261425*ep2^10 - 13039566848/72557108286975*ep2^11 + 85688582144/507899758008825*ep2^12 - 80648077312/507899758008825*ep2^13 + 161296154624/1076747486978709*ep2^14 - 58653147136/414133648837965*ep2^15 + 6174015488/46014849870885*ep2^16 - 49392123904/387839448911745*ep2^17 + 98784247808/815800220124705*ep2^18) * k2^11
        - (1/2457 - 2/5481*ep2 + 8/24273*ep2^2 - 80/267003*ep2^3 + 512/1869021*ep2^4 - 17408/69153777*ep2^5 + 69632/299666367*ep2^6 - 2646016/12286321047*ep2^7 + 105840640/528311805021*ep2^8 - 42336256/226419345009*ep2^9 + 169345024/967428110493*ep2^10 - 7789871104/47403977414157*ep2^11 + 7331643392/47403977414157*ep2^12 - 366582169600/2512410802950321*ep2^13 + 293265735680/2125886064034887*ep2^14 - 30870077440/236209562670543*ep2^15 + 246960619520/1990909171080291*ep2^16 - 493921239040/4187774463306819*ep2^17) * k2^12
        + (13/36540 - 13/40455*ep2 + 26/89001*ep2^2 - 832/3115035*ep2^3 + 28288/115256295*ep2^4 - 8704/38418765*ep2^5 + 330752/1575169365*ep2^6 - 2646016/13546456539*ep2^7 + 5292032/29028121155*ep2^8 - 21168128/124029244935*ep2^9 + 973733888/6077433001815*ep2^10 - 916455424/6077433001815*ep2^11 + 9164554240/64420789819239*ep2^12 - 95311364096/708628688011629*ep2^13 + 10032775168/78736520890181*ep2^14 - 80262201344/663636390360097*ep2^15 + 160524402688/1395924821102273*ep2^16) * k2^13
        - (7/22320 - 7/24552*ep2 + 4/15345*ep2^2 - 136/567765*ep2^3 + 544/2460315*ep2^4 - 20672/100872915*ep2^5 + 165376/867507069*ep2^6 - 2315264/13012606035*ep2^7 + 9261056/55599316695*ep2^8 - 60858368/389195216865*ep2^9 + 57278464/389195216865*ep2^10 - 572784640/4125469298769*ep2^11 + 458227712/3490781714343*ep2^12 - 48234496/387864634927*ep2^13 + 385875968/3269144780099*ep2^14 - 22380806144/199417831586039*ep2^15) * k2^14
        + (5/17952 - 1/3927*ep2 + 2/8547*ep2^2 - 8/37037*ep2^3 + 304/1518517*ep2^4 - 12160/65296231*ep2^5 + 4864/27984099*ep2^6 - 19456/119568423*ep2^7 + 894976/5858852727*ep2^8 - 14319616/99600496359*ep2^9 + 715980800/5278826307027*ep2^10 - 572784640/4466699182869*ep2^11 + 180879360/1488899727623*ep2^12 - 1447034880/12549297704251*ep2^13 + 83928023040/765507159959311*ep2^14) * k2^15
        - (4/16065 - 8/34965*ep2 + 32/151515*ep2^2 - 1216/6212115*ep2^3 + 9728/53424189*ep2^4 - 19456/114480405*ep2^5 + 856064/5380579035*ep2^6 - 39378944/263648372715*ep2^7 + 630063104/4482022336155*ep2^8 - 6300631040/47509436763243*ep2^9 + 458227712/3654572058711*ep2^10 - 48234496/406063562079*ep2^11 + 385875968/3422535737523*ep2^12 - 22380806144/208774679988903*ep2^13) * k2^16
        + (17/75924 - 17/82251*ep2 + 34/177489*ep2^2 - 1360/7632027*ep2^3 + 3808/22896081*ep2^4 - 167552/1076115807*ep2^5 + 1101056/7532810649*ep2^6 - 1036288/7532810649*ep2^7 + 51814400/399238964397*ep2^8 - 3768320/30710689569*ep2^9 + 7536640/64833677979*ep2^10 - 60293120/546455285823*ep2^11 + 3497000960/33333772435203*ep2^12) * k2^17
        - (1/4940 - 1/5330*ep2 + 4/22919*ep2^2 - 56/343785*ep2^3 + 2464/16157895*ep2^4 - 16192/113105265*ep2^5 + 259072/1922789505*ep2^6 - 2590720/20381568753*ep2^7 + 188416/1567812981*ep2^8 - 1130496/9929482213*ep2^9 + 9043968/83691350081*ep2^10 - 524550144/5105172354941*ep2^11) * k2^18
        + (19/103320 - 19/111069*ep2 + 38/238005*ep2^2 - 1672/11186235*ep2^3 + 76912/548125515*ep2^4 - 1230592/9318133755*ep2^5 + 12305920/98772217803*ep2^6 - 11634688/98772217803*ep2^7 + 1224704/10974690867*ep2^8 - 9797632/92500965879*ep2^9 + 568262656/5642558918619*ep2^10) * k2^19
        - (5/29799 - 2/12771*ep2 + 8/54567*ep2^2 - 368/2673783*ep2^3 + 5888/45454311*ep2^4 - 294400/2409078483*ep2^5 + 3061760/26499863313*ep2^6 - 6123520/55944155883*ep2^7 + 48988160/471529313871*ep2^8 - 2841313280/28763288146131*ep2^9) * k2^20
        + (7/45540 - 7/48645*ep2 + 2/14805*ep2^2 - 32/251685*ep2^3 + 320/2667861*ep2^4 - 3328/29346471*ep2^5 + 6656/61953661*ep2^6 - 53248/522180857*ep2^7 + 3088384/31853032277*ep2^8) * k2^21
        - (11/77832 - 11/82908*ep2 + 44/352359*ep2^2 - 2200/18675027*ep2^3 + 2080/18675027*ep2^4 - 4160/39425057*ep2^5 + 33280/332296909*ep2^6 - 1930240/20270111449*ep2^7) * k2^22
        + (23/176400 - 23/187425*ep2 + 46/397341*ep2^2 - 2392/21853755*ep2^3 + 4784/46135705*ep2^4 - 38272/388858085*ep2^5 + 2219776/23720343185*ep2^6) * k2^23
        - (2/16575 - 4/35139*ep2 + 16/148665*ep2^2 - 96/941545*ep2^3 + 5376/55551155*ep2^4 - 311808/3388620455*ep2^5) * k2^24
        + (25/223236 - 5/47223*ep2 + 10/99693*ep2^2 - 560/5881887*ep2^3 + 32480/358795107*ep2^4) * k2^25
        - (13/124740 - 13/131670*ep2 + 52/554895*ep2^2 - 3016/33848595*ep2^3) * k2^26
        + (3/30856 - 3/32509*ep2 + 6/68381*ep2^2) * k2^27
        - (7/76995 - 14/161955*ep2) * k2^28
        + 29/340380 * k2^29;
C4[2] = + (1/2100 - 1/3150*ep2 + 4/17325*ep2^2 - 8/45045*ep2^3 + 32/225225*ep2^4 - 64/546975*ep2^5 + 1024/10392525*ep2^6 - 2048/24249225*ep2^7 + 8192/111546435*ep2^8 - 16384/253514625*ep2^9 + 131072/2281631625*ep2^10 - 262144/5089793625*ep2^11 + 1048576/22540514625*ep2^12 - 2097152/49589132175*ep2^13 + 67108864/1735619626125*ep2^14 - 134217728/3777525068625*ep2^15 + 536870912/16369275297375*ep2^16 - 1073741824/35323173010125*ep2^17 + 8589934592/303779287887075*ep2^18 - 17179869184/650955616900875*ep2^19 + 68719476736/2781355817667375*ep2^20 - 137438953472/5925497176769625*ep2^21 + 2199023255552/100733452005083625*ep2^22 - 4398046511104/213554918250777285*ep2^23 + 17592186044416/903501577214826975*ep2^24 - 35184372088832/1907392218564634725*ep2^25 + 281474976710656/16076591556473349825*ep2^26 - 562949953421312/33816278791202563425*ep2^27) * k2^2
        - (1/1800 - 1/2475*ep2 + 2/6435*ep2^2 - 8/32175*ep2^3 + 112/546975*ep2^4 - 1792/10392525*ep2^5 + 512/3464175*ep2^6 - 2048/15935205*ep2^7 + 4096/36216375*ep2^8 - 32768/325947375*ep2^9 + 65536/727113375*ep2^10 - 1835008/22540514625*ep2^11 + 3670016/49589132175*ep2^12 - 16777216/247945660875*ep2^13 + 33554432/539646438375*ep2^14 - 134217728/2338467899625*ep2^15 + 268435456/5046167572875*ep2^16 - 2147483648/43397041126725*ep2^17 + 30064771072/650955616900875*ep2^18 - 120259084288/2781355817667375*ep2^19 + 34359738368/846499596681375*ep2^20 - 549755813888/14390493143583375*ep2^21 + 1099511627776/30507845464396755*ep2^22 - 4398046511104/129071653887832425*ep2^23 + 8796093022208/272484602652090675*ep2^24 - 70368744177664/2296655936639049975*ep2^25 + 140737488355328/4830896970171794775*ep2^26) * k2^3
        + (1/1925 - 2/5005*ep2 + 8/25025*ep2^2 - 16/60775*ep2^3 + 256/1154725*ep2^4 - 1536/8083075*ep2^5 + 6144/37182145*ep2^6 - 12288/84504875*ep2^7 + 32768/253514625*ep2^8 - 65536/565532625*ep2^9 + 262144/2504501625*ep2^10 - 524288/5509903575*ep2^11 + 16777216/192846625125*ep2^12 - 33554432/419725007625*ep2^13 + 134217728/1818808366375*ep2^14 - 268435456/3924797001125*ep2^15 + 2147483648/33753254209675*ep2^16 - 4294967296/72328401877875*ep2^17 + 17179869184/309039535296375*ep2^18 - 34359738368/658388575196625*ep2^19 + 549755813888/11192605778342625*ep2^20 - 1099511627776/23728324250086365*ep2^21 + 4398046511104/100389064134980775*ep2^22 - 26388279066624/635797406188211575*ep2^23 + 211106232532992/5358863852157783275*ep2^24 - 422212465065984/11272092930400854475*ep2^25) * k2^4
        - (1/2184 - 1/2730*ep2 + 1/3315*ep2^2 - 16/62985*ep2^3 + 32/146965*ep2^4 - 128/676039*ep2^5 + 2816/16900975*ep2^6 - 22528/152108775*ep2^7 + 45056/339319575*ep2^8 - 180224/1502700975*ep2^9 + 32768/300540195*ep2^10 - 1048576/10518906825*ep2^11 + 2097152/22894091325*ep2^12 - 8388608/99207729075*ep2^13 + 16777216/214079836425*ep2^14 - 134217728/1841086593255*ep2^15 + 268435456/3945185556975*ep2^16 - 11811160064/185423721177825*ep2^17 + 23622320128/395033145117975*ep2^18 - 377957122048/6715563467005575*ep2^19 + 755914244096/14236994550051819*ep2^20 - 274877906944/5475767134635315*ep2^21 + 549755813888/11559952839785665*ep2^22 - 4398046511104/97433888221050605*ep2^23 + 8796093022208/204947144189106445*ep2^24) * k2^5
        + (1/2520 - 1/3060*ep2 + 4/14535*ep2^2 - 8/33915*ep2^3 + 32/156009*ep2^4 - 704/3900225*ep2^5 + 5632/35102025*ep2^6 - 146432/1017958725*ep2^7 + 585728/4508102925*ep2^8 - 106496/901620585*ep2^9 + 3407872/31556720475*ep2^10 - 6815744/68682273975*ep2^11 + 2097152/22894091325*ep2^12 - 4194304/49403039175*ep2^13 + 33554432/424866136905*ep2^14 - 67108864/910427436225*ep2^15 + 2952790016/42790089502575*ep2^16 - 5905580032/91161495027225*ep2^17 + 94489280512/1549745415462825*ep2^18 - 188978561024/3285460280781189*ep2^19 + 893353197568/16427301403905945*ep2^20 - 1786706395136/34679858519356995*ep2^21 + 14293651161088/292301664663151815*ep2^22 - 28587302322176/614841432567319335*ep2^23) * k2^6
        - (7/20400 - 7/24225*ep2 + 2/8075*ep2^2 - 8/37145*ep2^3 + 176/928625*ep2^4 - 1408/8357625*ep2^5 + 36608/242371125*ep2^6 - 1025024/7513504875*ep2^7 + 186368/1502700975*ep2^8 - 851968/7513504875*ep2^9 + 1703936/16352922375*ep2^10 - 524288/5450974125*ep2^11 + 1048576/11762628375*ep2^12 - 8388608/101158604025*ep2^13 + 117440512/1517379060375*ep2^14 - 5167382528/71316815837625*ep2^15 + 1476395008/21705117863625*ep2^16 - 23622320128/368987003681625*ep2^17 + 47244640256/782252447805045*ep2^18 - 223338299392/3911262239025225*ep2^19 + 446676598784/8257109171275475*ep2^20 - 3573412790272/69595634443607575*ep2^21 + 7146825580544/146390817277933175*ep2^22) * k2^7
        + (14/47025 - 4/15675*ep2 + 16/72105*ep2^2 - 32/163875*ep2^3 + 256/1474875*ep2^4 - 6656/42771375*ep2^5 + 186368/1325912625*ep2^6 - 372736/2917007775*ep2^7 + 1703936/14585038875*ep2^8 - 57933824/539646438375*ep2^9 + 17825792/179882146125*ep2^10 - 35651584/388166736375*ep2^11 + 285212672/3338233932825*ep2^12 - 3992977408/50073508992375*ep2^13 + 15971909632/213950447512875*ep2^14 - 4563402752/65115353590875*ep2^15 + 4294967296/65115353590875*ep2^16 - 8589934592/138044549612655*ep2^17 + 446676598784/7592450228696025*ep2^18 - 893353197568/16028506038358275*ep2^19 + 7146825580544/135097408037591175*ep2^20 - 14293651161088/284170410010105575*ep2^21) * k2^8
        - (1/3850 - 2/8855*ep2 + 4/20125*ep2^2 - 32/181125*ep2^3 + 832/5252625*ep2^4 - 3328/23261625*ep2^5 + 6656/51175575*ep2^6 - 212992/1791145125*ep2^7 + 7241728/66272369625*ep2^8 - 2228224/22090789875*ep2^9 + 84672512/905722384875*ep2^10 - 677380096/7789212509925*ep2^11 + 1354760192/16691169664125*ep2^12 - 5419040768/71316815837625*ep2^13 + 10838081536/151935825045375*ep2^14 - 10200547328/151935825045375*ep2^15 + 20401094656/322103949096195*ep2^16 - 1060856922112/17715717200290725*ep2^17 + 111669149696/1968413022254525*ep2^18 - 893353197568/16590909759002425*ep2^19 + 1786706395136/34898120527556825*ep2^20) * k2^9
        + (3/13156 - 3/14950*ep2 + 4/22425*ep2^2 - 8/50025*ep2^3 + 224/1550775*ep2^4 - 448/3411705*ep2^5 + 2048/17058525*ep2^6 - 69632/631165425*ep2^7 + 278528/2735050175*ep2^8 - 10584064/112137057175*ep2^9 + 84672512/964378691705*ep2^10 - 1185415168/14465680375575*ep2^11 + 4741660672/61807907059275*ep2^12 - 1354760192/18811102148475*ep2^13 + 1275068416/18811102148475*ep2^14 - 2550136832/39879536554767*ep2^15 + 10200547328/168721116193245*ep2^16 - 3221225472/56240372064415*ep2^17 + 25769803776/474025993114355*ep2^18 - 51539607552/997089157930195*ep2^19) * k2^10
        - (11/54600 - 11/61425*ep2 + 22/137025*ep2^2 - 88/606825*ep2^3 + 16/121365*ep2^4 - 512/4247775*ep2^5 + 17408/157167675*ep2^6 - 69632/681059925*ep2^7 + 2646016/27923456925*ep2^8 - 21168128/240141729555*ep2^9 + 42336256/514589420475*ep2^10 - 1862795264/24185702762325*ep2^11 + 85688582144/1185099435353925*ep2^12 - 80648077312/1185099435353925*ep2^13 + 161296154624/2512410802950321*ep2^14 - 58653147136/966311847288585*ep2^15 + 6174015488/107367983032065*ep2^16 - 49392123904/904958714127405*ep2^17 + 98784247808/1903533846957645*ep2^18) * k2^11
        + (11/61425 - 22/137025*ep2 + 88/606825*ep2^2 - 16/121365*ep2^3 + 512/4247775*ep2^4 - 17408/157167675*ep2^5 + 69632/681059925*ep2^6 - 2646016/27923456925*ep2^7 + 21168128/240141729555*ep2^8 - 42336256/514589420475*ep2^9 + 1862795264/24185702762325*ep2^10 - 85688582144/1185099435353925*ep2^11 + 80648077312/1185099435353925*ep2^12 - 161296154624/2512410802950321*ep2^13 + 58653147136/966311847288585*ep2^14 - 6174015488/107367983032065*ep2^15 + 49392123904/904958714127405*ep2^16 - 98784247808/1903533846957645*ep2^17) * k2^12
        - (13/81200 - 13/89900*ep2 + 13/98890*ep2^2 - 208/1730575*ep2^3 + 7072/64031275*ep2^4 - 6528/64031275*ep2^5 + 248064/2625282275*ep2^6 - 1984512/22577427565*ep2^7 + 1323008/16126733975*ep2^8 - 5292032/68905136075*ep2^9 + 243433472/3376351667675*ep2^10 - 229113856/3376351667675*ep2^11 + 458227712/7157865535471*ep2^12 - 23827841024/393682604450905*ep2^13 + 22573744128/393682604450905*ep2^14 - 180589953024/3318181951800485*ep2^15 + 361179906048/6979624105511365*ep2^16) * k2^13
        + (91/632400 - 91/695640*ep2 + 52/434775*ep2^2 - 104/946275*ep2^3 + 32/315425*ep2^4 - 1216/12932425*ep2^5 + 9728/111218855*ep2^6 - 136192/1668282825*ep2^7 + 544768/7128117525*ep2^8 - 3579904/49896822675*ep2^9 + 57278464/848245985475*ep2^10 - 114556928/1798281489207*ep2^11 + 5956960256/98905481906385*ep2^12 - 1881145344/32968493968795*ep2^13 + 15049162752/277877306308415*ep2^14 - 872851439616/16950515684813315*ep2^15) * k2^14
        - (7/53856 - 1/8415*ep2 + 2/18315*ep2^2 - 8/79365*ep2^3 + 304/3253965*ep2^4 - 2432/27984099*ep2^5 + 34048/419761485*ep2^6 - 136192/1793526345*ep2^7 + 894976/12554684415*ep2^8 - 14319616/213429635055*ep2^9 + 143196160/2262354131583*ep2^10 - 114556928/1914299649801*ep2^11 + 12058624/212699961089*ep2^12 - 96468992/1792756814893*ep2^13 + 5595201536/109358165708473*ep2^14) * k2^15
        + (4/33915 - 8/73815*ep2 + 32/319865*ep2^2 - 64/690235*ep2^3 + 512/5936021*ep2^4 - 1024/12720045*ep2^5 + 45056/597842115*ep2^6 - 2072576/29294263635*ep2^7 + 33161216/498002481795*ep2^8 - 331612160/5278826307027*ep2^9 + 24117248/406063562079*ep2^10 - 144703488/2571735893167*ep2^11 + 1157627904/21676059670979*ep2^12 - 67142418432/1322239639929719*ep2^13) * k2^16
        - (17/158175 - 68/685425*ep2 + 136/1479075*ep2^2 - 1088/12720045*ep2^3 + 15232/190800675*ep2^4 - 670208/8967631725*ep2^5 + 4404224/62773422075*ep2^6 - 4145152/62773422075*ep2^7 + 8290304/133079654799*ep2^8 - 3014656/51184482615*ep2^9 + 6029312/108056129965*ep2^10 - 48234496/910758809705*ep2^11 + 2797600768/55556287392005*ep2^12) * k2^17
        + (17/172900 - 17/186550*ep2 + 68/802165*ep2^2 - 136/1718925*ep2^3 + 5984/80789475*ep2^4 - 275264/3958684275*ep2^5 + 259072/3958684275*ep2^6 - 518144/8392410663*ep2^7 + 188416/3227850255*ep2^8 - 1130496/20443051615*ep2^9 + 9043968/172305720755*ep2^10 - 524550144/10510648966055*ep2^11) * k2^18
        - (57/631400 - 57/678755*ep2 + 38/484825*ep2^2 - 152/2071525*ep2^3 + 6992/101504725*ep2^4 - 111872/1725580325*ep2^5 + 223744/3658230289*ep2^6 - 11634688/201202665895*ep2^7 + 11022336/201202665895*ep2^8 - 88178688/1695851041115*ep2^9 + 5114363904/103446913508015*ep2^10) * k2^19
        + (19/228459 - 38/489555*ep2 + 152/2091735*ep2^2 - 304/4456305*ep2^3 + 4864/75757185*ep2^4 - 48640/803026161*ep2^5 + 505856/8833287771*ep2^6 - 53248/981476419*ep2^7 + 425984/8272444103*ep2^8 - 24707072/504619090283*ep2^9) * k2^20
        - (7/91080 - 7/97290*ep2 + 1/14805*ep2^2 - 16/251685*ep2^3 + 160/2667861*ep2^4 - 1664/29346471*ep2^5 + 3328/61953661*ep2^6 - 26624/522180857*ep2^7 + 1544192/31853032277*ep2^8) * k2^21
        + (77/1081000 - 11/164500*ep2 + 44/699125*ep2^2 - 88/1482145*ep2^3 + 416/7410725*ep2^4 - 7488/140803775*ep2^5 + 59904/1186774675*ep2^6 - 3474432/72393255175*ep2^7) * k2^22
        - (253/3822000 - 253/4060875*ep2 + 506/8609055*ep2^2 - 184/3311175*ep2^3 + 1104/20970775*ep2^4 - 8832/176753675*ep2^5 + 512256/10781974175*ep2^6) * k2^23
        + (46/745875 - 92/1581255*ep2 + 368/6689925*ep2^2 - 736/14123175*ep2^3 + 41216/833267325*ep2^4 - 2390528/50829306825*ep2^5) * k2^24
        - (5/86814 - 2/36729*ep2 + 4/77539*ep2^2 - 32/653543*ep2^3 + 1856/39866123*ep2^4) * k2^25
        + (13/241164 - 13/254562*ep2 + 52/1072797*ep2^2 - 104/2256573*ep2^3) * k2^26
        - (39/771400 - 39/812725*ep2 + 78/1709525*ep2^2) * k2^27
        + (63/1326025 - 126/2789225*ep2) * k2^28
        - 203/4538400 * k2^29;
C4[3] = + (1/17640 - 1/24255*ep2 + 2/63063*ep2^2 - 8/315315*ep2^3 + 16/765765*ep2^4 - 256/14549535*ep2^5 + 512/33948915*ep2^6 - 2048/156165009*ep2^7 + 4096/354920475*ep2^8 - 32768/3194284275*ep2^9 + 65536/7125711075*ep2^10 - 262144/31556720475*ep2^11 + 524288/69424785045*ep2^12 - 16777216/2429867476575*ep2^13 + 33554432/5288535096075*ep2^14 - 134217728/22916985416325*ep2^15 + 268435456/49452442214175*ep2^16 - 2147483648/425291003041905*ep2^17 + 4294967296/911337863661225*ep2^18 - 17179869184/3893898144734325*ep2^19 + 34359738368/8295696047477475*ep2^20 - 549755813888/141026832807117075*ep2^21 + 1099511627776/298976885551088199*ep2^22 - 4398046511104/1264902208100757765*ep2^23 + 8796093022208/2670349105990488615*ep2^24 - 70368744177664/22507228179062689755*ep2^25 + 140737488355328/47342790307683588795*ep2^26) * k2^3
        - (1/10780 - 1/14014*ep2 + 2/35035*ep2^2 - 4/85085*ep2^3 + 64/1616615*ep2^4 - 384/11316305*ep2^5 + 1536/52055003*ep2^6 - 3072/118306825*ep2^7 + 8192/354920475*ep2^8 - 16384/791745675*ep2^9 + 65536/3506302275*ep2^10 - 131072/7713865005*ep2^11 + 4194304/269985275175*ep2^12 - 8388608/587615010675*ep2^13 + 33554432/2546331712925*ep2^14 - 67108864/5494715801575*ep2^15 + 536870912/47254555893545*ep2^16 - 1073741824/101259762629025*ep2^17 + 4294967296/432655349414925*ep2^18 - 8589934592/921744005275275*ep2^19 + 137438953472/15669648089679675*ep2^20 - 274877906944/33219653950120911*ep2^21 + 1099511627776/140544689788973085*ep2^22 - 6597069766656/890116368663496205*ep2^23 + 52776558133248/7502409393020896585*ep2^24 - 105553116266496/15780930102561196265*ep2^25) * k2^4
        + (5/45864 - 1/11466*ep2 + 1/13923*ep2^2 - 16/264537*ep2^3 + 32/617253*ep2^4 - 640/14196819*ep2^5 + 2816/70984095*ep2^6 - 22528/638856855*ep2^7 + 45056/1425142215*ep2^8 - 180224/6311344095*ep2^9 + 32768/1262268819*ep2^10 - 1048576/44179408665*ep2^11 + 2097152/96155183565*ep2^12 - 8388608/416672462115*ep2^13 + 16777216/899135312985*ep2^14 - 134217728/7732563691671*ep2^15 + 268435456/16569779339295*ep2^16 - 11811160064/778779628946865*ep2^17 + 23622320128/1659139209495495*ep2^18 - 377957122048/28205366561423415*ep2^19 + 3779571220480/298976885551088199*ep2^20 - 274877906944/22998221965468323*ep2^21 + 549755813888/48551801927099793*ep2^22 - 4398046511104/409222330528412541*ep2^23 + 8796093022208/860778005594247069*ep2^24) * k2^5
        - (1/8820 - 1/10710*ep2 + 8/101745*ep2^2 - 16/237405*ep2^3 + 64/1092063*ep2^4 - 1408/27301575*ep2^5 + 11264/245714175*ep2^6 - 292864/7125711075*ep2^7 + 1171456/31556720475*ep2^8 - 212992/6311344095*ep2^9 + 6815744/220897043325*ep2^10 - 13631488/480775917825*ep2^11 + 4194304/160258639275*ep2^12 - 8388608/345821274225*ep2^13 + 67108864/2974062958335*ep2^14 - 134217728/6372992053575*ep2^15 + 5905580032/299530626518025*ep2^16 - 11811160064/638130465190575*ep2^17 + 188978561024/10848217908239775*ep2^18 - 377957122048/22998221965468323*ep2^19 + 1786706395136/114991109827341615*ep2^20 - 3573412790272/242759009635498965*ep2^21 + 28587302322176/2046111652642062705*ep2^22 - 57174604644352/4303890027971235345*ep2^23) * k2^6
        + (1/8976 - 1/10659*ep2 + 2/24871*ep2^2 - 40/572033*ep2^3 + 16/260015*ep2^4 - 128/2340135*ep2^5 + 3328/67863915*ep2^6 - 13312/300540195*ep2^7 + 26624/661188429*ep2^8 - 851968/23141595015*ep2^9 + 1703936/50367000915*ep2^10 - 524288/16789000305*ep2^11 + 1048576/36228895395*ep2^12 - 8388608/311568500397*ep2^13 + 16777216/667646786565*ep2^14 - 67108864/2852672633505*ep2^15 + 134217728/6077433001815*ep2^16 - 2147483648/103316361030855*ep2^17 + 21474836480/1095153426927063*ep2^18 - 223338299392/12046687696197693*ep2^19 + 446676598784/25431896247528463*ep2^20 - 3573412790272/214354554086311331*ep2^21 + 7146825580544/450883717216034179*ep2^22) * k2^7
        - (1/9405 - 2/21945*ep2 + 8/100947*ep2^2 - 16/229425*ep2^3 + 128/2064825*ep2^4 - 3328/59879925*ep2^5 + 13312/265182525*ep2^6 - 26624/583401555*ep2^7 + 851968/20419054425*ep2^8 - 28966912/755505013725*ep2^9 + 8912896/251835004575*ep2^10 - 17825792/543433430925*ep2^11 + 142606336/4673527505955*ep2^12 - 285212672/10014701798475*ep2^13 + 1140850688/42790089502575*ep2^14 - 2281701376/91161495027225*ep2^15 + 2147483648/91161495027225*ep2^16 - 4294967296/193262369457717*ep2^17 + 223338299392/10629430320174435*ep2^18 - 446676598784/22439908453701585*ep2^19 + 3573412790272/189136371252627645*ep2^20 - 7146825580544/397838574014147805*ep2^21) * k2^8
        + (1/10010 - 2/23023*ep2 + 4/52325*ep2^2 - 32/470925*ep2^3 + 64/1050525*ep2^4 - 256/4652325*ep2^5 + 512/10235115*ep2^6 - 16384/358229025*ep2^7 + 557056/13254473925*ep2^8 - 2228224/57436053675*ep2^9 + 84672512/2354878200675*ep2^10 - 677380096/20251952525805*ep2^11 + 1354760192/43397041126725*ep2^12 - 5419040768/185423721177825*ep2^13 + 10838081536/395033145117975*ep2^14 - 10200547328/395033145117975*ep2^15 + 20401094656/837470267650107*ep2^16 - 81604378624/3543143440058145*ep2^17 + 8589934592/393682604450905*ep2^18 - 68719476736/3318181951800485*ep2^19 + 137438953472/6979624105511365*ep2^20) * k2^9
        - (15/161161 - 6/73255*ep2 + 16/219765*ep2^2 - 32/490245*ep2^3 + 128/2171085*ep2^4 - 256/4776387*ep2^5 + 8192/167173545*ep2^6 - 278528/6185421165*ep2^7 + 1114112/26803491715*ep2^8 - 42336256/1098943160315*ep2^9 + 338690048/9450911178709*ep2^10 - 677380096/20251952525805*ep2^11 + 2709520384/86531069882985*ep2^12 - 5419040768/184348801055055*ep2^13 + 5100273664/184348801055055*ep2^14 - 51002736640/1954097291183583*ep2^15 + 40802189312/1653466938693801*ep2^16 - 12884901888/551155646231267*ep2^17 + 103079215104/4645454732520679*ep2^18 - 206158430208/9771473747715911*ep2^19) * k2^10
        + (11/127400 - 11/143325*ep2 + 22/319725*ep2^2 - 88/1415925*ep2^3 + 16/283185*ep2^4 - 512/9911475*ep2^5 + 17408/366724575*ep2^6 - 69632/1589139825*ep2^7 + 2646016/65154732825*ep2^8 - 21168128/560330702295*ep2^9 + 42336256/1200708647775*ep2^10 - 1862795264/56433306445425*ep2^11 + 85688582144/2765232015825825*ep2^12 - 80648077312/2765232015825825*ep2^13 + 161296154624/5862291873550749*ep2^14 - 58653147136/2254727643673365*ep2^15 + 6174015488/250525293741485*ep2^16 - 49392123904/2111570332963945*ep2^17 + 98784247808/4441578976234505*ep2^18) * k2^11
        - (11/137592 - 11/153468*ep2 + 11/169911*ep2^2 - 10/169911*ep2^3 + 64/1189377*ep2^4 - 2176/44006949*ep2^5 + 8704/190696779*ep2^6 - 330752/7818567939*ep2^7 + 13230080/336198421377*ep2^8 - 5292032/144085037733*ep2^9 + 232849408/6771996773451*ep2^10 - 10711072768/331827841899099*ep2^11 + 10081009664/331827841899099*ep2^12 - 504050483200/17586875620652247*ep2^13 + 36658216960/1352836586204019*ep2^14 - 3858759680/150315176244891*ep2^15 + 30870077440/1266942199778367*ep2^16 - 61740154880/2664947385740703*ep2^17) * k2^12
        + (143/1932560 - 143/2139620*ep2 + 13/213962*ep2^2 - 208/3744335*ep2^3 + 416/8149435*ep2^4 - 384/8149435*ep2^5 + 14592/334126835*ep2^6 - 116736/2873490781*ep2^7 + 77824/2052493415*ep2^8 - 3424256/96467190505*ep2^9 + 157515776/4726892334745*ep2^10 - 2520252416/80357169690665*ep2^11 + 25202524160/851785998721049*ep2^12 - 23827841024/851785998721049*ep2^13 + 22573744128/851785998721049*ep2^14 - 180589953024/7179339132077413*ep2^15 + 361179906048/15101368519197317*ep2^16) * k2^13
        - (13/189720 - 13/208692*ep2 + 104/1826055*ep2^2 - 208/3974355*ep2^3 + 64/1324785*ep2^4 - 2432/54316185*ep2^5 + 19456/467119191*ep2^6 - 38912/1000969695*ep2^7 + 155648/4276870515*ep2^8 - 7159808/209566655235*ep2^9 + 114556928/3562633138995*ep2^10 - 1145569280/37763911273347*ep2^11 + 11913920512/415403024006817*ep2^12 - 1254096896/46155891556313*ep2^13 + 10032775168/389028228831781*ep2^14 - 581900959744/23730721958738641*ep2^15) * k2^14
        + (65/1023264 - 13/223839*ep2 + 26/487179*ep2^2 - 8/162393*ep2^3 + 16/350427*ep2^4 - 640/15068361*ep2^5 + 256/6457869*ep2^6 - 1024/27592713*ep2^7 + 47104/1352042937*ep2^8 - 753664/22984729929*ep2^9 + 37683200/1218190686237*ep2^10 - 391905280/13400097548607*ep2^11 + 783810560/28289094824837*ep2^12 - 6270484480/238436656380769*ep2^13 + 363688099840/14544636039226909*ep2^14) * k2^15
        - (2/33915 - 4/73815*ep2 + 16/319865*ep2^2 - 32/690235*ep2^3 + 256/5936021*ep2^4 - 512/12720045*ep2^5 + 22528/597842115*ep2^6 - 1036288/29294263635*ep2^7 + 16580608/498002481795*ep2^8 - 165806080/5278826307027*ep2^9 + 12058624/406063562079*ep2^10 - 72351744/2571735893167*ep2^11 + 578813952/21676059670979*ep2^12 - 33571209216/1322239639929719*ep2^13) * k2^16
        + (17/310023 - 68/1343433*ep2 + 136/2898987*ep2^2 - 5440/124656441*ep2^3 + 2176/53424189*ep2^4 - 95744/2510936883*ep2^5 + 4404224/123035907267*ep2^6 - 4145152/123035907267*ep2^7 + 207257600/6520903085151*ep2^8 - 15073280/501607929627*ep2^9 + 30146560/1058950073657*ep2^10 - 241172480/8925436335109*ep2^11 + 13988003840/544451616441649*ep2^12) * k2^17
        - (34/665665 - 68/1436435*ep2 + 544/12353341*ep2^2 - 1088/26471445*ep2^3 + 4352/113105265*ep2^4 - 200192/5542157985*ep2^5 + 188416/5542157985*ep2^6 - 1884160/58746874641*ep2^7 + 1507328/49708893927*ep2^8 - 9043968/314822994871*ep2^9 + 72351744/2653508099627*ep2^10 - 4196401152/161863994077247*ep2^11) * k2^18
        + (969/20331080 - 969/21855911*ep2 + 646/15611365*ep2^2 - 2584/66703105*ep2^3 + 5168/142106615*ep2^4 - 4864/142106615*ep2^5 + 48640/1506330119*ep2^6 - 505856/16569631309*ep2^7 + 479232/16569631309*ep2^8 - 3833856/139658321033*ep2^9 + 222363648/8519157583013*ep2^10) * k2^19
        - (95/2132284 - 19/456918*ep2 + 38/976143*ep2^2 - 76/2079609*ep2^3 + 1216/35353353*ep2^4 - 60800/1873727709*ep2^5 + 632320/20611004799*ep2^6 - 199680/6870334933*ep2^7 + 1597440/57907108721*ep2^8 - 92651520/3532333631981*ep2^9) * k2^20
        + (19/455400 - 19/486450*ep2 + 19/518175*ep2^2 - 304/8808975*ep2^3 + 608/18675027*ep2^4 - 31616/1027126485*ep2^5 + 3328/114125165*ep2^6 - 26624/961912105*ep2^7 + 1544192/58676638405*ep2^8) * k2^21
        - (11/281060 - 11/299390*ep2 + 88/2544815*ep2^2 - 880/26975039*ep2^3 + 64/2075003*ep2^4 - 1152/39425057*ep2^5 + 9216/332296909*ep2^6 - 534528/20270111449*ep2^7) * k2^22
        + (253/6879600 - 253/7309575*ep2 + 506/15496299*ep2^2 - 184/5960115*ep2^3 + 368/12582465*ep2^4 - 2944/106052205*ep2^5 + 170752/6469184505*ep2^6) * k2^23
        - (253/7309575 - 506/15496299*ep2 + 184/5960115*ep2^2 - 368/12582465*ep2^3 + 2944/106052205*ep2^4 - 170752/6469184505*ep2^5) * k2^24
        + (575/17623242 - 230/7455987*ep2 + 460/15740417*ep2^2 - 3680/132669229*ep2^3 + 7360/279062861*ep2^4) * k2^25
        - (13/422037 - 26/890967*ep2 + 208/7509579*ep2^2 - 416/15796011*ep2^3) * k2^26
        + (195/6695752 - 195/7054453*ep2 + 390/14838677*ep2^2) * k2^27
        - (117/4243280 - 117/4462760*ep2) * k2^28
        + 87/3328160 * k2^29;
C4[4] = + (1/124740 - 1/162162*ep2 + 2/405405*ep2^2 - 4/984555*ep2^3 + 64/18706545*ep2^4 - 128/43648605*ep2^5 + 512/200783583*ep2^6 - 1024/456326325*ep2^7 + 8192/4106936925*ep2^8 - 16384/9161628525*ep2^9 + 65536/40572926325*ep2^10 - 131072/89260437915*ep2^11 + 4194304/3124115327025*ep2^12 - 8388608/6799545123525*ep2^13 + 33554432/29464695535275*ep2^14 - 67108864/63581711418225*ep2^15 + 536870912/546802718196735*ep2^16 - 1073741824/1171720110421575*ep2^17 + 4294967296/5006440471801275*ep2^18 - 8589934592/10665894918185325*ep2^19 + 137438953472/181320213609150525*ep2^20 - 274877906944/384398852851399113*ep2^21 + 1099511627776/1626302838986688555*ep2^22 - 2199023255552/3433305993416342505*ep2^23 + 17592186044416/28937864801652029685*ep2^24 - 35184372088832/60869301824164614165*ep2^25) * k2^4
        - (1/58968 - 1/73710*ep2 + 1/89505*ep2^2 - 16/1700595*ep2^3 + 32/3968055*ep2^4 - 128/18253053*ep2^5 + 2816/456326325*ep2^6 - 22528/4106936925*ep2^7 + 45056/9161628525*ep2^8 - 180224/40572926325*ep2^9 + 32768/8114585265*ep2^10 - 1048576/284010484275*ep2^11 + 2097152/618140465775*ep2^12 - 8388608/2678608685025*ep2^13 + 16777216/5780155583475*ep2^14 - 134217728/49709338017885*ep2^15 + 268435456/106520010038325*ep2^16 - 11811160064/5006440471801275*ep2^17 + 23622320128/10665894918185325*ep2^18 - 377957122048/181320213609150525*ep2^19 + 755914244096/384398852851399113*ep2^20 - 274877906944/147845712635153505*ep2^21 + 549755813888/312118726674212955*ep2^22 - 4398046511104/2630714981968366335*ep2^23 + 8796093022208/5533572893105874015*ep2^24) * k2^5
        + (1/41580 - 1/50490*ep2 + 8/479655*ep2^2 - 16/1119195*ep2^3 + 64/5148297*ep2^4 - 128/11700675*ep2^5 + 1024/105306075*ep2^6 - 26624/3053876175*ep2^7 + 106496/13524308775*ep2^8 - 212992/29753479305*ep2^9 + 6815744/1041371775675*ep2^10 - 13631488/2266515041175*ep2^11 + 4194304/755505013725*ep2^12 - 8388608/1630300292775*ep2^13 + 67108864/14020582517865*ep2^14 - 134217728/30044105395425*ep2^15 + 536870912/128370268507725*ep2^16 - 1073741824/273484485081675*ep2^17 + 17179869184/4649236246388475*ep2^18 - 34359738368/9856380842343567*ep2^19 + 1786706395136/542100946328896185*ep2^20 - 3573412790272/1144435331138780835*ep2^21 + 28587302322176/9645954933884009895*ep2^22 - 57174604644352/20289767274721538055*ep2^23) * k2^6
        - (7/242352 - 7/287793*ep2 + 2/95931*ep2^2 - 40/2206413*ep2^3 + 16/1002915*ep2^4 - 128/9026235*ep2^5 + 3328/261760815*ep2^6 - 93184/8114585265*ep2^7 + 186368/17852087583*ep2^8 - 851968/89260437915*ep2^9 + 1703936/194272717815*ep2^10 - 524288/64757572605*ep2^11 + 1048576/139740025095*ep2^12 - 8388608/1201764215817*ep2^13 + 117440512/18026463237255*ep2^14 - 469762048/77022161104635*ep2^15 + 134217728/23441527292715*ep2^16 - 2147483648/398505963976155*ep2^17 + 21474836480/4224163218147243*ep2^18 - 223338299392/46465795399619673*ep2^19 + 446676598784/98094456954752643*ep2^20 - 3573412790272/826796137190057991*ep2^21 + 7146825580544/1739122909261846119*ep2^22) * k2^7
        + (7/220077 - 2/73359*ep2 + 40/1687257*ep2^2 - 16/766935*ep2^3 + 128/6902415*ep2^4 - 256/15397695*ep2^5 + 7168/477328545*ep2^6 - 14336/1050122799*ep2^7 + 65536/5250613995*ep2^8 - 2228224/194272717815*ep2^9 + 8912896/841848443865*ep2^10 - 17825792/1816620326235*ep2^11 + 142606336/15622934805621*ep2^12 - 1996488704/234344022084315*ep2^13 + 7985954816/1001288094360255*ep2^14 - 2281701376/304739854805295*ep2^15 + 2147483648/304739854805295*ep2^16 - 21474836480/3230242460936127*ep2^17 + 17179869184/2733282082330569*ep2^18 - 34359738368/5770262173808979*ep2^19 + 274877906944/48635066893532823*ep2^20 - 549755813888/102301347603638007*ep2^21) * k2^8
        - (1/30030 - 2/69069*ep2 + 4/156975*ep2^2 - 32/1412775*ep2^3 + 64/3151575*ep2^4 - 256/13956975*ep2^5 + 512/30705345*ep2^6 - 16384/1074687075*ep2^7 + 557056/39763421775*ep2^8 - 2228224/172308161025*ep2^9 + 84672512/7064634602025*ep2^10 - 677380096/60755857577415*ep2^11 + 1354760192/130191123380175*ep2^12 - 5419040768/556271163533475*ep2^13 + 10838081536/1185099435353925*ep2^14 - 10200547328/1185099435353925*ep2^15 + 20401094656/2512410802950321*ep2^16 - 81604378624/10629430320174435*ep2^17 + 8589934592/1181047813352715*ep2^18 - 68719476736/9954545855401455*ep2^19 + 137438953472/20938872316534095*ep2^20) * k2^9
        + (1/29601 - 2/67275*ep2 + 16/605475*ep2^2 - 32/1350675*ep2^3 + 896/41870925*ep2^4 - 1792/92116035*ep2^5 + 8192/460580175*ep2^6 - 278528/17041466475*ep2^7 + 1114112/73846354725*ep2^8 - 42336256/3027700543725*ep2^9 + 338690048/26038224676035*ep2^10 - 4741660672/390573370140525*ep2^11 + 18966642688/1668813490600425*ep2^12 - 5419040768/507899758008825*ep2^13 + 5100273664/507899758008825*ep2^14 - 10200547328/1076747486978709*ep2^15 + 40802189312/4555470137217615*ep2^16 - 4294967296/506163348579735*ep2^17 + 34359738368/4266233938029195*ep2^18 - 68719476736/8973802421371755*ep2^19) * k2^10
        - (11/327600 - 11/368550*ep2 + 11/411075*ep2^2 - 44/1820475*ep2^3 + 8/364095*ep2^4 - 256/12743325*ep2^5 + 8704/471503025*ep2^6 - 34816/2043179775*ep2^7 + 1323008/83770370775*ep2^8 - 10584064/720425188665*ep2^9 + 21168128/1543768261425*ep2^10 - 931397632/72557108286975*ep2^11 + 42844291072/3555298306061775*ep2^12 - 40324038656/3555298306061775*ep2^13 + 80648077312/7537232408850963*ep2^14 - 29326573568/2898935541865755*ep2^15 + 3087007744/322103949096195*ep2^16 - 24696061952/2714876142382215*ep2^17 + 49392123904/5710601540872935*ep2^18) * k2^11
        + (11/334152 - 11/372708*ep2 + 11/412641*ep2^2 - 10/412641*ep2^3 + 64/2888487*ep2^4 - 128/6286707*ep2^5 + 512/27242397*ep2^6 - 19456/1116938277*ep2^7 + 778240/48028345911*ep2^8 - 311296/20583576819*ep2^9 + 13697024/967428110493*ep2^10 - 630063104/47403977414157*ep2^11 + 10081009664/805867616040669*ep2^12 - 504050483200/42710983650155457*ep2^13 + 36658216960/3285460280781189*ep2^14 - 3858759680/365051142309021*ep2^15 + 30870077440/3076859628033177*ep2^16 - 61740154880/6472015079655993*ep2^17) * k2^12
        - (143/4472496 - 143/4951692*ep2 + 65/2475846*ep2^2 - 208/8665461*ep2^3 + 416/18860121*ep2^4 - 128/6286707*ep2^5 + 4864/257754987*ep2^6 - 194560/11083464441*ep2^7 + 77824/4750056189*ep2^8 - 3424256/223252640883*ep2^9 + 157515776/10939379403267*ep2^10 - 2520252416/185969449855539*ep2^11 + 126012620800/9856380842343567*ep2^12 - 119139205120/9856380842343567*ep2^13 + 12540968960/1095153426927063*ep2^14 - 100327751680/9230578884099531*ep2^15 + 200655503360/19416045238967979*ep2^16) * k2^13
        + (1001/32442120 - 91/3244212*ep2 + 104/4055265*ep2^2 - 208/8826165*ep2^3 + 64/2942055*ep2^4 - 128/6348645*ep2^5 + 1024/54598347*ep2^6 - 14336/818975205*ep2^7 + 630784/38491834635*ep2^8 - 4145152/269442842445*ep2^9 + 66322432/4580528321565*ep2^10 - 663224320/48553600208589*ep2^11 + 627048448/48553600208589*ep2^12 - 1254096896/102502044884799*ep2^13 + 10032775168/863945806886163*ep2^14 - 581900959744/52700694220055943*ep2^15) * k2^14
        - (91/3069792 - 13/479655*ep2 + 26/1043955*ep2^2 - 8/347985*ep2^3 + 16/750915*ep2^4 - 128/6457869*ep2^5 + 1792/96868035*ep2^6 - 7168/413890695*ep2^7 + 47104/2897234865*ep2^8 - 753664/49252992705*ep2^9 + 7536640/522081722673*ep2^10 - 78381056/5742898949403*ep2^11 + 156762112/12123897782073*ep2^12 - 1254096896/102187138448901*ep2^13 + 72737619968/6233415445382961*ep2^14) * k2^15
        + (26/915705 - 52/1993005*ep2 + 16/664335*ep2^2 - 32/1433565*ep2^3 + 256/12328659*ep2^4 - 512/26418555*ep2^5 + 22528/1241672085*ep2^6 - 1036288/60841932165*ep2^7 + 16580608/1034312846805*ep2^8 - 165806080/10963716176133*ep2^9 + 156762112/10963716176133*ep2^10 - 313524224/23145623038503*ep2^11 + 2508193792/195084537038811*ep2^12 - 145475239936/11900156759367471*ep2^13) * k2^16
        - (17/626373 - 68/2714283*ep2 + 136/5857137*ep2^2 - 5440/251856891*ep2^3 + 15232/755570673*ep2^4 - 60928/3228347421*ep2^5 + 400384/22598431947*ep2^6 - 376832/22598431947*ep2^7 + 18841600/1197716893191*ep2^8 - 15073280/1013452755777*ep2^9 + 30146560/2139511373307*ep2^10 - 241172480/18033024432159*ep2^11 + 13988003840/1100014490361699*ep2^12) * k2^17
        + (34/1312311 - 68/2831829*ep2 + 2720/121768647*ep2^2 - 1088/52186563*ep2^3 + 4352/222978951*ep2^4 - 8704/475042113*ep2^5 + 8192/475042113*ep2^6 - 409600/25177231989*ep2^7 + 327680/21303811683*ep2^8 - 655360/44974713553*ep2^9 + 5242880/379072585661*ep2^10 - 304087040/23123427725321*ep2^11) * k2^18
        - (323/13069980 - 646/28100457*ep2 + 1292/60215265*ep2^2 - 5168/257283405*ep2^3 + 10336/548125515*ep2^4 - 9728/548125515*ep2^5 + 97280/5810130459*ep2^6 - 1011712/63911435049*ep2^7 + 106496/7101270561*ep2^8 - 851968/59853566157*ep2^9 + 49414144/3651067535577*ep2^10) * k2^19
        + (323/13707540 - 323/14686650*ep2 + 646/31376025*ep2^2 - 1292/66844575*ep2^3 + 1216/66844575*ep2^4 - 2432/141710499*ep2^5 + 126464/7794077445*ep2^6 - 13312/866008605*ep2^7 + 106496/7299215385*ep2^8 - 6176768/445252138485*ep2^9) * k2^20
        - (133/5920200 - 133/6323850*ep2 + 19/962325*ep2^2 - 304/16359525*ep2^3 + 608/34682193*ep2^4 - 2432/146732355*ep2^5 + 256/16303595*ep2^6 - 2048/137416015*ep2^7 + 118784/8382376915*ep2^8) * k2^21
        + (1463/68297580 - 209/10393110*ep2 + 1672/88341435*ep2^2 - 16720/936419211*ep2^3 + 1216/72032247*ep2^4 - 128/8003583*ep2^5 + 1024/67458771*ep2^6 - 59392/4114985031*ep2^7) * k2^22
        - (253/12383280 - 253/13157235*ep2 + 2530/139466691*ep2^2 - 184/10728207*ep2^3 + 368/22648437*ep2^4 - 2944/190893969*ep2^5 + 170752/11644532109*ep2^6) * k2^23
        + (253/12978225 - 506/27513837*ep2 + 184/10582245*ep2^2 - 368/22340295*ep2^3 + 20608/1318077405*ep2^4 - 41216/2772507645*ep2^5) * k2^24
        - (1265/67975362 - 46/2614437*ep2 + 92/5519367*ep2^2 - 736/46520379*ep2^3 + 1472/97853211*ep2^4) * k2^25
        + (299/16821189 - 598/35511399*ep2 + 4784/299310363*ep2^2 - 9568/629583867*ep2^3) * k2^26
        - (65/3826144 - 65/4031116*ep2 + 65/4239622*ep2^2) * k2^27
        + (455/28005648 - 455/29454216*ep2) * k2^28
        - 2639/169736160 * k2^29;
C4[5] = + (1/792792 - 1/990990*ep2 + 1/1203345*ep2^2 - 16/22863555*ep2^3 + 32/53348295*ep2^4 - 128/245402157*ep2^5 + 256/557732175*ep2^6 - 2048/5019589575*ep2^7 + 4096/11197545975*ep2^8 - 16384/49589132175*ep2^9 + 32768/109096090785*ep2^10 - 1048576/3818363177475*ep2^11 + 2097152/8310555150975*ep2^12 - 8388608/36012405654225*ep2^13 + 16777216/77710980622275*ep2^14 - 134217728/668314433351565*ep2^15 + 268435456/1432102357181925*ep2^16 - 1073741824/6118982798868225*ep2^17 + 2147483648/13036093788893175*ep2^18 - 34359738368/221613594411183975*ep2^19 + 68719476736/469820820151710027*ep2^20 - 274877906944/1987703469872619345*ep2^21 + 549755813888/4196262880842196395*ep2^22 - 4398046511104/35368501424241369615*ep2^23 + 8796093022208/74395813340645639535*ep2^24) * k2^5
        - (1/304920 - 1/370260*ep2 + 4/1758735*ep2^2 - 8/4103715*ep2^3 + 32/18877089*ep2^4 - 64/42902475*ep2^5 + 512/386122275*ep2^6 - 13312/11197545975*ep2^7 + 53248/49589132175*ep2^8 - 106496/109096090785*ep2^9 + 3407872/3818363177475*ep2^10 - 6815744/8310555150975*ep2^11 + 2097152/2770185050325*ep2^12 - 4194304/5977767740175*ep2^13 + 33554432/51408802565505*ep2^14 - 67108864/110161719783225*ep2^15 + 268435456/470690984528325*ep2^16 - 536870912/1002776445299475*ep2^17 + 8589934592/17047199570091075*ep2^18 - 17179869184/36140063088593079*ep2^19 + 893353197568/1987703469872619345*ep2^20 - 1786706395136/4196262880842196395*ep2^21 + 14293651161088/35368501424241369615*ep2^22 - 28587302322176/74395813340645639535*ep2^23) * k2^6
        + (7/1283568 - 7/1524237*ep2 + 2/508079*ep2^2 - 40/11685817*ep2^3 + 16/5311735*ep2^4 - 128/47805615*ep2^5 + 256/106643295*ep2^6 - 7168/3305942145*ep2^7 + 14336/7273072719*ep2^8 - 65536/36365363595*ep2^9 + 131072/79148144295*ep2^10 - 524288/342975291945*ep2^11 + 1048576/740104577355*ep2^12 - 8388608/6364899365253*ep2^13 + 117440512/95473490478795*ep2^14 - 469762048/407932186591215*ep2^15 + 134217728/124153274179935*ep2^16 - 2147483648/2110605661058895*ep2^17 + 21474836480/22372420007224287*ep2^18 - 17179869184/18930509236882089*ep2^19 + 34359738368/39964408388973299*ep2^20 - 274877906944/336842870707060663*ep2^21 + 549755813888/708531555625196567*ep2^22) * k2^7
        - (2/268983 - 4/627627*ep2 + 80/14435421*ep2^2 - 32/6561555*ep2^3 + 256/59053995*ep2^4 - 512/131735835*ep2^5 + 2048/583401555*ep2^6 - 4096/1283483421*ep2^7 + 131072/44921919735*ep2^8 - 4456448/1662111030195*ep2^9 + 17825792/7202481130845*ep2^10 - 35651584/15542196124455*ep2^11 + 285212672/133662886670313*ep2^12 - 570425344/286420471436385*ep2^13 + 2281701376/1223796559773645*ep2^14 - 4563402752/2607218757778635*ep2^15 + 4294967296/2607218757778635*ep2^16 - 42949672960/27636518832453531*ep2^17 + 34359738368/23384746704383757*ep2^18 - 68719476736/49367798598143487*ep2^19 + 549755813888/416100016755780819*ep2^20 - 1099511627776/875244862831125171*ep2^21) * k2^8
        + (1/110110 - 2/253253*ep2 + 4/575575*ep2^2 - 32/5180175*ep2^3 + 64/11555775*ep2^4 - 256/51175575*ep2^5 + 512/112586265*ep2^6 - 16384/3940519275*ep2^7 + 557056/145799213175*ep2^8 - 2228224/631796590425*ep2^9 + 84672512/25903660207425*ep2^10 - 677380096/222771477783855*ep2^11 + 1354760192/477367452393975*ep2^12 - 5419040768/2039660932956075*ep2^13 + 10838081536/4345364596297725*ep2^14 - 10200547328/4345364596297725*ep2^15 + 20401094656/9212172944151177*ep2^16 - 81604378624/38974577840639595*ep2^17 + 8589934592/4330508648959955*ep2^18 - 68719476736/36500001469805335*ep2^19 + 137438953472/76775865160625015*ep2^20) * k2^9
        - (3/289432 - 3/328900*ep2 + 2/246675*ep2^2 - 4/550275*ep2^3 + 112/17058525*ep2^4 - 224/37528755*ep2^5 + 1024/187643775*ep2^6 - 34816/6942819675*ep2^7 + 139264/30085551925*ep2^8 - 5292032/1233507628925*ep2^9 + 42336256/10608165608755*ep2^10 - 592707584/159122484131325*ep2^11 + 2370830336/679886977652025*ep2^12 - 677380096/206922123633225*ep2^13 + 637534208/206922123633225*ep2^14 - 1275068416/438674902102437*ep2^15 + 5100273664/1855932278125695*ep2^16 - 1610612736/618644092708565*ep2^17 + 12884901888/5214285924257905*ep2^18 - 25769803776/10967980737232145*ep2^19) * k2^10
        + (1/88400 - 1/99450*ep2 + 1/110925*ep2^2 - 28/3438675*ep2^3 + 56/7565085*ep2^4 - 256/37825425*ep2^5 + 512/82325925*ep2^6 - 2048/356745675*ep2^7 + 77824/14626572675*ep2^8 - 622592/125788525005*ep2^9 + 8716288/1886827875075*ep2^10 - 34865152/8061900920775*ep2^11 + 229113856/56433306445425*ep2^12 - 3665821696/959366209572225*ep2^13 + 7331643392/2033856364293117*ep2^14 - 29326573568/8604776925855495*ep2^15 + 3087007744/956086325095055*ep2^16 - 24696061952/8058441882944035*ep2^17 + 49392123904/16950515684813315*ep2^18) * k2^11
        - (1/83538 - 1/93177*ep2 + 4/412641*ep2^2 - 40/4539051*ep2^3 + 256/31773357*ep2^4 - 512/69153777*ep2^5 + 2048/299666367*ep2^6 - 77824/12286321047*ep2^7 + 3112960/528311805021*ep2^8 - 1245184/226419345009*ep2^9 + 4980736/967428110493*ep2^10 - 229113856/47403977414157*ep2^11 + 3665821696/805867616040669*ep2^12 - 183291084800/42710983650155457*ep2^13 + 146632867840/36140063088593079*ep2^14 - 15435038720/4015562565399231*ep2^15 + 123480309760/33845455908364947*ep2^16 - 246960619520/71192165876215923*ep2^17) * k2^12
        + (13/1049104 - 13/1161508*ep2 + 65/6388294*ep2^2 - 208/22359029*ep2^3 + 416/48663769*ep2^4 - 384/48663769*ep2^5 + 768/105011291*ep2^6 - 30720/4515485513*ep2^7 + 4096/645069359*ep2^8 - 16384/2756205443*ep2^9 + 753664/135054066707*ep2^10 - 12058624/2295919134019*ep2^11 + 602931200/121683714103007*ep2^12 - 6270484480/1338520855133077*ep2^13 + 112868720640/25431896247528463*ep2^14 - 902949765120/214354554086311331*ep2^15 + 1805899530240/450883717216034179*ep2^16) * k2^13
        - (91/7209360 - 91/7930296*ep2 + 52/4956435*ep2^2 - 104/10787535*ep2^3 + 32/3595845*ep2^4 - 64/7759455*ep2^5 + 512/66731313*ep2^6 - 7168/1000969695*ep2^7 + 28672/4276870515*ep2^8 - 188416/29938093605*ep2^9 + 3014656/508947591285*ep2^10 - 30146560/5394844467621*ep2^11 + 313524224/59343289143831*ep2^12 - 627048448/125280277081421*ep2^13 + 5016387584/1055933763971977*ep2^14 - 290950479872/64411959602290597*ep2^15) * k2^14
        + (13/1023264 - 13/1119195*ep2 + 26/2435895*ep2^2 - 8/811965*ep2^3 + 16/1752135*ep2^4 - 128/15068361*ep2^5 + 256/32289345*ep2^6 - 1024/137963565*ep2^7 + 47104/6760214685*ep2^8 - 753664/114923649645*ep2^9 + 7536640/1218190686237*ep2^10 - 78381056/13400097548607*ep2^11 + 156762112/28289094824837*ep2^12 - 1254096896/238436656380769*ep2^13 + 72737619968/14544636039226909*ep2^14) * k2^15
        - (52/4103715 - 104/8931615*ep2 + 32/2977205*ep2^2 - 64/6424495*ep2^3 + 512/55250657*ep2^4 - 1024/118394265*ep2^5 + 4096/505866405*ep2^6 - 188416/24787453845*ep2^7 + 3014656/421386715365*ep2^8 - 30146560/4466699182869*ep2^9 + 313524224/49133691011559*ep2^10 - 1881145344/311180043073207*ep2^11 + 15049162752/2622803220188459*ep2^12 - 872851439616/159990996431495999*ep2^13) * k2^16
        + (221/17608041 - 68/5869347*ep2 + 136/12665433*ep2^2 - 5440/544613619*ep2^3 + 15232/1633840857*ep2^4 - 60928/6980956389*ep2^5 + 17408/2124638901*ep2^6 - 16384/2124638901*ep2^7 + 819200/112605861753*ep2^8 - 8519680/1238664479283*ep2^9 + 17039360/2614958345153*ep2^10 - 136314880/22040363194861*ep2^11 + 7906263040/1344462154886521*ep2^12) * k2^17
        - (17/1374802 - 17/1483339*ep2 + 680/63783577*ep2^2 - 1904/191350731*ep2^3 + 7616/817589487*ep2^4 - 2176/248831583*ep2^5 + 2048/248831583*ep2^6 - 102400/13188073899*ep2^7 + 81920/11159139453*ep2^8 - 491520/70674549869*ep2^9 + 3932160/595685491753*ep2^10 - 228065280/36336814996933*ep2^11) * k2^18
        + (969/79872100 - 1938/171725015*ep2 + 1292/122660725*ep2^2 - 5168/524095825*ep2^3 + 10336/1116551975*ep2^4 - 9728/1116551975*ep2^5 + 19456/2367090187*ep2^6 - 1011712/130189960285*ep2^7 + 958464/130189960285*ep2^8 - 7667712/1097315379545*ep2^9 + 444727296/66936238152245*ep2^10) * k2^19
        - (646/54449395 - 1292/116677275*ep2 + 5168/498530175*ep2^2 - 10336/1062086025*ep2^3 + 9728/1062086025*ep2^4 - 19456/2251622373*ep2^5 + 77824/9526094655*ep2^6 - 24576/3175364885*ep2^7 + 196608/26763789745*ep2^8 - 11403264/1632591174445*ep2^9) * k2^20
        + (2261/195366600 - 2261/208687050*ep2 + 323/31756725*ep2^2 - 304/31756725*ep2^3 + 608/67324257*ep2^4 - 2432/284833395*ep2^5 + 256/31648155*ep2^6 - 2048/266748735*ep2^7 + 118784/16271672835*ep2^8) * k2^21
        - (19/1686360 - 19/1796340*ep2 + 76/7634445*ep2^2 - 760/80925117*ep2^3 + 608/68475099*ep2^4 - 192/22825033*ep2^5 + 1536/192382421*ep2^6 - 89088/11735327681*ep2^7) * k2^22
        + (437/39901680 - 437/42395535*ep2 + 4370/449392671*ep2^2 - 3496/380255337*ep2^3 + 368/42250593*ep2^4 - 2944/356112141*ep2^5 + 5888/749063469*ep2^6) * k2^23
        - (46/4326075 - 92/9171279*ep2 + 368/38801565*ep2^2 - 736/81914415*ep2^3 + 41216/4832950485*ep2^4 - 82432/10165861365*ep2^5) * k2^24
        + (115/11149398 - 46/4717053*ep2 + 92/9958223*ep2^2 - 5152/587535157*ep2^3 + 10304/1235849813*ep2^4) * k2^25
        - (299/29904336 - 299/31565688*ep2 + 299/33256707*ep2^2 - 598/69953763*ep2^3) * k2^26
        + (4485/462963424 - 4485/487765036*ep2 + 4485/512994262*ep2^2) * k2^27
        - (4095/436421348 - 4095/458994866*ep2) * k2^28
        + 1131/124473184 * k2^29;
C4[6] = + (1/4684680 - 1/5688540*ep2 + 4/27020565*ep2^2 - 8/63047985*ep2^3 + 32/290020731*ep2^4 - 64/659138025*ep2^5 + 512/5932242225*ep2^6 - 1024/13233463425*ep2^7 + 4096/58605338025*ep2^8 - 8192/128931743655*ep2^9 + 262144/4512611027925*ep2^10 - 524288/9821565178425*ep2^11 + 2097152/42560115773175*ep2^12 - 4194304/91840249826325*ep2^13 + 33554432/789826148506395*ep2^14 - 67108864/1692484603942275*ep2^15 + 268435456/7231525125935175*ep2^16 - 536870912/15406292659601025*ep2^17 + 8589934592/261906975213217425*ep2^18 - 17179869184/555242787452020941*ep2^19 + 68719476736/2349104100758550135*ep2^20 - 137438953472/4959219768268050285*ep2^21 + 1099511627776/41799138046830709545*ep2^22 - 2199023255552/87922324857126664905*ep2^23) * k2^6
        - (1/1516944 - 1/1801371*ep2 + 2/4203199*ep2^2 - 40/96673577*ep2^3 + 16/43942535*ep2^4 - 128/395482815*ep2^5 + 256/882230895*ep2^6 - 1024/3907022535*ep2^7 + 2048/8595449577*ep2^8 - 65536/300840735195*ep2^9 + 131072/654771011895*ep2^10 - 524288/2837341051545*ep2^11 + 1048576/6122683321755*ep2^12 - 8388608/52655076567093*ep2^13 + 16777216/112832306929485*ep2^14 - 67108864/482101675062345*ep2^15 + 134217728/1027086177306735*ep2^16 - 2147483648/17460465014214495*ep2^17 + 21474836480/185080929150673647*ep2^18 - 17179869184/156606940050570009*ep2^19 + 34359738368/330614651217870019*ep2^20 - 274877906944/2786609203122047303*ep2^21 + 549755813888/5861488323808444327*ep2^22) * k2^7
        + (2/1589445 - 4/3708705*ep2 + 16/17060043*ep2^2 - 32/38772825*ep2^3 + 256/348955425*ep2^4 - 512/778439025*ep2^5 + 2048/3447372825*ep2^6 - 4096/7584220215*ep2^7 + 131072/265447707525*ep2^8 - 4456448/9821565178425*ep2^9 + 17825792/42560115773175*ep2^10 - 35651584/91840249826325*ep2^11 + 285212672/789826148506395*ep2^12 - 570425344/1692484603942275*ep2^13 + 2281701376/7231525125935175*ep2^14 - 4563402752/15406292659601025*ep2^15 + 4294967296/15406292659601025*ep2^16 - 8589934592/32661340438354173*ep2^17 + 34359738368/138182594162267655*ep2^18 - 68719476736/291718809898120605*ep2^19 + 549755813888/2458772826284159385*ep2^20 - 1099511627776/5171901462183921465*ep2^21) * k2^8
        - (1/520520 - 1/598598*ep2 + 1/680225*ep2^2 - 8/6122025*ep2^3 + 16/13656825*ep2^4 - 64/60480225*ep2^5 + 128/133056495*ep2^6 - 4096/4656977325*ep2^7 + 139264/172308161025*ep2^8 - 557056/746668697775*ep2^9 + 21168128/30613416608775*ep2^10 - 169345024/263275382835465*ep2^11 + 338690048/564161534647425*ep2^12 - 1354760192/2410508375311725*ep2^13 + 2709520384/5135430886533675*ep2^14 - 2550136832/5135430886533675*ep2^15 + 5100273664/10887113479451391*ep2^16 - 20401094656/46060864720755885*ep2^17 + 2147483648/5117873857861765*ep2^18 - 17179869184/43136365373406305*ep2^19 + 34359738368/90735113371647745*ep2^20) * k2^9
        + (15/5814952 - 3/1321580*ep2 + 2/991185*ep2^2 - 4/2211105*ep2^3 + 112/68544255*ep2^4 - 224/150797361*ep2^5 + 1024/753986805*ep2^6 - 2048/1641030105*ep2^7 + 8192/7111130455*ep2^8 - 311296/291556348655*ep2^9 + 2490368/2507384598433*ep2^10 - 34865152/37610768976495*ep2^11 + 139460608/160700558354115*ep2^12 - 39845888/48908865586035*ep2^13 + 637534208/831450714962595*ep2^14 - 6375342080/8813377578603507*ep2^15 + 5100273664/7457473335741429*ep2^16 - 1610612736/2485824445247143*ep2^17 + 12884901888/20951948895654491*ep2^18 - 25769803776/44071340780514619*ep2^19) * k2^10
        - (11/3447600 - 11/3878550*ep2 + 11/4326075*ep2^2 - 308/134108325*ep2^3 + 56/26821665*ep2^4 - 256/134108325*ep2^5 + 512/291882825*ep2^6 - 2048/1264825575*ep2^7 + 77824/51857848575*ep2^8 - 622592/445977497745*ep2^9 + 8716288/6689662466175*ep2^10 - 383516672/314414135910225*ep2^11 + 2520252416/2200898951371575*ep2^12 - 40324038656/37415282173316775*ep2^13 + 80648077312/79320398207431563*ep2^14 - 29326573568/30507845464396755*ep2^15 + 3087007744/3389760607155195*ep2^16 - 24696061952/28570839403165215*ep2^17 + 49392123904/60097282882519935*ep2^18) * k2^11
        + (11/2947698 - 11/3287817*ep2 + 308/101922327*ep2^2 - 280/101922327*ep2^3 + 256/101922327*ep2^4 - 512/221830947*ep2^5 + 2048/961267437*ep2^6 - 4096/2074313943*ep2^7 + 163840/89195499549*ep2^8 - 458752/267586498647*ep2^9 + 20185088/12576565436409*ep2^10 - 132644864/88035958054863*ep2^11 + 2122317824/1496611286932671*ep2^12 - 106115891200/79320398207431563*ep2^13 + 7717519360/6101569092879351*ep2^14 - 15435038720/12881090307189741*ep2^15 + 123480309760/108569189732027817*ep2^16 - 246960619520/228369674953575753*ep2^17) * k2^12
        - (11/2622760 - 11/2903770*ep2 + 1/290377*ep2^2 - 32/10163195*ep2^3 + 64/22119895*ep2^4 - 768/287558635*ep2^5 + 1536/620521265*ep2^6 - 12288/5336482879*ep2^7 + 8192/3811773485*ep2^8 - 360448/179153353795*ep2^9 + 16580608/8778514335955*ep2^10 - 265289728/149234743711235*ep2^11 + 2652897280/1581888283339091*ep2^12 - 192937984/121683714103007*ep2^13 + 3472883712/2311990567957133*ep2^14 - 27783069696/19486777644210121*ep2^15 + 55566139392/40989428837821289*ep2^16) * k2^13
        + (11/2403120 - 1/240312*ep2 + 4/1051365*ep2^2 - 8/2288265*ep2^3 + 32/9915815*ep2^4 - 64/21397285*ep2^5 + 512/184016651*ep2^6 - 1024/394321395*ep2^7 + 45056/18533105565*ep2^8 - 2072576/908122172685*ep2^9 + 33161216/15438076935645*ep2^10 - 331612160/163643615517837*ep2^11 + 24117248/12587970424449*ep2^12 - 144703488/79723812688177*ep2^13 + 1157627904/671957849800349*ep2^14 - 67142418432/40989428837821289*ep2^15) * k2^14
        - (5/1023264 - 1/223839*ep2 + 2/487179*ep2^2 - 8/2111109*ep2^3 + 16/4555551*ep2^4 - 640/195888693*ep2^5 + 256/83952297*ep2^6 - 1024/358705269*ep2^7 + 47104/17576558181*ep2^8 - 753664/298801489077*ep2^9 + 37683200/15836478921081*ep2^10 - 30146560/13400097548607*ep2^11 + 60293120/28289094824837*ep2^12 - 482344960/238436656380769*ep2^13 + 27976007680/14544636039226909*ep2^14) * k2^15
        + (4/780045 - 8/1697745*ep2 + 32/7356895*ep2^2 - 64/15875405*ep2^3 + 512/136528483*ep2^4 - 1024/292561035*ep2^5 + 45056/13750368645*ep2^6 - 90112/29294263635*ep2^7 + 1441792/498002481795*ep2^8 - 14417920/5278826307027*ep2^9 + 1048576/406063562079*ep2^10 - 6291456/2571735893167*ep2^11 + 50331648/21676059670979*ep2^12 - 2919235584/1322239639929719*ep2^13) * k2^16
        - (17/3201462 - 34/6936501*ep2 + 68/14968239*ep2^2 - 2720/643634277*ep2^3 + 7616/1930902831*ep2^4 - 30464/8250221187*ep2^5 + 8704/2510936883*ep2^6 - 8192/2510936883*ep2^7 + 409600/133079654799*ep2^8 - 327680/112605861753*ep2^9 + 655360/237723485923*ep2^10 - 5242880/2003669381351*ep2^11 + 304087040/122223832262411*ep2^12) * k2^17
        + (17/3124550 - 17/3371225*ep2 + 136/28992535*ep2^2 - 1904/434888025*ep2^3 + 7616/1858157925*ep2^4 - 2176/565526325*ep2^5 + 2048/565526325*ep2^6 - 4096/1198915809*ep2^7 + 16384/5072336115*ep2^8 - 98304/32124795395*ep2^9 + 786432/270766132615*ep2^10 - 45613056/16516734089515*ep2^11) * k2^18
        - (969/175303700 - 1938/376902955*ep2 + 9044/1884514775*ep2^2 - 36176/8052017675*ep2^3 + 10336/2450614075*ep2^4 - 9728/2450614075*ep2^5 + 19456/5195301839*ep2^6 - 77824/21980123165*ep2^7 + 73728/21980123165*ep2^8 - 589824/185261038105*ep2^9 + 34209792/11300923324405*ep2^10) * k2^19
        + (646/115828713 - 1292/248204385*ep2 + 5168/1060509645*ep2^2 - 10336/2259346635*ep2^3 + 9728/2259346635*ep2^4 - 97280/23949074331*ep2^5 + 77824/20264601357*ep2^6 - 8192/2251622373*ep2^7 + 65536/18977960001*ep2^8 - 3801088/1157655560061*ep2^9) * k2^20
        - (323/57721950 - 646/123315075*ep2 + 1292/262714725*ep2^2 - 1216/262714725*ep2^3 + 2432/556955217*ep2^4 - 9728/2356348995*ep2^5 + 1024/261816555*ep2^6 - 8192/2206739535*ep2^7 + 475136/134611111635*ep2^8) * k2^21
        + (3553/635757720 - 3553/677220180*ep2 + 836/169305045*ep2^2 - 8360/1794633477*ep2^3 + 608/138048729*ep2^4 - 192/46016243*ep2^5 + 1536/387851191*ep2^6 - 3072/815824919*ep2^7) * k2^22
        - (4807/864536400 - 4807/918569925*ep2 + 9614/1947368241*ep2^2 - 3496/748987785*ep2^3 + 368/83220865*ep2^4 - 2944/701433005*ep2^5 + 5888/1475428045*ep2^6) * k2^23
        + (9614/1743408225 - 19228/3696025437*ep2 + 6992/1421548245*ep2^2 - 736/157949805*ep2^3 + 41216/9319038495*ep2^4 - 82432/19602115455*ep2^5) * k2^24
        - (6325/1159537392 - 115/22298796*ep2 + 115/23537618*ep2^2 - 3220/694359731*ep2^3 + 6440/1460549779*ep2^4) * k2^25
        + (23/4272048 - 23/4509384*ep2 + 161/33256707*ep2^2 - 322/69953763*ep2^3) * k2^26
        - (345/65044448 - 345/68528972*ep2 + 345/72073574*ep2^2) * k2^27
        + (207/39674668 - 207/41726806*ep2) * k2^28
        - 29/5657872 * k2^29;
C4[7] = + (1/26254800 - 1/31177575*ep2 + 2/72747675*ep2^2 - 8/334639305*ep2^3 + 16/760543875*ep2^4 - 128/6844894875*ep2^5 + 256/15269380875*ep2^6 - 1024/67621543875*ep2^7 + 2048/148767396525*ep2^8 - 65536/5206858878375*ep2^9 + 131072/11332575205875*ep2^10 - 524288/49107825892125*ep2^11 + 1048576/105969519030375*ep2^12 - 8388608/911337863661225*ep2^13 + 16777216/1952866850702625*ep2^14 - 67108864/8344067453002125*ep2^15 + 134217728/17776491530308875*ep2^16 - 2147483648/302200356015250875*ep2^17 + 4294967296/640664754752331855*ep2^18 - 17179869184/2710504731644480925*ep2^19 + 34359738368/5722176655693904175*ep2^20 - 274877906944/48229774669420049475*ep2^21 + 549755813888/101448836373607690275*ep2^22) * k2^7
        - (1/7335900 - 1/8558550*ep2 + 2/19684665*ep2^2 - 4/44737875*ep2^3 + 32/402640875*ep2^4 - 64/898198875*ep2^5 + 256/3977737875*ep2^6 - 512/8751023325*ep2^7 + 16384/306285816375*ep2^8 - 557056/11332575205875*ep2^9 + 2228224/49107825892125*ep2^10 - 4456448/105969519030375*ep2^11 + 35651584/911337863661225*ep2^12 - 71303168/1952866850702625*ep2^13 + 285212672/8344067453002125*ep2^14 - 570425344/17776491530308875*ep2^15 + 536870912/17776491530308875*ep2^16 - 1073741824/37686162044254815*ep2^17 + 4294967296/159441454802616525*ep2^18 - 8589934592/336598626805523775*ep2^19 + 68719476736/2837045568789414675*ep2^20 - 137438953472/5967578610212217075*ep2^21) * k2^8
        + (1/3403400 - 1/3913910*ep2 + 1/4447625*ep2^2 - 8/40028625*ep2^3 + 16/89294625*ep2^4 - 64/395447625*ep2^5 + 128/869984775*ep2^6 - 4096/30449467125*ep2^7 + 8192/66272369625*ep2^8 - 32768/287180268375*ep2^9 + 1245184/11774391003375*ep2^10 - 9961472/101259762629025*ep2^11 + 19922944/216985205633625*ep2^12 - 79691776/927118605889125*ep2^13 + 159383552/1975165725589875*ep2^14 - 2550136832/33577817335027875*ep2^15 + 5100273664/71184972750259095*ep2^16 - 20401094656/301167192404942325*ep2^17 + 2147483648/33463021378326925*ep2^18 - 17179869184/282045465903041225*ep2^19 + 34359738368/593268048968466025*ep2^20) * k2^9
        - (1/2012868 - 1/2287350*ep2 + 4/10293075*ep2^2 - 8/22961475*ep2^3 + 224/711805725*ep2^4 - 448/1565972595*ep2^5 + 2048/7829862975*ep2^6 - 4096/17041466475*ep2^7 + 16384/73846354725*ep2^8 - 622592/3027700543725*ep2^9 + 4980736/26038224676035*ep2^10 - 69730304/390573370140525*ep2^11 + 278921216/1668813490600425*ep2^12 - 79691776/507899758008825*ep2^13 + 1275068416/8634295886150025*ep2^14 - 2550136832/18304707278638053*ep2^15 + 10200547328/77442992332699455*ep2^16 - 1073741824/8604776925855495*ep2^17 + 8589934592/72525976946496315*ep2^18 - 17179869184/152554641163319835*ep2^19) * k2^10
        + (11/15116400 - 11/17005950*ep2 + 11/18968175*ep2^2 - 308/588013425*ep2^3 + 56/117602685*ep2^4 - 256/588013425*ep2^5 + 512/1279793925*ep2^6 - 2048/5545773675*ep2^7 + 4096/11967195825*ep2^8 - 32768/102917884095*ep2^9 + 458752/1543768261425*ep2^10 - 20185088/72557108286975*ep2^11 + 132644864/507899758008825*ep2^12 - 2122317824/8634295886150025*ep2^13 + 4244635648/18304707278638053*ep2^14 - 1543503872/7040272030245405*ep2^15 + 3087007744/14862796508295855*ep2^16 - 24696061952/125272141998493635*ep2^17 + 49392123904/263503471100279715*ep2^18) * k2^11
        - (11/11337300 - 11/12645450*ep2 + 154/196004475*ep2^2 - 28/39200895*ep2^3 + 128/196004475*ep2^4 - 256/426597975*ep2^5 + 1024/1848591225*ep2^6 - 2048/3989065275*ep2^7 + 16384/34305961365*ep2^8 - 229376/514589420475*ep2^9 + 10092544/24185702762325*ep2^10 - 66322432/169299919336275*ep2^11 + 1061158912/2878098628716675*ep2^12 - 2122317824/6101569092879351*ep2^13 + 771751936/2346757343415135*ep2^14 - 1543503872/4954265502765285*ep2^15 + 12348030976/41757380666164545*ep2^16 - 24696061952/87834490366759905*ep2^17) * k2^12
        + (143/118024200 - 143/130669650*ep2 + 13/13066965*ep2^2 - 416/457343775*ep2^3 + 832/995395275*ep2^4 - 256/331798425*ep2^5 + 512/715986075*ep2^6 - 4096/6157480245*ep2^7 + 8192/13194600525*ep2^8 - 360448/620146224675*ep2^9 + 16580608/30387165009075*ep2^10 - 265289728/516581805154275*ep2^11 + 530579456/1095153426927063*ep2^12 - 2508193792/5475767134635315*ep2^13 + 5016387584/11559952839785665*ep2^14 - 40131100672/97433888221050605*ep2^15 + 80262201344/204947144189106445*ep2^16) * k2^13
        - (13/9011700 - 13/9912870*ep2 + 208/173475225*ep2^2 - 416/377563725*ep2^3 + 128/125854575*ep2^4 - 256/271580925*ep2^5 + 2048/2335595955*ep2^6 - 4096/5004848475*ep2^7 + 16384/21384352575*ep2^8 - 753664/1047833276175*ep2^9 + 12058624/17813165694975*ep2^10 - 24117248/37763911273347*ep2^11 + 1254096896/2077015120034085*ep2^12 - 2508193792/4384809697849735*ep2^13 + 20065550336/36957681739019195*ep2^14 - 1163801919488/2254418586080170895*ep2^15) * k2^14
        + (13/7845024 - 13/8580495*ep2 + 26/18675195*ep2^2 - 8/6225065*ep2^3 + 16/13433035*ep2^4 - 128/115524101*ep2^5 + 256/247551645*ep2^6 - 1024/1057720665*ep2^7 + 2048/2253404895*ep2^8 - 32768/38307883215*ep2^9 + 327680/406063562079*ep2^10 - 3407872/4466699182869*ep2^11 + 20447232/28289094824837*ep2^12 - 163577856/238436656380769*ep2^13 + 9487515648/14544636039226909*ep2^14) * k2^15
        - (13/7020405 - 26/15279705*ep2 + 8/5093235*ep2^2 - 16/10990665*ep2^3 + 128/94519719*ep2^4 - 256/202542255*ep2^5 + 11264/9519485985*ep2^6 - 22528/20280644055*ep2^7 + 360448/344770948935*ep2^8 - 3604480/3654572058711*ep2^9 + 3407872/3654572058711*ep2^10 - 6815744/7715207679501*ep2^11 + 54525952/65028179012937*ep2^12 - 3162505216/3966718919789157*ep2^13) * k2^16
        + (221/109140750 - 34/18190125*ep2 + 68/39252375*ep2^2 - 544/337570425*ep2^3 + 7616/5063556375*ep2^4 - 335104/237987149625*ep2^5 + 95744/72430871625*ep2^6 - 90112/72430871625*ep2^7 + 180224/153553447845*ep2^8 - 851968/767767239225*ep2^9 + 1703936/1620841949475*ep2^10 - 13631488/13661382145575*ep2^11 + 790626304/833344310880075*ep2^12) * k2^17
        - (17/7811375 - 34/16856125*ep2 + 272/144962675*ep2^2 - 3808/2174440125*ep2^3 + 15232/9290789625*ep2^4 - 4352/2827631625*ep2^5 + 4096/2827631625*ep2^6 - 8192/5994579045*ep2^7 + 32768/25361680575*ep2^8 - 196608/160623976975*ep2^9 + 1572864/1353830663075*ep2^10 - 91226112/82583670447575*ep2^11) * k2^18
        + (323/140035500 - 646/301076325*ep2 + 9044/4516144875*ep2^2 - 36176/19296255375*ep2^3 + 10336/5872773375*ep2^4 - 9728/5872773375*ep2^5 + 19456/12450279555*ep2^6 - 1011712/684765375525*ep2^7 + 106496/76085041725*ep2^8 - 851968/641288208825*ep2^9 + 49414144/39118580738325*ep2^10) * k2^19
        - (323/133648515 - 646/286389675*ep2 + 2584/1223664975*ep2^2 - 5168/2606938425*ep2^3 + 4864/2606938425*ep2^4 - 9728/5526709461*ep2^5 + 38912/23382232335*ep2^6 - 4096/2598025815*ep2^7 + 32768/21897646155*ep2^8 - 1900544/1335756415455*ep2^9) * k2^20
        + (323/128764350 - 646/275087475*ep2 + 1292/586055925*ep2^2 - 1216/586055925*ep2^3 + 2432/1242438561*ep2^4 - 9728/5256470835*ep2^5 + 1024/584052315*ep2^6 - 8192/4922726655*ep2^7 + 16384/10354700895*ep2^8) * k2^21
        - (3553/1375437375 - 7106/2930279625*ep2 + 6688/2930279625*ep2^2 - 13376/6212192805*ep2^3 + 4864/2389304925*ep2^4 - 512/265478325*ep2^5 + 4096/2237603025*ep2^6 - 8192/4706682225*ep2^7) * k2^22
        + (81719/30923802000 - 4807/1932737625*ep2 + 9614/4097403765*ep2^2 - 3496/1575924525*ep2^3 + 368/175102725*ep2^4 - 2944/1475865825*ep2^5 + 5888/3104407425*ep2^6) * k2^23
        - (4807/1788111000 - 4807/1895397660*ep2 + 437/182249775*ep2^2 - 46/20249975*ep2^3 + 2576/1194748525*ep2^4 - 5152/2513091725*ep2^5) * k2^24
        + (2185/802756656 - 437/169813908*ep2 + 23/9434106*ep2^2 - 644/278306127*ep2^3 + 1288/585402543*ep2^4) * k2^25
        - (299/108937224 - 299/114989292*ep2 + 4186/1696092057*ep2^2 - 8372/3567641913*ep2^3) * k2^26
        + (897/325222240 - 897/342644860*ep2 + 897/360367870*ep2^2) * k2^27
        - (299/108203640 - 299/113800380*ep2) * k2^28
        + 8671/3140118960 * k2^29;
C4[8] = + (1/141338340 - 1/164894730*ep2 + 2/379257879*ep2^2 - 4/861949725*ep2^3 + 32/7757547525*ep2^4 - 64/17305298325*ep2^5 + 256/76637749725*ep2^6 - 512/168603049395*ep2^7 + 16384/5901106728825*ep2^8 - 32768/12843585233325*ep2^9 + 131072/55655536011075*ep2^10 - 262144/120098788234425*ep2^11 + 2097152/1032849578816055*ep2^12 - 4194304/2213249097462975*ep2^13 + 16777216/9456609780069075*ep2^14 - 33554432/20146690401016725*ep2^15 + 536870912/342493736817284325*ep2^16 - 1073741824/726086722052642769*ep2^17 + 4294967296/3071905362530411715*ep2^18 - 8589934592/6485133543119758065*ep2^19 + 68719476736/54660411292009389405*ep2^20 - 137438953472/114975347890088715645*ep2^21) * k2^8
        - (1/34714680 - 1/39921882*ep2 + 1/45365775*ep2^2 - 8/408291975*ep2^3 + 16/910805175*ep2^4 - 64/4033565775*ep2^5 + 128/8873844705*ep2^6 - 4096/310584564675*ep2^7 + 8192/675978170175*ep2^8 - 32768/2929238737425*ep2^9 + 1245184/120098788234425*ep2^10 - 9961472/1032849578816055*ep2^11 + 19922944/2213249097462975*ep2^12 - 79691776/9456609780069075*ep2^13 + 159383552/20146690401016725*ep2^14 - 2550136832/342493736817284325*ep2^15 + 5100273664/726086722052642769*ep2^16 - 20401094656/3071905362530411715*ep2^17 + 2147483648/341322818058934635*ep2^18 - 17179869184/2876863752211020495*ep2^19 + 34359738368/6051334099478353455*ep2^20) * k2^9
        + (5/72239596 - 1/16418090*ep2 + 4/73881405*ep2^2 - 8/164812365*ep2^3 + 224/5109183315*ep2^4 - 448/11240203293*ep2^5 + 2048/56201016465*ep2^6 - 4096/122319859365*ep2^7 + 16384/530052723915*ep2^8 - 32768/1143797983185*ep2^9 + 262144/9836662655391*ep2^10 - 3670016/147549939830865*ep2^11 + 14680064/630440652004605*ep2^12 - 4194304/191873241914445*ep2^13 + 67108864/3261845112545565*ep2^14 - 671088640/34575558192982989*ep2^15 + 536870912/29256241547908683*ep2^16 - 1073741824/61763176601140553*ep2^17 + 8589934592/520575345638184661*ep2^18 - 17179869184/1095003313238940149*ep2^19) * k2^10
        - (11/85659600 - 11/96367050*ep2 + 11/107486325*ep2^2 - 308/3332076075*ep2^3 + 56/666415215*ep2^4 - 256/3332076075*ep2^5 + 512/7252165575*ep2^6 - 2048/31426050825*ep2^7 + 4096/67814109675*ep2^8 - 32768/583201343205*ep2^9 + 458752/8748020148075*ep2^10 - 20185088/411156946959525*ep2^11 + 132644864/2878098628716675*ep2^12 - 2122317824/48927676688183475*ep2^13 + 4244635648/103726674578948967*ep2^14 - 1543503872/39894874838057295*ep2^15 + 3087007744/84222513547009845*ep2^16 - 24696061952/709875471324797265*ep2^17 + 49392123904/1493186336234918385*ep2^18) * k2^11
        + (11/53965548 - 11/60192342*ep2 + 22/133283043*ep2^2 - 20/133283043*ep2^3 + 128/932981301*ep2^4 - 256/2030606361*ep2^5 + 1024/8799294231*ep2^6 - 2048/18987950709*ep2^7 + 81920/816481880487*ep2^8 - 32768/349920805923*ep2^9 + 1441792/16446277878381*ep2^10 - 66322432/805867616040669*ep2^11 + 1061158912/13699749472691373*ep2^12 - 53057945600/726086722052642769*ep2^13 + 3858759680/55852824773280213*ep2^14 - 7717519360/117911518965813783*ep2^15 + 61740154880/993825659854716171*ep2^16 - 123480309760/2090460870728885739*ep2^17) * k2^12
        - (13/44586920 - 13/49364090*ep2 + 13/54300499*ep2^2 - 416/1900517465*ep2^3 + 832/4136420365*ep2^4 - 768/4136420365*ep2^5 + 1536/8925959735*ep2^6 - 12288/76763253721*ep2^7 + 8192/54830895515*ep2^8 - 32768/234277462655*ep2^9 + 1507328/11479595670095*ep2^10 - 24117248/195153126391615*ep2^11 + 241172480/2068623139751119*ep2^12 - 2508193792/22754854537262309*ep2^13 + 45147488256/432342236207983871*ep2^14 - 361179906048/3644027419467292627*ep2^15 + 722359812096/7665023192672581043*ep2^16) * k2^13
        + (91/234904980 - 91/258395478*ep2 + 208/645988695*ep2^2 - 416/1405975395*ep2^3 + 128/468658465*ep2^4 - 256/1011315635*ep2^5 + 2048/8697314461*ep2^6 - 28672/130459716915*ep2^7 + 114688/557418790455*ep2^8 - 32768/169649197095*ep2^9 + 524288/2884036350615*ep2^10 - 5242880/30570785316519*ep2^11 + 54525952/336278638481709*ep2^12 - 327155712/2129764710384157*ep2^13 + 2617245696/17950873987523609*ep2^14 - 151800250368/1095003313238940149*ep2^15) * k2^14
        - (65/133365408 - 13/29173683*ep2 + 26/63495663*ep2^2 - 8/21165221*ep2^3 + 16/45672319*ep2^4 - 640/1963909717*ep2^5 + 256/841675593*ep2^6 - 1024/3596250261*ep2^7 + 2048/7661576643*ep2^8 - 32768/130246802931*ep2^9 + 1638400/6903080555343*ep2^10 - 17039360/75933886108773*ep2^11 + 102236160/480914612022229*ep2^12 - 817889280/4053423158473073*ep2^13 + 47437578240/247258812666857453*ep2^14) * k2^15
        + (13/22101275 - 26/48102775*ep2 + 24/48102775*ep2^2 - 48/103800725*ep2^3 + 384/892686235*ep2^4 - 256/637633025*ep2^5 + 11264/29968752175*ep2^6 - 22528/63846472025*ep2^7 + 360448/1085390024425*ep2^8 - 720896/2301026851781*ep2^9 + 3407872/11505134258905*ep2^10 - 61341696/218597550919195*ep2^11 + 490733568/1842465072033215*ep2^12 - 28462546944/112390369394026115*ep2^13) * k2^16
        - (1/1455210 - 2/3152955*ep2 + 4/6803745*ep2^2 - 32/58512207*ep2^3 + 448/877683105*ep2^4 - 19712/41251105935*ep2^5 + 5632/12554684415*ep2^6 - 90112/213429635055*ep2^7 + 901120/2262354131583*ep2^8 - 65536/174027240891*ep2^9 + 131072/367390841881*ep2^10 - 1048576/3096579952997*ep2^11 + 60817408/188891377132817*ep2^12) * k2^17
        + (1/1278225 - 2/2758275*ep2 + 16/23721165*ep2^2 - 224/355817475*ep2^3 + 9856/16723421325*ep2^4 - 2816/5089736925*ep2^5 + 45056/86525527725*ep2^6 - 90112/183434118777*ep2^7 + 32768/70551584145*ep2^8 - 65536/148942233195*ep2^9 + 524288/1255370251215*ep2^10 - 30408704/76577585324115*ep2^11) * k2^18
        - (19/21783300 - 38/46834095*ep2 + 76/100358775*ep2^2 - 304/428805675*ep2^3 + 608/913542525*ep2^4 - 9728/15530222925*ep2^5 + 19456/32924072601*ep2^6 - 1011712/1810823993055*ep2^7 + 106496/201202665895*ep2^8 - 851968/1695851041115*ep2^9 + 49414144/103446913508015*ep2^10) * k2^19
        + (19/19875933 - 38/42591285*ep2 + 152/181980945*ep2^2 - 304/387698535*ep2^3 + 4864/6590875095*ep2^4 - 48640/69863276007*ep2^5 + 505856/768496036077*ep2^6 - 53248/85388448453*ep2^7 + 425984/719702636961*ep2^8 - 851968/1513857270849*ep2^9) * k2^20
        - (133/128764350 - 266/275087475*ep2 + 76/83722275*ep2^2 - 1216/1423278675*ep2^3 + 2432/3017350791*ep2^4 - 9728/12765714885*ep2^5 + 1024/1418412765*ep2^6 - 8192/11955193305*ep2^7 + 16384/25147130745*ep2^8) * k2^21
        + (209/189504705 - 418/403727415*ep2 + 6688/6863366055*ep2^2 - 66880/72751680183*ep2^3 + 4864/5596283091*ep2^4 - 1536/1865427697*ep2^5 + 12288/15722890589*ep2^6 - 24576/33072287101*ep2^7) * k2^22
        - (4807/4123173600 - 4807/4380871950*ep2 + 4807/4643724267*ep2^2 - 1748/1786047795*ep2^3 + 184/198449755*ep2^4 - 1472/1672647935*ep2^5 + 2944/3518328415*ep2^6) * k2^23
        + (437/357622200 - 437/379079532*ep2 + 437/400949505*ep2^2 - 46/44549945*ep2^3 + 2576/2628446755*ep2^4 - 5152/5528801795*ep2^5) * k2^24
        - (10925/8592469392 - 2185/1817637756*ep2 + 345/302939626*ep2^2 - 9660/8936718967*ep2^3 + 19320/18797926103*ep2^4) * k2^25
        + (5681/4321176552 - 299/240065364*ep2 + 598/505852017*ep2^2 - 1196/1064033553*ep2^3) * k2^26
        - (1495/1105755616 - 1495/1164992524*ep2 + 1495/1225250758*ep2^2) * k2^27
        + (6279/4537339304 - 6279/4772029268*ep2) * k2^28
        - 8671/6147020752 * k2^29;
C4[9] = + (1/737176440 - 1/847752906*ep2 + 1/963355575*ep2^2 - 8/8670200175*ep2^3 + 16/19341215775*ep2^4 - 64/85653955575*ep2^5 + 128/188438702265*ep2^6 - 4096/6595354579275*ep2^7 + 8192/14354595260775*ep2^8 - 32768/62203246130025*ep2^9 + 65536/134228057438475*ep2^10 - 524288/1154361293970885*ep2^11 + 1048576/2473631344223325*ep2^12 - 4194304/10569152107136025*ep2^13 + 8388608/22516889271724575*ep2^14 - 134217728/382787117619317775*ep2^15 + 268435456/811508689352953683*ep2^16 - 1073741824/3433305993416342505*ep2^17 + 2147483648/7248090430545611955*ep2^18 - 17179869184/61091047914598729335*ep2^19 + 34359738368/128501859406569741015*ep2^20) * k2^9
        - (1/161476744 - 1/183496300*ep2 + 2/412866675*ep2^2 - 4/921010275*ep2^3 + 112/28551318525*ep2^4 - 224/62812900755*ep2^5 + 1024/314064503775*ep2^6 - 2048/683552155275*ep2^7 + 8192/2962059339525*ep2^8 - 16384/6391812258975*ep2^9 + 131072/54969585427185*ep2^10 - 1835008/824543781407775*ep2^11 + 7340032/3523050702378675*ep2^12 - 2097152/1072232822463075*ep2^13 + 33554432/18227957981872275*ep2^14 - 67108864/38643270921569223*ep2^15 + 268435456/163490761591254405*ep2^16 - 536870912/345147163359314855*ep2^17 + 4294967296/2909097519742796635*ep2^18 - 8589934592/6119136162217606715*ep2^19) * k2^10
        + (11/670160400 - 11/753930450*ep2 + 11/840922425*ep2^2 - 44/3724085025*ep2^3 + 8/744817005*ep2^4 - 256/26068595175*ep2^5 + 512/56737530675*ep2^6 - 2048/245862632925*ep2^7 + 4096/530545681575*ep2^8 - 32768/4562692861545*ep2^9 + 65536/9777198989025*ep2^10 - 2883584/459528352484175*ep2^11 + 132644864/22516889271724575*ep2^12 - 2122317824/382787117619317775*ep2^13 + 4244635648/811508689352953683*ep2^14 - 1543503872/312118726674212955*ep2^15 + 3087007744/658917311867782905*ep2^16 - 24696061952/5553731628599884485*ep2^17 + 49392123904/11681987218779067365*ep2^18) * k2^11
        - (1/30157218 - 1/33636897*ep2 + 4/148963401*ep2^2 - 40/1638597411*ep2^3 + 256/11470181877*ep2^4 - 512/24964513497*ep2^5 + 2048/108179558487*ep2^6 - 4096/233440099893*ep2^7 + 163840/10037924295399*ep2^8 - 65536/4301967555171*ep2^9 + 262144/18381134099367*ep2^10 - 12058624/900675570868983*ep2^11 + 192937984/15311484704772711*ep2^12 - 9646899200/811508689352953683*ep2^13 + 7717519360/686661198683268501*ep2^14 - 15435038720/1449618086109122391*ep2^15 + 123480309760/12218209582919745867*ep2^16 - 246960619520/25700371881313948203*ep2^17) * k2^12
        + (13/229229224 - 13/253789498*ep2 + 65/1395842239*ep2^2 - 416/9770895673*ep2^3 + 832/21266067053*ep2^4 - 768/21266067053*ep2^5 + 1536/45889934167*ep2^6 - 61440/1973267169181*ep2^7 + 8192/281895309883*ep2^8 - 32768/1204461778591*ep2^9 + 65536/2566027267433*ep2^10 - 1048576/43622463546361*ep2^11 + 52428800/2311990567957133*ep2^12 - 545259520/25431896247528463*ep2^13 + 9814671360/483206028703040797*ep2^14 - 78517370880/4072736527639915289*ep2^15 + 157034741760/8566790627104649401*ep2^16) * k2^13
        - (91/1050163440 - 91/1155179784*ep2 + 52/721987365*ep2^2 - 104/1571384265*ep2^3 + 32/523794755*ep2^4 - 64/1130293945*ep2^5 + 512/9720527927*ep2^6 - 7168/145807918905*ep2^7 + 28672/622997471685*ep2^8 - 8192/189607926165*ep2^9 + 131072/3223334744805*ep2^10 - 1310720/34167348294933*ep2^11 + 13631488/375840831244263*ep2^12 - 81788928/2380325264546999*ep2^13 + 654311424/20062741515467563*ep2^14 - 37950062592/1223827232443521343*ep2^15) * k2^14
        + (91/745277280 - 13/116449575*ep2 + 26/253449075*ep2^2 - 8/84483025*ep2^3 + 16/182305475*ep2^4 - 128/1567827085*ep2^5 + 1792/23517406275*ep2^6 - 7168/100483463175*ep2^7 + 2048/30581923575*ep2^8 - 32768/519892700775*ep2^9 + 65536/1102172525643*ep2^10 - 3407872/60619488910365*ep2^11 + 20447232/383923429765645*ep2^12 - 163577856/3235926050881865*ep2^13 + 9487515648/197391489103793765*ep2^14) * k2^15
        - (4/24701425 - 8/53761925*ep2 + 96/698905025*ep2^2 - 192/1508163475*ep2^3 + 1536/12970205885*ep2^4 - 1024/9264432775*ep2^5 + 45056/435428340425*ep2^6 - 90112/927651681775*ep2^7 + 1441792/15770078590175*ep2^8 - 2883584/33432566611171*ep2^9 + 1048576/12858679465835*ep2^10 - 18874368/244314909850865*ep2^11 + 150994944/2059225668743005*ep2^12 - 8757706752/125612765793323305*ep2^13) * k2^16
        + (17/82946970 - 34/179718435*ep2 + 68/387813465*ep2^2 - 544/3335195799*ep2^3 + 7616/50027936985*ep2^4 - 335104/2351313038295*ep2^5 + 95744/715617011655*ep2^6 - 90112/715617011655*ep2^7 + 901120/7585540323543*ep2^8 - 65536/583503101811*ep2^9 + 131072/1231839881601*ep2^10 - 1048576/10382650430637*ep2^11 + 60817408/633341676268857*ep2^12) * k2^17
        - (17/68001570 - 17/73370115*ep2 + 136/630982989*ep2^2 - 272/1352106405*ep2^3 + 11968/63549001035*ep2^4 - 23936/135387002205*ep2^5 + 22528/135387002205*ep2^6 - 225280/1435102223373*ep2^7 + 16384/110392478721*ep2^8 - 32768/233050788411*ep2^9 + 262144/1964285216607*ep2^10 - 15204352/119821398213027*ep2^11) * k2^18
        + (17/57428700 - 34/123471705*ep2 + 68/264582225*ep2^2 - 2992/12435364575*ep2^3 + 5984/26492733225*ep2^4 - 5632/26492733225*ep2^5 + 11264/56164594437*ep2^6 - 53248/280822972185*ep2^7 + 106496/592848496835*ep2^8 - 851968/4996865901895*ep2^9 + 1703936/10510648966055*ep2^10) * k2^19
        - (34/99379665 - 68/212956425*ep2 + 272/909904725*ep2^2 - 544/1938492675*ep2^3 + 512/1938492675*ep2^4 - 1024/4109604471*ep2^5 + 53248/226028245905*ep2^6 - 106496/477170741355*ep2^7 + 851968/4021867677135*ep2^8 - 1703936/8459790631215*ep2^9) * k2^20
        + (119/307053450 - 238/655977825*ep2 + 68/199645425*ep2^2 - 64/199645425*ep2^3 + 128/423248301*ep2^4 - 6656/23278656555*ep2^5 + 13312/49143830505*ep2^6 - 106496/414212285685*ep2^7 + 212992/871274118165*ep2^8) * k2^21
        - (1309/3032075280 - 187/461402760*ep2 + 22/57675345*ep2^2 - 220/611358657*ep2^3 + 16/47027589*ep2^4 - 96/297841397*ep2^5 + 768/2510377489*ep2^6 - 1536/5280449201*ep2^7) * k2^22
        + (391/824634720 - 23/51539670*ep2 + 115/273160251*ep2^2 - 92/231135597*ep2^3 + 184/487952927*ep2^4 - 1472/4112746099*ep2^5 + 2944/8650948691*ep2^6) * k2^23
        - (23/44702775 - 46/94769883*ep2 + 184/400949505*ep2^2 - 368/846448955*ep2^3 + 20608/49940488345*ep2^4 - 41216/105047234105*ep2^5) * k2^24
        + (115/208122096 - 23/44025828*ep2 + 69/139415122*ep2^2 - 276/587535157*ep2^3 + 552/1235849813*ep2^4) * k2^25
        - (299/508373712 - 299/536616696*ep2 + 299/565364019*ep2^2 - 598/1189213971*ep2^3) * k2^26
        + (1495/2406644576 - 1495/2535571964*ep2 + 1495/2666722238*ep2^2) * k2^27
        - (31395/48175867316 - 31395/50667722522*ep2) * k2^28
        + 4669/6870199664 * k2^29;
C4[10] = + (1/3747960216 - 1/4259045700*ep2 + 2/9582852825*ep2^2 - 4/21377133225*ep2^3 + 16/94670161425*ep2^4 - 32/208274355135*ep2^5 + 1024/7289602429725*ep2^6 - 2048/15865605288225*ep2^7 + 8192/68750956248975*ep2^8 - 16384/148357326642525*ep2^9 + 131072/1275873009125715*ep2^10 - 262144/2734013590983675*ep2^11 + 1048576/11681694434202975*ep2^12 - 2097152/24887088142432425*ep2^13 + 33554432/423080498421351225*ep2^14 - 67108864/896930656653264597*ep2^15 + 268435456/3794706624302273295*ep2^16 - 536870912/8011047317971465845*ep2^17 + 4294967296/67521684537188069265*ep2^18 - 8589934592/142028370923050766385*ep2^19) * k2^10
        - (1/740703600 - 1/833291550*ep2 + 1/929440575*ep2^2 - 4/4116093975*ep2^3 + 8/9055406745*ep2^4 - 256/316939236075*ep2^5 + 512/689808925575*ep2^6 - 2048/2989172010825*ep2^7 + 4096/6450318549675*ep2^8 - 32768/55472739527205*ep2^9 + 65536/118870156129725*ep2^10 - 262144/507899758008825*ep2^11 + 12058624/24887088142432425*ep2^12 - 192937984/423080498421351225*ep2^13 + 385875968/896930656653264597*ep2^14 - 1543503872/3794706624302273295*ep2^15 + 3087007744/8011047317971465845*ep2^16 - 24696061952/67521684537188069265*ep2^17 + 49392123904/142028370923050766385*ep2^18) * k2^11
        + (1/255542742 - 1/285028443*ep2 + 4/1262268819*ep2^2 - 40/13884957009*ep2^3 + 256/97194699063*ep2^4 - 512/211541403843*ep2^5 + 2048/916679416653*ep2^6 - 4096/1978097688567*ep2^7 + 163840/85058200608381*ep2^8 - 65536/36453514546449*ep2^9 + 262144/155755925789373*ep2^10 - 524288/331827841899099*ep2^11 + 8388608/5641073312284683*ep2^12 - 419430400/298976885551088199*ep2^13 + 335544320/252980441620151553*ep2^14 - 671088640/534069821198097723*ep2^15 + 5368709120/4501445635812537951*ep2^16 - 10737418240/9468558061536717759*ep2^17) * k2^12
        - (13/1520151696 - 13/1683025092*ep2 + 65/9256638006*ep2^2 - 208/32398233021*ep2^3 + 416/70513801281*ep2^4 - 128/23504600427*ep2^5 + 256/50720453553*ep2^6 - 10240/2180979502779*ep2^7 + 4096/934705501191*ep2^8 - 16384/3993741686907*ep2^9 + 32768/8508406202541*ep2^10 - 524288/144642905443197*ep2^11 + 26214400/7666073988489441*ep2^12 - 272629760/84326813873383851*ep2^13 + 545259520/178023273732699241*ep2^14 - 4362076160/1500481878604179317*ep2^15 + 8724152320/3156186020512239253*ep2^16) * k2^13
        + (13/829076400 - 13/911984040*ep2 + 52/3989930175*ep2^2 - 104/8683965675*ep2^3 + 32/2894655225*ep2^4 - 64/6246361275*ep2^5 + 512/53718706965*ep2^6 - 1024/115111514925*ep2^7 + 4096/491840109225*ep2^8 - 8192/1047833276175*ep2^9 + 131072/17813165694975*ep2^10 - 262144/37763911273347*ep2^11 + 13631488/2077015120034085*ep2^12 - 27262976/4384809697849735*ep2^13 + 218103808/36957681739019195*ep2^14 - 12650020864/2254418586080170895*ep2^15) * k2^14
        - (1/39225120 - 1/42902475*ep2 + 2/93375975*ep2^2 - 8/404629225*ep2^3 + 16/873147275*ep2^4 - 128/7509066565*ep2^5 + 256/16090856925*ep2^6 - 1024/68751843225*ep2^7 + 2048/146471318175*ep2^8 - 32768/2490012408975*ep2^9 + 65536/5278826307027*ep2^10 - 262144/22333495914345*ep2^11 + 1572864/141445474124185*ep2^12 - 12582912/1192183281903845*ep2^13 + 729808896/72723180196134545*ep2^14) * k2^15
        + (4/105306075 - 8/229195575*ep2 + 32/993180825*ep2^2 - 64/2143179675*ep2^3 + 512/18431345205*ep2^4 - 1024/39495739725*ep2^5 + 45056/1856299767075*ep2^6 - 90112/3954725590725*ep2^7 + 1441792/67230335042325*ep2^8 - 2883584/142528310289729*ep2^9 + 1048576/54818580880665*ep2^10 - 2097152/115728115192515*ep2^11 + 16777216/975422685194055*ep2^12 - 973078528/59500783796837355*ep2^13) * k2^16
        - (17/320873805 - 68/1390453155*ep2 + 136/3000451545*ep2^2 - 1088/25803883287*ep2^3 + 2176/55294035615*ep2^4 - 95744/2598819673905*ep2^5 + 191488/5536615827015*ep2^6 - 180224/5536615827015*ep2^7 + 1802240/58688127766359*ep2^8 - 131072/4514471366643*ep2^9 + 262144/9530550662913*ep2^10 - 2097152/80328927015981*ep2^11 + 121634816/4900064547974841*ep2^12) * k2^17
        + (17/242181030 - 17/261300585*ep2 + 136/2247185031*ep2^2 - 272/4815396495*ep2^3 + 11968/226323635265*ep2^4 - 23936/482167744695*ep2^5 + 22528/482167744695*ep2^6 - 225280/5110978093767*ep2^7 + 16384/393152161059*ep2^8 - 32768/829987895569*ep2^9 + 262144/6995612262653*ep2^10 - 524288/14714908552477*ep2^11) * k2^18
        - (323/3618008100 - 646/7778717415*ep2 + 1292/16668680175*ep2^2 - 56848/783427968225*ep2^3 + 113696/1669042193175*ep2^4 - 107008/1669042193175*ep2^5 + 214016/3538369449531*ep2^6 - 1011712/17691847247655*ep2^7 + 106496/1965760805295*ep2^8 - 851968/16568555358915*ep2^9 + 1703936/34851099203235*ep2^10) * k2^19
        + (646/5881469265 - 1292/12603148425*ep2 + 56848/592347975975*ep2^2 - 113696/1261958731425*ep2^3 + 107008/1261958731425*ep2^4 - 214016/2675352510621*ep2^5 + 1011712/13376762553105*ep2^6 - 106496/1486306950345*ep2^7 + 851968/12527444295765*ep2^8 - 1703936/26350831104885*ep2^9) * k2^20
        - (323/2456427600 - 323/2623911300*ep2 + 323/2795035950*ep2^2 - 152/1397517975*ep2^3 + 304/2962738107*ep2^4 - 15808/162950595885*ep2^5 + 1664/18105621765*ep2^6 - 13312/152604526305*ep2^7 + 26624/320995727745*ep2^8) * k2^21
        + (323/2099129040 - 323/2236028760*ep2 + 38/279503595*ep2^2 - 380/2962738107*ep2^3 + 3952/32590119177*ep2^4 - 416/3621124353*ep2^5 + 3328/30520905261*ep2^6 - 6656/64199145549*ep2^7) * k2^22
        - (437/2473904160 - 437/2628523170*ep2 + 2185/13931172801*ep2^2 - 1748/11787915447*ep2^3 + 184/1309768383*ep2^4 - 1472/11039476371*ep2^5 + 2944/23220967539*ep2^6) * k2^23
        + (437/2190435975 - 874/4643724267*ep2 + 3496/19646525745*ep2^2 - 368/2182947305*ep2^3 + 2944/18399127285*ep2^4 - 5888/38701612565*ep2^5) * k2^24
        - (2185/9833769036 - 437/2080220373*ep2 + 46/231135597*ep2^2 - 368/1948142889*ep2^3 + 736/4097817801*ep2^4) * k2^25
        + (5681/23235669072 - 299/1290870504*ep2 + 299/1360024281*ep2^2 - 598/2860740729*ep2^3) * k2^26
        - (4485/16846512032 - 4485/17749003748*ep2 + 4485/18667055666*ep2^2) * k2^27
        + (115/400353468 - 115/421061406*ep2) * k2^28
        - 667/2169536736 * k2^29;
C4[11] = + (1/18658676400 - 1/20991010950*ep2 + 1/23413050675*ep2^2 - 4/103686367275*ep2^3 + 8/228110008005*ep2^4 - 256/7983850280175*ep2^5 + 512/17376615315675*ep2^6 - 2048/75298666367925*ep2^7 + 4096/162486595846575*ep2^8 - 32768/1397384724280545*ep2^9 + 65536/2994395837744025*ep2^10 - 262144/12794236761269925*ep2^11 + 524288/27257287013140275*ep2^12 - 8388608/463373879223384675*ep2^13 + 16777216/982352623953575511*ep2^14 - 67108864/4156107255188204085*ep2^15 + 134217728/8774004205397319735*ep2^16 - 1073741824/73952321159777409195*ep2^17 + 2147483648/155554882439531791755*ep2^18) * k2^11
        - (1/3358561752 - 1/3746088108*ep2 + 1/4147454691*ep2^2 - 10/45622001601*ep2^3 + 64/319354011207*ep2^4 - 128/695064612627*ep2^5 + 512/3011946654717*ep2^6 - 1024/6499463833863*ep2^7 + 40960/279476944856109*ep2^8 - 16384/119775833509761*ep2^9 + 65536/511769470450797*ep2^10 - 131072/1090291480525611*ep2^11 + 2097152/18534955168935387*ep2^12 - 104857600/982352623953575511*ep2^13 + 83886080/831221451037640817*ep2^14 - 167772160/1754800841079463947*ep2^15 + 1342177280/14790464231955481839*ep2^16 - 2684354560/31110976487906358351*ep2^17) * k2^12
        + (13/13874400400 - 13/15360943300*ep2 + 13/16897037630*ep2^2 - 208/295698158525*ep2^3 + 416/643578345025*ep2^4 - 384/643578345025*ep2^5 + 768/1388774323475*ep2^6 - 6144/11943459181885*ep2^7 + 4096/8531042272775*ep2^8 - 16384/36450816983675*ep2^9 + 32768/77656088356525*ep2^10 - 524288/1320153502060925*ep2^11 + 1048576/2798725424369161*ep2^12 - 54525952/153929898340303855*ep2^13 + 981467136/2924668068465773245*ep2^14 - 7851737088/24650773719925803065*ep2^15 + 15703474176/51851627479843930585*ep2^16) * k2^13
        - (7/3178126200 - 7/3495938820*ep2 + 8/4369923525*ep2^2 - 16/9511010025*ep2^3 + 64/41214376775*ep2^4 - 128/88936286725*ep2^5 + 1024/764852065835*ep2^6 - 14336/11472780987525*ep2^7 + 57344/49020064219425*ep2^8 - 16384/14919149979825*ep2^9 + 262144/253625549657025*ep2^10 - 524288/537686165272893*ep2^11 + 2097152/2274826083846855*ep2^12 - 12582912/14407231864363415*ep2^13 + 100663296/121432382856777355*ep2^14 - 5838471168/7407375354263418655*ep2^15) * k2^14
        + (7/1623919968 - 1/253737495*ep2 + 2/552252195*ep2^2 - 8/2393092845*ep2^3 + 16/5164042455*ep2^4 - 128/44410765113*ep2^5 + 1792/666161476695*ep2^6 - 7168/2846326309515*ep2^7 + 2048/866273224635*ep2^8 - 32768/14726644818795*ep2^9 + 327680/156102435079227*ep2^10 - 262144/132086675836269*ep2^11 + 524288/278849648987679*ep2^12 - 4194304/2350304184324723*ep2^13 + 243269632/143368555243808103*ep2^14) * k2^15
        - (2/269115525 - 4/585722025*ep2 + 16/2538128775*ep2^2 - 32/5477014725*ep2^3 + 256/47102326635*ep2^4 - 512/100933557075*ep2^5 + 22528/4743877182525*ep2^6 - 45056/10106520954075*ep2^7 + 720896/171810856219275*ep2^8 - 1441792/364239015184863*ep2^9 + 524288/140091928917255*ep2^10 - 1048576/295749627714205*ep2^11 + 8388608/2492746862162585*ep2^12 - 486539264/152057558591917685*ep2^13) * k2^16
        + (17/1455937605 - 68/6309062955*ep2 + 136/13614293745*ep2^2 - 1088/117082926207*ep2^3 + 15232/1756243893105*ep2^4 - 670208/82543462975935*ep2^5 + 191488/25121923514415*ep2^6 - 180224/25121923514415*ep2^7 + 1802240/266292389252799*ep2^8 - 131072/20484029942523*ep2^9 + 262144/43244063211993*ep2^10 - 2097152/364485675643941*ep2^11 + 4194304/766676766009669*ep2^12) * k2^17
        - (34/1989344175 - 68/4292795325*ep2 + 544/36918039795*ep2^2 - 1088/79110085275*ep2^3 + 47872/3718174007925*ep2^4 - 95744/7921327234275*ep2^5 + 90112/7921327234275*ep2^6 - 180224/16793213736663*ep2^7 + 65536/6458928360255*ep2^8 - 131072/13635515427205*ep2^9 + 1048576/114927915743585*ep2^10 - 2097152/241744926219265*ep2^11) * k2^18
        + (323/13648887700 - 646/29345108555*ep2 + 1292/62882375475*ep2^2 - 56848/2955471647325*ep2^3 + 113696/6296439596475*ep2^4 - 107008/6296439596475*ep2^5 + 214016/13348451944527*ep2^6 - 1011712/66742259722635*ep2^7 + 319488/22247419907545*ep2^8 - 2555904/187513967792165*ep2^9 + 5111808/394425932252485*ep2^10) * k2^19
        - (323/10306574712 - 323/11042758620*ep2 + 3553/129752413785*ep2^2 - 7106/276429055455*ep2^3 + 6688/276429055455*ep2^4 - 66880/2930147987823*ep2^5 + 63232/2930147987823*ep2^6 - 6656/325571998647*ep2^7 + 53248/2744106845739*ep2^8 - 106496/5772086813451*ep2^9) * k2^20
        + (2261/56497834800 - 2261/60349959900*ep2 + 323/9183689550*ep2^2 - 152/4591844775*ep2^3 + 304/9734710923*ep2^4 - 15808/535409100765*ep2^5 + 1664/59489900085*ep2^6 - 13312/501414872145*ep2^7 + 26624/1054700248305*ep2^8) * k2^21
        - (133/2682220440 - 19/408163980*ep2 + 76/1734696915*ep2^2 - 760/18387787299*ep2^3 + 7904/202265660289*ep2^4 - 2496/67421886763*ep2^5 + 19968/568270188431*ep2^6 - 39936/1195326948079*ep2^7) * k2^22
        + (19/317167200 - 19/336990150*ep2 + 19/357209559*ep2^2 - 988/19646525745*ep2^3 + 104/2182947305*ep2^4 - 832/18399127285*ep2^5 + 1664/38701612565*ep2^6) * k2^23
        - (19/268216650 - 19/284309649*ep2 + 76/1202848515*ep2^2 - 8/133649835*ep2^3 + 448/7885340265*ep2^4 - 896/16586405385*ep2^5) * k2^24
        + (475/5775388164 - 95/1221716727*ep2 + 10/135746303*ep2^2 - 80/1144147411*ep2^3 + 160/2406654899*ep2^4) * k2^25
        - (13/138307554 - 13/145991307*ep2 + 104/1230498159*ep2^2 - 208/2588289231*ep2^3) * k2^26
        + (15/141567328 - 15/149151292*ep2 + 15/156866014*ep2^2) * k2^27
        - (63/533804624 - 63/561415208*ep2) * k2^28
        + 203/1560543968 * k2^29;
C4[12] = + (1/91265265000 - 1/101795872500*ep2 + 1/112702573125*ep2^2 - 2/247945660875*ep2^3 + 64/8678098130625*ep2^4 - 128/18887625343125*ep2^5 + 512/81846376486875*ep2^6 - 1024/176615865050625*ep2^7 + 8192/1518896439435375*ep2^8 - 16384/3254778084504375*ep2^9 + 65536/13906779088336875*ep2^10 - 131072/29627485883848125*ep2^11 + 2097152/503667260025418125*ep2^12 - 4194304/1067774591253886425*ep2^13 + 16777216/4517507886074134875*ep2^14 - 33554432/9536961092823173625*ep2^15 + 268435456/80382957782366749125*ep2^16 - 536870912/169081393956012817125*ep2^17) * k2^12
        - (1/15080870000 - 1/16696677500*ep2 + 1/18366345250*ep2^2 - 16/321411041875*ep2^3 + 32/699541679375*ep2^4 - 384/9094041831875*ep2^5 + 768/19623985005625*ep2^6 - 6144/168766271048375*ep2^7 + 4096/120547336463125*ep2^8 - 16384/515065892160625*ep2^9 + 32768/1097314291994375*ep2^10 - 524288/18654342963904375*ep2^11 + 1048576/39547207083477275*ep2^12 - 4194304/167315106891634625*ep2^13 + 75497472/3178987030941057875*ep2^14 - 603979776/26794319260788916375*ep2^15 + 1207959552/56360464652004272375*ep2^16) * k2^13
        + (7/31090365000 - 7/34199401500*ep2 + 8/42749251875*ep2^2 - 16/93042489375*ep2^3 + 64/403184120625*ep2^4 - 128/870028891875*ep2^5 + 1024/7482248470125*ep2^6 - 14336/112233727051875*ep2^7 + 57344/479544106494375*ep2^8 - 16384/145948206324375*ep2^9 + 262144/2481119507514375*ep2^10 - 524288/5259973355930475*ep2^11 + 2097152/22253733428936625*ep2^12 - 4194304/46980103905532875*ep2^13 + 33554432/395975161489491375*ep2^14 - 1946157056/24154484850858973875*ep2^15) * k2^14
        - (1/1765130400 - 1/1930611375*ep2 + 2/4201918875*ep2^2 - 8/18208315125*ep2^3 + 16/39291627375*ep2^4 - 128/337907995425*ep2^5 + 256/724088561625*ep2^6 - 1024/3093832945125*ep2^7 + 2048/6591209317875*ep2^8 - 32768/112050558403875*ep2^9 + 65536/237547183816215*ep2^10 - 262144/1005007316145525*ep2^11 + 524288/2121682111862775*ep2^12 - 4194304/17882749228557675*ep2^13 + 243269632/1090847702942018175*ep2^14) * k2^15
        + (2/1696597875 - 4/3692595375*ep2 + 16/16001246625*ep2^2 - 32/34529005875*ep2^3 + 256/296949450525*ep2^4 - 512/636320251125*ep2^5 + 22528/29907051802875*ep2^6 - 45056/63715023406125*ep2^7 + 720896/1083155397904125*ep2^8 - 1441792/2296289443556745*ep2^9 + 524288/883188247521825*ep2^10 - 1048576/1864508522546075*ep2^11 + 8388608/15715143261459775*ep2^12 - 16777216/33055990998242975*ep2^13) * k2^16
        - (17/7912704375 - 68/34288385625*ep2 + 136/73990726875*ep2^2 - 1088/636320251125*ep2^3 + 15232/9544803766875*ep2^4 - 670208/448605777043125*ep2^5 + 191488/136532193013125*ep2^6 - 180224/136532193013125*ep2^7 + 360448/289448249187825*ep2^8 - 131072/111326249687625*ep2^9 + 262144/235022082673875*ep2^10 - 2097152/1980900411108375*ep2^11 + 4194304/4166721554400375*ep2^12) * k2^17
        + (34/9576035625 - 68/20664076875*ep2 + 544/177711061125*ep2^2 - 7616/2665665916875*ep2^3 + 335104/125286298093125*ep2^4 - 95744/38130612463125*ep2^5 + 90112/38130612463125*ep2^6 - 180224/80836898421825*ep2^7 + 65536/31091114777625*ep2^8 - 131072/65636797863875*ep2^9 + 1048576/553224439138375*ep2^10 - 2097152/1163678992670375*ep2^11) * k2^18
        - (323/59342990000 - 323/63793714250*ep2 + 323/68350408125*ep2^2 - 14212/3212469181875*ep2^3 + 28424/6843956083125*ep2^4 - 26752/6843956083125*ep2^5 + 53504/14509186896225*ep2^6 - 252928/72545934481125*ep2^7 + 79872/24181978160375*ep2^8 - 638976/203819530208875*ep2^9 + 1277952/428723839404875*ep2^10) * k2^19
        + (323/41076928200 - 323/44010994500*ep2 + 323/47011744125*ep2^2 - 646/100155454875*ep2^3 + 608/100155454875*ep2^4 - 1216/212329564335*ep2^5 + 63232/11678126038425*ep2^6 - 6656/1297569559825*ep2^7 + 53248/10936657718525*ep2^8 - 106496/23004693821725*ep2^9) * k2^20
        - (133/12282138000 - 133/13119556500*ep2 + 19/1996454250*ep2^2 - 152/16969861125*ep2^3 + 304/35976105585*ep2^4 - 15808/1978685807175*ep2^5 + 1664/219853978575*ep2^6 - 13312/1853054962275*ep2^7 + 26624/3897805265475*ep2^8) * k2^21
        + (209/14577285000 - 209/15527977500*ep2 + 836/65993904375*ep2^2 - 1672/139907077275*ep2^3 + 7904/699535386375*ep2^4 - 2496/233178462125*ep2^5 + 19968/1965361323625*ep2^6 - 39936/4134035887625*ep2^7) * k2^22
        - (437/23787540000 - 437/25274261250*ep2 + 437/26790716925*ep2^2 - 22724/1473489430875*ep2^3 + 2392/163721047875*ep2^4 - 19136/1379934546375*ep2^5 + 38272/2902620942375*ep2^6) * k2^23
        + (437/19084646250 - 437/20229725025*ep2 + 22724/1112634876375*ep2^2 - 2392/123626097375*ep2^3 + 133952/7293939745125*ep2^4 - 267904/15342424981125*ep2^5) * k2^24
        - (23/825055452 - 23/872654805*ep2 + 46/1842271255*ep2^2 - 2576/108694004045*ep2^3 + 5152/228632215405*ep2^4) * k2^25
        + (23/691537770 - 23/729956535*ep2 + 184/6152490795*ep2^2 - 368/12941446155*ep2^3) * k2^26
        - (69/1769591600 - 69/1864391150*ep2 + 69/1960825175*ep2^2) * k2^27
        + (1449/32185278800 - 1449/33850034600*ep2) * k2^28
        - 2001/39013599200 * k2^29;
C4[13] = + (1/439758169200 - 1/486875115900*ep2 + 1/535562627490*ep2^2 - 16/9372345981075*ep2^3 + 32/20398635370575*ep2^4 - 128/88394086605825*ep2^5 + 256/190745134254675*ep2^6 - 2048/1640408154590205*ep2^7 + 4096/3515160331264725*ep2^8 - 16384/15019321415403825*ep2^9 + 32768/31997684754555975*ep2^10 - 524288/543960640827451575*ep2^11 + 1048576/1153196558554197339*ep2^12 - 4194304/4878908516960065665*ep2^13 + 8388608/10299917980249027515*ep2^14 - 67108864/86813594404956089055*ep2^15 + 134217728/182607905472493842495*ep2^16) * k2^13
        - (1/67155188400 - 1/73870707240*ep2 + 4/323184344175*ep2^2 - 8/703401219675*ep2^3 + 32/3048071951925*ep2^4 - 64/6577418422575*ep2^5 + 512/56565798434145*ep2^6 - 1024/121212425216025*ep2^7 + 4096/517907635013925*ep2^8 - 8192/1103368439812275*ep2^9 + 131072/18757263476808675*ep2^10 - 262144/39765398570834391*ep2^11 + 1048576/168238224722760885*ep2^12 - 2097152/355169585525828535*ep2^13 + 16777216/2993572220860554795*ep2^14 - 973078528/182607905472493842495*ep2^15) * k2^14
        + (1/18427961376 - 1/20155582755*ep2 + 2/43868033055*ep2^2 - 8/190094809905*ep2^3 + 16/410204589795*ep2^4 - 128/3527759472237*ep2^5 + 256/7559484583365*ep2^6 - 1024/32299615947105*ep2^7 + 2048/68812225278615*ep2^8 - 32768/1169807829736455*ep2^9 + 327680/12399962995206423*ep2^10 - 262144/10492276380559281*ep2^11 + 524288/22150361247847371*ep2^12 - 4194304/186695901946142127*ep2^13 + 8388608/392705173059126543*ep2^14) * k2^15
        - (4/27484885575 - 8/59820045075*ep2 + 32/259220195325*ep2^2 - 64/559369895175*ep2^3 + 512/4810581098505*ep2^4 - 1024/10308388068225*ep2^5 + 45056/484494239206575*ep2^6 - 90112/1032183379179225*ep2^7 + 1441792/17547117446046825*ep2^8 - 2883584/37199888985619269*ep2^9 + 1048576/14307649609853565*ep2^10 - 2097152/30205038065246415*ep2^11 + 16777216/254585320835648355*ep2^12 - 33554432/535507054171536195*ep2^13) * k2^16
        + (17/52983468495 - 68/229595030145*ep2 + 136/495441907155*ep2^2 - 1088/4260800401533*ep2^3 + 15232/63912006022995*ep2^4 - 670208/3003864283080765*ep2^5 + 191488/914219564415885*ep2^6 - 180224/914219564415885*ep2^7 + 1802240/9690727382808381*ep2^8 - 131072/745440567908337*ep2^9 + 262144/1573707865584267*ep2^10 - 2097152/13264109152781679*ep2^11 + 4194304/27900367528264911*ep2^12) * k2^17
        - (17/27578982600 - 17/29756270700*ep2 + 34/63975982005*ep2^2 - 476/959639730075*ep2^3 + 20944/45103067313525*ep2^4 - 5984/13727020486725*ep2^5 + 5632/13727020486725*ep2^6 - 11264/29101283431857*ep2^7 + 4096/11192801319945*ep2^8 - 8192/23629247230995*ep2^9 + 65536/199160798089815*ep2^10 - 131072/418924437361335*ep2^11) * k2^18
        + (323/302140594800 - 323/324801139410*ep2 + 2261/2436008545575*ep2^2 - 9044/10408400149275*ep2^3 + 2584/3167773958475*ep2^4 - 2432/3167773958475*ep2^5 + 4864/6715680791967*ep2^6 - 252928/369362443558185*ep2^7 + 26624/41040271506465*ep2^8 - 212992/345910859840205*ep2^9 + 425984/727605601732845*ep2^10) * k2^19
        - (19/11090770614 - 19/11882968515*ep2 + 76/50772683655*ep2^2 - 152/108167891265*ep2^3 + 2432/1838854151505*ep2^4 - 24320/19491854005953*ep2^5 + 252928/214410394065483*ep2^6 - 26624/23823377118387*ep2^7 + 212992/200797035712119*ep2^8 - 425984/422366178566871*ep2^9) * k2^20
        + (19/7369282800 - 19/7871733900*ep2 + 19/8385107850*ep2^2 - 152/71273416725*ep2^3 + 304/151099643457*ep2^4 - 15808/8310480390135*ep2^5 + 1664/923386710015*ep2^6 - 13312/7782830841555*ep2^7 + 26624/16370782114995*ep2^8) * k2^21
        - (209/56676484080 - 209/60372776520*ep2 + 418/128292150105*ep2^2 - 4180/1359896791113*ep2^3 + 3952/1359896791113*ep2^4 - 416/151099643457*ep2^5 + 3328/1273554137709*ep2^6 - 6656/2678855255181*ep2^7) * k2^22
        + (4807/950550098400 - 4807/1009959479550*ep2 + 4807/1070557048323*ep2^2 - 22724/5352785241615*ep2^3 + 2392/594753915735*ep2^4 - 19136/5012925861195*ep2^5 + 38272/10544430259755*ep2^6) * k2^23
        - (23/3435236325 - 46/7282701009*ep2 + 2392/400548555495*ep2^2 - 4784/845602506045*ep2^3 + 267904/49890547856655*ep2^4 - 535808/104942186870895*ep2^5) * k2^24
        + (575/66829491612 - 115/14137007841*ep2 + 230/29844794331*ep2^2 - 12880/1760842865529*ep2^3 + 25760/3703841889561*ep2^4) * k2^25
        - (23/2133887976 - 23/2252437308*ep2 + 322/33223450293*ep2^2 - 644/69883809237*ep2^3) * k2^26
        + (115/8706390672 - 115/9172804458*ep2 + 115/9647259861*ep2^2) * k2^27
        - (23/1448337546 - 23/1523251557*ep2) * k2^28
        + 667/35525324448 * k2^29;
C4[14] = + (1/2091759757200 - 1/2300935732920*ep2 + 4/10066593831525*ep2^2 - 8/21909645398025*ep2^3 + 32/94941796724775*ep2^4 - 64/204874403458725*ep2^5 + 512/1761919869745035*ep2^6 - 1024/3775542578025075*ep2^7 + 4096/16131863742470775*ep2^8 - 8192/34367883625263825*ep2^9 + 131072/584254021629485025*ep2^10 - 262144/1238618525854508253*ep2^11 + 1048576/5240309147845996455*ep2^12 - 2097152/11062874867674881405*ep2^13 + 16777216/93244231027545428985*ep2^14 - 33554432/196134416988974867865*ep2^15) * k2^14
        - (1/296894933280 - 1/324728833275*ep2 + 2/706762754775*ep2^2 - 8/3062638604025*ep2^3 + 16/6608851724475*ep2^4 - 128/56836124830485*ep2^5 + 256/121791696065325*ep2^6 - 1024/520382701370025*ep2^7 + 2048/1108641407266575*ep2^8 - 32768/18846903923531775*ep2^9 + 65536/39955436317887363*ep2^10 - 262144/169042230575677305*ep2^11 + 524288/356866931215318755*ep2^12 - 4194304/3007878420243400935*ep2^13 + 8388608/6326916677063705415*ep2^14) * k2^15
        + (4/305048297925 - 8/663928648425*ep2 + 32/2877024143175*ep2^2 - 64/6208315256325*ep2^3 + 512/53391511204395*ep2^4 - 1024/114410381152275*ep2^5 + 45056/5377287914156925*ep2^6 - 90112/11455961208421275*ep2^7 + 1441792/194751340543161675*ep2^8 - 2883584/412872841951502751*ep2^9 + 1048576/158797246904424135*ep2^10 - 2097152/335238632353784285*ep2^11 + 16777216/2825582758410467545*ep2^12 - 33554432/5943467181484086905*ep2^13) * k2^16
        - (17/455265358920 - 17/493204138830*ep2 + 17/532141307685*ep2^2 - 136/4576415246091*ep2^3 + 1904/68646228691365*ep2^4 - 83776/3226372748494155*ep2^5 + 23936/981939532150395*ep2^6 - 22528/981939532150395*ep2^7 + 225280/10408559040794187*ep2^8 - 16384/800658387753399*ep2^9 + 32768/1690278818590509*ep2^10 - 262144/14246635756691433*ep2^11 + 524288/29967061419247497*ep2^12) * k2^17
        + (17/195504343320 - 17/210938896740*ep2 + 34/453518627991*ep2^2 - 476/6802779419865*ep2^3 + 1904/29066421157605*ep2^4 - 544/8846302091445*ep2^5 + 512/8846302091445*ep2^6 - 5120/93770802169317*ep2^7 + 4096/79344524912499*ep2^8 - 8192/167505108148609*ep2^9 + 65536/1411828768681133*ep2^10 - 131072/2969708789294797*ep2^11) * k2^18
        - (19/108173793200 - 19/116286827690*ep2 + 133/872151207675*ep2^2 - 532/3726464250975*ep2^3 + 152/1134141293775*ep2^4 - 2432/19280401994175*ep2^5 + 4864/40874452227651*ep2^6 - 252928/2248094872520805*ep2^7 + 79872/749364957506935*ep2^8 - 638976/6316076070415595*ep2^9 + 1277952/13285539320529355*ep2^10) * k2^19
        + (19/59561545890 - 19/63815942025*ep2 + 76/272668115925*ep2^2 - 152/580901638275*ep2^3 + 2432/9875327850675*ep2^4 - 4864/20935695043431*ep2^5 + 252928/1151463227388705*ep2^6 - 26624/127940358598745*ep2^7 + 212992/1078354451046565*ep2^8 - 425984/2268262810822085*ep2^9) * k2^20
        - (19/35618200200 - 19/38046713850*ep2 + 19/40528021275*ep2^2 - 304/688976361675*ep2^3 + 608/1460629886751*ep2^4 - 31616/80334643771305*ep2^5 + 3328/8926071530145*ep2^6 - 26624/75234031468365*ep2^7 + 53248/158250893778285*ep2^8) * k2^21
        + (209/250262828880 - 209/266584317720*ep2 + 418/566491675155*ep2^2 - 4180/6004811756643*ep2^3 + 3952/6004811756643*ep2^4 - 1248/2001603918881*ep2^5 + 9984/16870661601997*ep2^6 - 19968/35486564059373*ep2^7) * k2^22
        - (253/204192243360 - 253/216954258570*ep2 + 1265/1149857570421*ep2^2 - 1196/1149857570421*ep2^3 + 2392/2427477093111*ep2^4 - 19136/20460164070507*ep2^5 + 38272/43036896837963*ep2^6) * k2^23
        + (253/143898232725 - 506/305064253377*ep2 + 184/117332405145*ep2^2 - 368/247701744195*ep2^3 + 20608/14614402907505*ep2^4 - 41216/30740640598545*ep2^5) * k2^24
        - (115/47853216216 - 23/10122795738*ep2 + 23/10685173279*ep2^2 - 1288/630425223461*ep2^3 + 2576/1326066849349*ep2^4) * k2^25
        + (299/93970103832 - 299/99190665156*ep2 + 4186/1463062311051*ep2^2 - 8372/3077475895659*ep2^3) * k2^26
        - (345/84161776496 - 345/88670443094*ep2 + 345/93256845323*ep2^2) * k2^27
        + (1035/200675213318 - 1035/211054965731*ep2) * k2^28
        - 69/10854960248 * k2^29;
C4[15] = + (1/9838483823520 - 1/10760841681975*ep2 + 2/23420655425475*ep2^2 - 8/101489506843725*ep2^3 + 16/219003672662775*ep2^4 - 128/1883431584899865*ep2^5 + 256/4035924824785425*ep2^6 - 1024/17244406069537725*ep2^7 + 2048/36738082495971675*ep2^8 - 32768/624547402431518475*ep2^9 + 65536/1324040493154819167*ep2^10 - 262144/5601709778731927245*ep2^11 + 524288/11825831755100735295*ep2^12 - 4194304/99674867650134768915*ep2^13 + 8388608/209660928505455893235*ep2^14) * k2^15
        - (1/1304344446300 - 1/1419433662150*ep2 + 2/3075439601325*ep2^2 - 4/6636474929175*ep2^3 + 32/57073684390905*ep2^4 - 64/122300752266225*ep2^5 + 2816/5748135356512575*ep2^6 - 5632/12246027498657225*ep2^7 + 90112/208182467477172825*ep2^8 - 180224/441346831051606389*ep2^9 + 65536/169748781173694765*ep2^10 - 131072/358358538033355615*ep2^11 + 1048576/3020450534852568755*ep2^12 - 2097152/6353361469862299795*ep2^13) * k2^16
        + (17/5353292668680 - 17/5799400391070*ep2 + 17/6257247790365*ep2^2 - 136/53812330997139*ep2^3 + 1904/807184964957085*ep2^4 - 7616/3448881213907545*ep2^5 + 2176/1049659499884905*ep2^6 - 2048/1049659499884905*ep2^7 + 20480/11126390698779993*ep2^8 - 16384/9414638283583071*ep2^9 + 32768/19875347487564261*ep2^10 - 262144/167520785966613057*ep2^11 + 524288/352371308412530913*ep2^12) * k2^17
        - (1/104493700740 - 1/112743203430*ep2 + 4/484795774749*ep2^2 - 56/7271936621235*ep2^3 + 224/31071001927095*ep2^4 - 64/9456391890855*ep2^5 + 1024/160758662144535*ep2^6 - 10240/1704041818732071*ep2^7 + 8192/1441881538927137*ep2^8 - 16384/3043972137735067*ep2^9 + 131072/25656336589481279*ep2^10 - 262144/53966776964081311*ep2^11) * k2^18
        + (19/809438383600 - 19/870146262370*ep2 + 19/932299566825*ep2^2 - 76/3983461785525*ep2^3 + 152/8486505543075*ep2^4 - 2432/144270594232275*ep2^5 + 4864/305853659772423*ep2^6 - 252928/16821951287483265*ep2^7 + 79872/5607317095827755*ep2^8 - 638976/47261672664833935*ep2^9 + 1277952/99412483881202415*ep2^10) * k2^19
        - (19/382015432260 - 19/409302248850*ep2 + 38/874418440725*ep2^2 - 76/1862891460675*ep2^3 + 1216/31669154831475*ep2^4 - 2432/67138608242727*ep2^5 + 126464/3692623453349985*ep2^6 - 13312/410291494816665*ep2^7 + 106496/3458171170597605*ep2^8 - 212992/7274084186429445*ep2^9) * k2^20
        + (133/1408761228600 - 133/1504813130550*ep2 + 19/228993302475*ep2^2 - 304/3892886142075*ep2^3 + 608/8252918621199*ep2^4 - 31616/453910524165945*ep2^5 + 3328/50434502685105*ep2^6 - 26624/425090808345885*ep2^7 + 53248/894156527899965*ep2^8) * k2^21
        - (11/66880583580 - 11/71242360770*ep2 + 88/605560066545*ep2^2 - 880/6418936705377*ep2^3 + 832/6418936705377*ep2^4 - 4992/40653265800721*ep2^5 + 39936/342648954606077*ep2^6 - 79872/720744352792093*ep2^7) * k2^22
        + (253/945856023840 - 253/1004972025330*ep2 + 1265/5326351734249*ep2^2 - 92/409719364173*ep2^3 + 184/864963102143*ep2^4 - 1472/7290403289491*ep2^5 + 2944/15334986229619*ep2^6) * k2^23
        - (253/615288995100 - 253/652206334806*ep2 + 46/125424295155*ep2^2 - 92/264784623105*ep2^3 + 5152/15622292763195*ep2^4 - 10304/32860684777755*ep2^5) * k2^24
        + (1265/2097290958984 - 23/40332518442*ep2 + 23/42573213911*ep2^2 - 1288/2511819620749*ep2^3 + 2576/5283482650541*ep2^4) * k2^25
        - (299/351577802268 - 299/371109902394*ep2 + 1196/1563963160089*ep2^2 - 2392/3289715612601*ep2^3) * k2^26
        + (4485/3868539588592 - 4485/4075782780838*ep2 + 4485/4286599131571*ep2^2) * k2^27
        - (7245/4719327430444 - 7245/4963430573398*ep2) * k2^28
        + 667/336503767688 * k2^29;
C4[16] = + (1/45820358129700 - 1/49863330905850*ep2 + 2/108037216962675*ep2^2 - 4/233132941866825*ep2^3 + 32/2004943300054695*ep2^4 - 64/4296307071545775*ep2^5 + 256/18356948396604675*ep2^6 - 512/39108281366679525*ep2^7 + 8192/664840783233551925*ep2^8 - 16384/1409462460455130081*ep2^9 + 65536/5963110409617858035*ep2^10 - 131072/12588788642526589185*ep2^11 + 1048576/106105504272724108845*ep2^12 - 2097152/223187440021936918605*ep2^13) * k2^16
        - (1/5698666389240 - 1/6173555255010*ep2 + 1/6660941196195*ep2^2 - 8/57284094287277*ep2^3 + 112/859261414309155*ep2^4 - 448/3671389679320935*ep2^5 + 128/1117379467619415*ep2^6 - 2048/18995450949530055*ep2^7 + 20480/201351780065018583*ep2^8 - 16384/170374583131938801*ep2^9 + 32768/359679675500759691*ep2^10 - 262144/3031585836363545967*ep2^11 + 524288/6376784000626769103*ep2^12) * k2^17
        + (1/1297744347900 - 1/1400197849050*ep2 + 4/6020850750915*ep2^2 - 8/12901823037675*ep2^3 + 32/55125971160975*ep2^4 - 64/117442286386425*ep2^5 + 1024/1996518868569225*ep2^6 - 2048/4232620001366757*ep2^7 + 8192/17907238467320895*ep2^8 - 16384/37804170097677445*ep2^9 + 131072/318635147966138465*ep2^10 - 262144/670232552618429185*ep2^11) * k2^18
        - (19/7754941933200 - 19/8336562578190*ep2 + 19/8932031333775*ep2^2 - 76/38164133880675*ep2^3 + 152/81306198267525*ep2^4 - 2432/1382205370547925*ep2^5 + 4864/2930275385561601*ep2^6 - 252928/161165146205888055*ep2^7 + 26624/17907238467320895*ep2^8 - 212992/150932438510276115*ep2^9 + 425984/317478577556098035*ep2^10) * k2^19
        + (19/3009295759932 - 19/3224245457070*ep2 + 38/6888160749195*ep2^2 - 76/14674777248285*ep2^3 + 1216/249471213220845*ep2^4 - 12160/2644394860140957*ep2^5 + 126464/29088343461550527*ep2^6 - 13312/3232038162394503*ep2^7 + 106496/27241464511610811*ep2^8 - 212992/57301011558905499*ep2^9) * k2^20
        - (7/499883016600 - 7/533965949550*ep2 + 1/81255687975*ep2^2 - 16/1381346695575*ep2^3 + 32/2928454994619*ep2^4 - 1664/161065024704045*ep2^5 + 3328/340026163264095*ep2^6 - 26624/2865934804654515*ep2^7 + 53248/6028345623583635*ep2^8) * k2^21
        + (7/252420267060 - 1/38411779770*ep2 + 8/326500128045*ep2^2 - 80/3460901357277*ep2^3 + 64/2928454994619*ep2^4 - 128/6182293877529*ep2^5 + 1024/52107905539173*ep2^6 - 2048/109606284065157*ep2^7) * k2^22
        - (23/457672269600 - 23/486276786450*ep2 + 23/515453393637*ep2^2 - 92/2180764357695*ep2^3 + 184/4603835866245*ep2^4 - 1472/38803759444065*ep2^5 + 2944/81621700899585*ep2^6) * k2^23
        + (23/271256438700 - 23/287531825022*ep2 + 46/608240399085*ep2^2 - 92/1284063064735*ep2^3 + 5152/75759720819365*ep2^4 - 10304/159356654137285*ep2^5) * k2^24
        - (575/4262236465032 - 115/901626944526*ep2 + 115/951717330333*ep2^2 - 920/8021617498521*ep2^3 + 1840/16873057496889*ep2^4) * k2^25
        + (299/1463017306212 - 299/1544296045446*ep2 + 1196/6508104762951*ep2^2 - 2392/13689461742759*ep2^3) * k2^26
        - (4485/15099783555472 - 4485/15908700531658*ep2 + 4485/16731564352261*ep2^2) * k2^27
        + (2093/5023800167892 - 2093/5283651900714*ep2) * k2^28
        - 203/358213688184 * k2^29;
C4[17] = + (1/211541403843000 - 1/229169854163250*ep2 + 1/247262211070875*ep2^2 - 8/2126455015209525*ep2^3 + 16/4556689318306125*ep2^4 - 64/19469490723671625*ep2^5 + 128/41478480237387375*ep2^6 - 2048/705134164035585375*ep2^7 + 4096/1494884427755440995*ep2^8 - 16384/6324511040503788825*ep2^9 + 32768/13351745529952443075*ep2^10 - 262144/112536140895313448775*ep2^11 + 524288/236713951538417943975*ep2^12) * k2^17
        - (1/24775119369000 - 1/26731049845500*ep2 + 2/57471757167825*ep2^2 - 4/123153765359625*ep2^3 + 16/526202451991125*ep2^4 - 32/1121040006415875*ep2^5 + 512/19057680109069875*ep2^6 - 1024/40402281831228135*ep2^7 + 4096/170932730824426725*ep2^8 - 8192/360857987296011975*ep2^9 + 65536/3041517321494958075*ep2^10 - 131072/6397674365903187675*ep2^11) * k2^18
        + (19/101440907106000 - 19/109048975138950*ep2 + 19/116838187648875*ep2^2 - 76/499217710863375*ep2^3 + 152/1063550775317625*ep2^4 - 2432/18080363180399625*ep2^5 + 4864/38330369942447205*ep2^6 - 252928/2108170346834596275*ep2^7 + 26624/234241149648288475*ep2^8 - 212992/1974318261321288575*ep2^9 + 425984/4152876342779262175*ep2^10) * k2^19
        - (1/1595838660570 - 1/1709827136325*ep2 + 4/7305625037025*ep2^2 - 8/15564157687575*ep2^3 + 128/264590680688775*ep2^4 - 256/560932243060203*ep2^5 + 13312/30851273368311165*ep2^6 - 26624/65130465999768015*ep2^7 + 212992/548956784855187555*ep2^8 - 425984/1154702202626428995*ep2^9) * k2^20
        + (1/590770837800 - 1/631050667650*ep2 + 1/672206145975*ep2^2 - 16/11427504481575*ep2^3 + 32/24226309500939*ep2^4 - 128/102495924811665*ep2^5 + 256/216380285713515*ep2^6 - 2048/1823776693871055*ep2^7 + 4096/3836219942280495*ep2^8) * k2^21
        - (11/2804669634000 - 11/2987582871000*ep2 + 22/6348613600875*ep2^2 - 44/13459060833855*ep2^3 + 16/5176561859175*ep2^4 - 96/32784891774775*ep2^5 + 768/276329802101675*ep2^6 - 1536/581245445800075*ep2^7) * k2^22
        + (253/31274271756000 - 253/33228913740750*ep2 + 253/35222648565195*ep2^2 - 92/13547172525075*ep2^3 + 184/28599586441825*ep2^4 - 1472/241053657152525*ep2^5 + 2944/507043899527725*ep2^6) * k2^23
        - (253/16614456870375 - 506/35222648565195*ep2 + 184/13547172525075*ep2^2 - 368/28599586441825*ep2^3 + 2944/241053657152525*ep2^4 - 5888/507043899527725*ep2^5) * k2^24
        + (1265/47516043554616 - 23/913770068358*ep2 + 69/2893605216467*ep2^2 - 552/24388958253079*ep2^3 + 1104/51300912187511*ep2^4) * k2^25
        - (299/6827414095656 - 299/7206714878748*ep2 + 598/15185577780219*ep2^2 - 1196/31942077399771*ep2^3) * k2^26
        + (299/4367705987120 - 299/4601690236430*ep2 + 299/4839708696935*ep2^2) * k2^27
        - (39/380590921810 - 39/400276659145*ep2) * k2^28
        + 377/2550915658280 * k2^29;
C4[18] = + (1/969061097604600 - 1/1045565921099700*ep2 + 2/2247966730364355*ep2^2 - 4/4817071565066475*ep2^3 + 16/20582033050738575*ep2^4 - 32/43848679108095225*ep2^5 + 512/745427544837618825*ep2^6 - 1024/1580306395055751909*ep2^7 + 4096/6685911671389719615*ep2^8 - 8192/14114702417378296965*ep2^9 + 65536/118966777517902788705*ep2^10 - 131072/250240463054898969345*ep2^11) * k2^18
        - (1/107237530369200 - 1/115280345146890*ep2 + 1/123514655514525*ep2^2 - 4/527744437198425*ep2^3 + 8/1124325105335775*ep2^4 - 128/19113526790708175*ep2^5 + 256/40520676796301331*ep2^6 - 13312/2228637223796573205*ep2^7 + 26624/4704900805792765655*ep2^8 - 212992/39655592505967596235*ep2^9 + 425984/83413487684966323115*ep2^10) * k2^19
        + (1/21931382735262 - 1/23497910073495*ep2 + 4/100400161223115*ep2^2 - 8/213895995649245*ep2^3 + 128/3636231926037165*ep2^4 - 1280/38544058415993949*ep2^5 + 1024/32614203275071803*ep2^6 - 2048/68852206914040473*ep2^7 + 16384/580325743989769701*ep2^8 - 32768/1220685185633653509*ep2^9) * k2^20
        - (7/43717041997200 - 7/46697749406100*ep2 + 1/7106179257450*ep2^2 - 8/60402523688325*ep2^3 + 16/128053350219249*ep2^4 - 64/541764174004515*ep2^5 + 128/1143724367342865*ep2^6 - 1024/9639962524747005*ep2^7 + 2048/20277162552054045*ep2^8) * k2^21
        + (77/170187353391120 - 11/25898075516040*ep2 + 22/55033410471585*ep2^2 - 220/583354150998801*ep2^3 + 16/44873396230677*ep2^4 - 96/284198176127621*ep2^5 + 768/2395384627361377*ep2^6 - 1536/5038567664449793*ep2^7) * k2^22
        - (253/231429610994400 - 253/245893961681550*ep2 + 253/260647599382443*ep2^2 - 92/100249076685555*ep2^3 + 184/211636939669505*ep2^4 - 1472/1783797062928685*ep2^5 + 2944/3752124856505165*ep2^6) * k2^23
        + (253/107892248492925 - 506/228731566805001*ep2 + 184/87973679540385*ep2^2 - 368/185722212363035*ep2^3 + 20608/10957610529419065*ep2^4 - 41216/23048766975674585*ep2^5) * k2^24
        - (575/125578115108628 - 115/26564601272979*ep2 + 690/168242474728867*ep2^2 - 5520/1418043715571879*ep2^3 + 11040/2982781608616711*ep2^4) * k2^25
        + (299/36087760219896 - 299/38092635787668*ep2 + 598/80266625409729*ep2^2 - 1196/168836694827361*ep2^3) * k2^26
        - (65/4617289186384 - 65/4864643964226*ep2 + 65/5116263479617*ep2^2) * k2^27
        + (273/12033592964138 - 273/12656020186421*ep2) * k2^28
        - 2639/75507103485088 * k2^29;
C4[19] = + (1/4408331991663600 - 1/4738956891038370*ep2 + 1/5077453811826825*ep2^2 - 4/21694575377805525*ep2^3 + 8/46218877978803075*ep2^4 - 128/785720925639652275*ep2^5 + 256/1665728362356062823*ep2^6 - 1024/7047312302275650405*ep2^7 + 2048/14877659304804150855*ep2^8 - 16384/125397414140492128635*ep2^9 + 32768/263766974571379994715*ep2^10) * k2^19
        - (1/462337257662280 - 1/495361347495300*ep2 + 1/529135984824525*ep2^2 - 2/1127289706800075*ep2^3 + 32/19163925015601275*ep2^4 - 64/40627521033074703*ep2^5 + 256/171885665909162205*ep2^6 - 512/362869739141564655*ep2^7 + 4096/3058473515621759235*ep2^8 - 8192/6433340843204390115*ep2^9) * k2^20
        + (7/629761713094800 - 7/672700011714900*ep2 + 1/102367393087050*ep2^2 - 8/870122841239925*ep2^3 + 16/1844660423428641*ep2^4 - 64/7804332560659635*ep2^5 + 128/16475813183614785*ep2^6 - 1024/138867568261896045*ep2^7 + 2048/292100747033643405*ep2^8) * k2^21
        - (11/269080004685960 - 11/286628700643740*ep2 + 44/1218171977735895*ep2^2 - 440/12912622964000487*ep2^3 + 32/993278689538499*ep2^4 - 64/2096921677914609*ep2^5 + 512/17674054142423133*ep2^6 - 1024/37176458713372797*ep2^7) * k2^22
        + (253/2097878149392480 - 253/2228995533729510*ep2 + 1265/11813676328766403*ep2^2 - 92/908744332982031*ep2^3 + 184/1918460258517621*ep2^4 - 1472/16169879321791377*ep2^5 + 2944/34012504780319793*ep2^6) * k2^23
        - (23/75816174616650 - 23/80365145093649*ep2 + 92/340006383088515*ep2^2 - 184/717791253186865*ep2^3 + 10304/42349683938025035*ep2^4 - 20608/89080369662742315*ep2^5) * k2^24
        + (115/170185013139492 - 23/36000675856431*ep2 + 46/76001426808021*ep2^2 - 2576/4484084181673239*ep2^3 + 5152/9432039140760951*ep2^4) * k2^25
        - (1/731508653106 - 1/772148022723*ep2 + 8/6508104762951*ep2^2 - 16/13689461742759*ep2^3) * k2^26
        + (15/5865205182704 - 15/6179412603206*ep2 + 15/6499037393027*ep2^2) * k2^27
        - (35/7805573814576 - 35/8209310391192*ep2) * k2^28
        + 29/3895943914464 * k2^29;
C4[20] = + (1/19927921285392120 - 1/21351344234348700*ep2 + 1/22807117704872475*ep2^2 - 2/48589076849510925*ep2^3 + 32/826014306441685725*ep2^4 - 64/1751150329656373737*ep2^5 + 256/7408712933161581195*ep2^6 - 512/15640616192230004745*ep2^7 + 4096/131828050763081468565*ep2^8 - 8192/277293486087861020085*ep2^9) * k2^20
        - (1/1986171556683600 - 1/2121592344639300*ep2 + 1/2259957062767950*ep2^2 - 8/19209635033527575*ep2^3 + 16/40724426271078459*ep2^4 - 64/172295649608408865*ep2^5 + 128/363735260284418715*ep2^6 - 1024/3065768622397243455*ep2^7 + 2048/6448685722973512095*ep2^8) * k2^21
        + (11/4054598703088440 - 11/4319029053289860*ep2 + 44/18355873476481905*ep2^2 - 440/194572258850708193*ep2^3 + 32/14967096834669861*ep2^4 - 192/94791613286242453*ep2^5 + 1536/798957883412614961*ep2^6 - 3072/1680566582350672849*ep2^7) * k2^22
        - (23/2205461644233120 - 23/2343302996997690*ep2 + 115/12419505884087757*ep2^2 - 92/10508812671151179*ep2^3 + 184/22185271194652489*ep2^4 - 1472/186990142926356693*ep2^5 + 2944/393324093741646837*ep2^6) * k2^23
        + (23/717337652142150 - 23/760377911270679*ep2 + 92/3216983470760565*ep2^2 - 184/6791409549383415*ep2^3 + 10304/400693163413621485*ep2^4 - 20608/842837343732100365*ep2^5) * k2^24
        - (5/59637483236916 - 1/12615621453963*ep2 + 2/26632978625033*ep2^2 - 112/1571345738876947*ep2^3 + 224/3305244485223923*ep2^4) * k2^25
        + (13/67124627358822 - 13/70853773323201*ep2 + 728/4180372626068859*ep2^2 - 1456/8793197592765531*ep2^3) * k2^26
        - (195/480946824981728 - 195/506711833462892*ep2 + 195/532921066228214*ep2^2) * k2^27
        + (585/746733228261104 - 585/785357360757368*ep2) * k2^28
        - 377/266222834155040 * k2^29;
C4[21] = + (1/89571492885560400 - 1/95678640127757700*ep2 + 1/101918551440437550*ep2^2 - 8/866307687243719175*ep2^3 + 16/1836572296956684651*ep2^4 - 64/7770113564047511985*ep2^5 + 128/16403573079655858635*ep2^6 - 1024/138258687385670808495*ep2^7 + 2048/290819997604342045455*ep2^8) * k2^21
        - (1/8504768011356240 - 1/9059426794705560*ep2 + 2/19251281938749315*ep2^2 - 20/204063588550742739*ep2^3 + 16/172669190312166933*ep2^4 - 96/1093571538643723909*ep2^5 + 768/9217245825711387233*ep2^6 - 1536/19387999840289469697*ep2^7) * k2^22
        + (23/34695677086106400 - 23/36864156903988050*ep2 + 23/39076006318227333*ep2^2 - 92/165321565192500255*ep2^3 + 184/349012193184167205*ep2^4 - 1472/2941674199695123585*ep2^5 + 2944/6187659523496639265*ep2^6) * k2^23
        - (1/376164866367225 - 2/797469516698517*ep2 + 8/3373909493724495*ep2^2 - 16/7122697820085045*ep2^3 + 896/420239171385017655*ep2^4 - 1792/883951360499519895*ep2^5) * k2^24
        + (25/2939691551751396 - 5/621857828255103*ep2 + 10/1312810970760773*ep2^2 - 560/77455847274885607*ep2^3 + 1120/162924368405793863*ep2^4) * k2^25
        - (13/563191995400848 - 13/594480439589784*ep2 + 91/4384293241974657*ep2^2 - 182/9222134060705313*ep2^3) * k2^26
        + (195/3530853519987808 - 195/3720006387130012*ep2 + 195/3912420510602254*ep2^2) * k2^27
        - (117/978949049244740 - 117/1029584344895330*ep2) * k2^28
        + 1131/4746558335788640 * k2^29;
C4[22] = + (1/400515237744102000 - 1/426635796727413000*ep2 + 2/906601068045752625*ep2^2 - 4/1921994264256995565*ep2^3 + 16/8131514194933442775*ep2^4 - 32/17166529967081712525*ep2^5 + 256/144689324008260148425*ep2^6 - 512/304346509120823070825*ep2^7) * k2^22
        - (1/36309429508716000 - 1/38578768853010750*ep2 + 1/40893494984191395*ep2^2 - 4/173010940317732825*ep2^3 + 8/365245318448547075*ep2^4 - 64/3078496255494896775*ep2^5 + 128/6475457640868575975*ep2^6) * k2^23
        + (1/6167354204392875 - 2/13074790913312895*ep2 + 8/55316423094785325*ep2^2 - 16/116779115422324575*ep2^3 + 896/6889967809917149925*ep2^4 - 1792/14492690910515384325*ep2^5) * k2^24
        - (5/7383411339282576 - 1/1561875475617468*ep2 + 1/1648646335373994*ep2^2 - 28/48635066893532823*ep2^3 + 56/102301347603638007*ep2^4) * k2^25
        + (13/5775992324924976 - 13/6096880787420808*ep2 + 13/6423499401032637*ep2^2 - 26/13511498740103133*ep2^3) * k2^26
        - (13/2052821813946400 - 13/2162794411122100*ep2 + 13/2274663087559450*ep2^2) * k2^27
        + (13/829342217798700 - 13/872239229064150*ep2) * k2^28
        - 29/827888081823600 * k2^29;
C4[23] = + (1/1782389550772303200 - 1/1893788897695572150*ep2 + 1/2007416231557306479*ep2^2 - 4/8492914825819373565*ep2^3 + 8/17929486854507566415*ep2^4 - 64/151119960630849488355*ep2^5 + 128/317873020637304096195*ep2^6) * k2^23
        - (1/154595012056781400 - 1/163870712780188284*ep2 + 1/173324792363660685*ep2^2 - 2/365907894989950335*ep2^3 + 112/21588565804407069765*ep2^4 - 224/45410431519614870885*ep2^5) * k2^24
        + (25/629777641272880464 - 5/133222193346186252*ep2 + 5/140623426309863266*ep2^2 - 20/592627296591566621*ep2^3 + 40/1246560865244329789*ep2^4) * k2^25
        - (13/75408788686520520 - 13/79598165835771660*ep2 + 26/167724706582518855*ep2^2 - 52/352800244880470695*ep2^3) * k2^26
        + (39/65608185173726944 - 39/69122909379462316*ep2 + 39/72698232278400022*ep2^2) * k2^27
        - (9/5197211231538520 - 9/5466032502135340*ep2) * k2^28
        + 87/19640659160215120 * k2^29;
C4[24] = + (1/7897502637198556200 - 1/8371352795430469572*ep2 + 1/8854315456705304355*ep2^2 - 2/18692443741933420305*ep2^3 + 16/157550597253438828285*ep2^4 - 32/331399532153785121565*ep2^5) * k2^24
        - (1/656576689837683888 - 1/694456114251396420*ep2 + 1/733037009487585110*ep2^2 - 4/3089227397126251535*ep2^3 + 8/6498030042231080815*ep2^4) * k2^25
        + (13/1336500446295140280 - 13/1410750471089314740*ep2 + 26/2972652778366770345*ep2^2 - 52/6252821361392172105*ep2^3) * k2^26
        - (3/68400022840694048 - 3/72064309778588372*ep2 + 3/75791774077480874*ep2^2) * k2^27
        + (9/57434713056619304 - 9/60405474076789268*ep2) * k2^28
        - 29/61429295671311120 * k2^29;
C4[25] = + (1/34852162658526852912 - 1/36862864350364940580*ep2 + 1/38910801258718548390*ep2^2 - 4/163981233876028168215*ep2^3 + 8/344926043670266146935*ep2^4) * k2^25
        - (1/2782102969838863440 - 1/2936664245941022520*ep2 + 1/3093985544830720155*ep2^2 - 2/6508038559816342395*ep2^3) * k2^26
        + (3/1257722868968680352 - 3/1325100879806288228*ep2 + 3/1393640580485923826*ep2^2) * k2^27
        - (1/89668480588395444 - 1/94306505446415898*ep2) * k2^28
        + 29/703302752481745680 * k2^29;
C4[26] = + (1/153233867495634654960 - 1/161746860134281024680*ep2 + 1/170411870498617508145*ep2^2 - 2/358452555186747172305*ep2^3) * k2^26
        - (1/11763408009765892704 - 1/12393590581717636956*ep2 + 1/13034638370427169902*ep2^2) * k2^27
        + (1/1708389679184135420 - 1/1796754662590211390*ep2) * k2^28
        - 29/10232365536106966560 * k2^29;
C4[27] = + (1/671402060934751423200 - 1/707370028484827392300*ep2 + 1/743958133406456395350*ep2^2) * k2^27
        - (1/49640001998935255600 - 1/52207588309225010200*ep2) * k2^28
        + 29/201751358211920378400 * k2^29;
C4[28] = + (1/2932370299900739008080 - 1/3084044625757673784360*ep2) * k2^28
        - 1/209087771237808392160 * k2^29;
C4[29] = + 1/12769026871558087949280 * k2^29;
    </pre>
  </body>
</html>