This file is indexed.

/usr/share/gerbv/scheme/init.scm is in gerbv 2.6.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
;    Initialization file for TinySCHEME 1.34

; Per R5RS, up to four deep compositions should be defined
(define (caar x) (car (car x)))
(define (cadr x) (car (cdr x)))
(define (cdar x) (cdr (car x)))
(define (cddr x) (cdr (cdr x)))
(define (caaar x) (car (car (car x))))
(define (caadr x) (car (car (cdr x))))
(define (cadar x) (car (cdr (car x))))
(define (caddr x) (car (cdr (cdr x))))
(define (cdaar x) (cdr (car (car x))))
(define (cdadr x) (cdr (car (cdr x))))
(define (cddar x) (cdr (cdr (car x))))
(define (cdddr x) (cdr (cdr (cdr x))))
(define (caaaar x) (car (car (car (car x)))))
(define (caaadr x) (car (car (car (cdr x)))))
(define (caadar x) (car (car (cdr (car x)))))
(define (caaddr x) (car (car (cdr (cdr x)))))
(define (cadaar x) (car (cdr (car (car x)))))
(define (cadadr x) (car (cdr (car (cdr x)))))
(define (caddar x) (car (cdr (cdr (car x)))))
(define (cadddr x) (car (cdr (cdr (cdr x)))))
(define (cdaaar x) (cdr (car (car (car x)))))
(define (cdaadr x) (cdr (car (car (cdr x)))))
(define (cdadar x) (cdr (car (cdr (car x)))))
(define (cdaddr x) (cdr (car (cdr (cdr x)))))
(define (cddaar x) (cdr (cdr (car (car x)))))
(define (cddadr x) (cdr (cdr (car (cdr x)))))
(define (cdddar x) (cdr (cdr (cdr (car x)))))
(define (cddddr x) (cdr (cdr (cdr (cdr x)))))

(macro (unless form)
     `(if (not ,(cadr form)) (begin ,@(cddr form))))

(macro (when form)
     `(if ,(cadr form) (begin ,@(cddr form))))

; DEFINE-MACRO Contributed by Andy Gaynor
(macro (define-macro dform)
  (if (symbol? (cadr dform))
    `(macro ,@(cdr dform))
    (let ((form (gensym)))
      `(macro (,(caadr dform) ,form)
         (apply (lambda ,(cdadr dform) ,@(cddr dform)) (cdr ,form))))))

; Utilities for math. Notice that inexact->exact is primitive,
; but exact->inexact is not.
(define exact? integer?)
(define (inexact? x) (and (real? x) (not (integer? x))))
(define (even? n) (= (remainder n 2) 0))
(define (odd? n) (not (= (remainder n 2) 0)))
(define (zero? n) (= n 0))
(define (positive? n) (> n 0))
(define (negative? n) (< n 0))
(define complex? number?)
(define rational? real?)
(define (abs n) (if (>= n 0) n (- n)))
(define (exact->inexact n) (* n 1.0))
(define (<> n1 n2) (not (= n1 n2)))
(define (max . lst)
     (foldr (lambda (a b) (if (> a b) a b)) (car lst) (cdr lst)))
(define (min . lst)
     (foldr (lambda (a b) (if (< a b) a b)) (car lst) (cdr lst)))
(define (succ x) (+ x 1))
(define (pred x) (- x 1))
(define (gcd a b)
  (let ((aa (abs a))
	(bb (abs b)))
     (if (= bb 0)
          aa
          (gcd bb (remainder aa bb)))))
(define (lcm a b)
     (if (or (= a 0) (= b 0))
          0
          (abs (* (quotient a (gcd a b)) b))))

(define call/cc call-with-current-continuation)

(define (string . charlist)
     (list->string charlist))

(define (list->string charlist)
     (let* ((len (length charlist))
            (newstr (make-string len))
            (fill-string!
               (lambda (str i len charlist)
                    (if (= i len)
                         str
                         (begin (string-set! str i (car charlist))
                         (fill-string! str (+ i 1) len (cdr charlist)))))))
          (fill-string! newstr 0 len charlist)))

(define (string-fill! s e)
     (let ((n (string-length s)))
          (let loop ((i 0))
               (if (= i n)
                    s
                    (begin (string-set! s i e) (loop (succ i)))))))

(define (string->list s)
     (let loop ((n (pred (string-length s))) (l '()))
          (if (= n -1)
               l
               (loop (pred n) (cons (string-ref s n) l)))))

(define (string-copy str)
     (string-append str))

(define (string->anyatom str pred)
     (let* ((a (string->atom str)))
       (if (pred a) a
	   (error "string->xxx: not a xxx" a))))

(define (string->number str) (string->anyatom str number?))

(define (anyatom->string n pred)
  (if (pred n)
      (atom->string n)
      (error "xxx->string: not a xxx" n)))
  

(define (number->string n) (anyatom->string n number?))    

(define (char-cmp? cmp a b)
     (cmp (char->integer a) (char->integer b)))
(define (char-ci-cmp? cmp a b)
     (cmp (char->integer (char-downcase a)) (char->integer (char-downcase b))))

(define (char=? a b) (char-cmp? = a b))
(define (char<? a b) (char-cmp? < a b))
(define (char>? a b) (char-cmp? > a b))
(define (char<=? a b) (char-cmp? <= a b))
(define (char>=? a b) (char-cmp? >= a b))

(define (char-ci=? a b) (char-ci-cmp? = a b))
(define (char-ci<? a b) (char-ci-cmp? < a b))
(define (char-ci>? a b) (char-ci-cmp? > a b))
(define (char-ci<=? a b) (char-ci-cmp? <= a b))
(define (char-ci>=? a b) (char-ci-cmp? >= a b))

; Note the trick of returning (cmp x y)
(define (string-cmp? chcmp cmp a b)
     (let ((na (string-length a)) (nb (string-length b)))
          (let loop ((i 0))
               (cond
                    ((= i na)
                         (if (= i nb) (cmp 0 0) (cmp 0 1)))
                    ((= i nb)
                         (cmp 1 0))
                    ((chcmp = (string-ref a i) (string-ref b i))
                         (loop (succ i)))
                    (else
                         (chcmp cmp (string-ref a i) (string-ref b i)))))))


(define (string=? a b) (string-cmp? char-cmp? = a b))
(define (string<? a b) (string-cmp? char-cmp? < a b))
(define (string>? a b) (string-cmp? char-cmp? > a b))
(define (string<=? a b) (string-cmp? char-cmp? <= a b))
(define (string>=? a b) (string-cmp? char-cmp? >= a b))

(define (string-ci=? a b) (string-cmp? char-ci-cmp? = a b))
(define (string-ci<? a b) (string-cmp? char-ci-cmp? < a b))
(define (string-ci>? a b) (string-cmp? char-ci-cmp? > a b))
(define (string-ci<=? a b) (string-cmp? char-ci-cmp? <= a b))
(define (string-ci>=? a b) (string-cmp? char-ci-cmp? >= a b))

(define (list . x) x)

(define (foldr f x lst)
     (if (null? lst)
          x
          (foldr f (f x (car lst)) (cdr lst))))

(define (unzip1-with-cdr . lists)
  (unzip1-with-cdr-iterative lists '() '()))

(define (unzip1-with-cdr-iterative lists cars cdrs)
  (if (null? lists)
      (cons cars cdrs)
      (let ((car1 (caar lists))
	    (cdr1 (cdar lists)))
	(unzip1-with-cdr-iterative 
	 (cdr lists) 
	 (append cars (list car1))
	 (append cdrs (list cdr1))))))

(define (map proc . lists)
  (if (null? lists)
      (apply proc)
      (if (null? (car lists))
	  '()
	  (let* ((unz (apply unzip1-with-cdr lists))
		 (cars (car unz))
		 (cdrs (cdr unz)))
	    (cons (apply proc cars) (apply map (cons proc cdrs)))))))

(define (for-each proc . lists)
  (if (null? lists)
      (apply proc)
      (if (null? (car lists))
	  #t
	  (let* ((unz (apply unzip1-with-cdr lists))
		 (cars (car unz))
		 (cdrs (cdr unz)))
	    (apply proc cars) (apply map (cons proc cdrs))))))

(define (list-tail x k)
    (if (zero? k)
        x
        (list-tail (cdr x) (- k 1))))

(define (list-ref x k)
    (car (list-tail x k)))

(define (last-pair x)
    (if (pair? (cdr x))
        (last-pair (cdr x))
        x))

(define (head stream) (car stream))

(define (tail stream) (force (cdr stream)))

(define (vector-equal? x y)
     (and (vector? x) (vector? y) (= (vector-length x) (vector-length y))
          (let ((n (vector-length x)))
               (let loop ((i 0))
                    (if (= i n)
                         #t
                         (and (equal? (vector-ref x i) (vector-ref y i))
                              (loop (succ i))))))))

(define (list->vector x)
     (apply vector x))

(define (vector-fill! v e)
     (let ((n (vector-length v)))
          (let loop ((i 0))
               (if (= i n)
                    v
                    (begin (vector-set! v i e) (loop (succ i)))))))

(define (vector->list v)
     (let loop ((n (pred (vector-length v))) (l '()))
          (if (= n -1)
               l
               (loop (pred n) (cons (vector-ref v n) l)))))

;; The following quasiquote macro is due to Eric S. Tiedemann.
;;   Copyright 1988 by Eric S. Tiedemann; all rights reserved.
;;
;; Subsequently modified to handle vectors: D. Souflis

(macro
 quasiquote
 (lambda (l)
   (define (mcons f l r)
     (if (and (pair? r)
              (eq? (car r) 'quote)
              (eq? (car (cdr r)) (cdr f))
              (pair? l)
              (eq? (car l) 'quote)
              (eq? (car (cdr l)) (car f)))
         (if (or (procedure? f) (number? f) (string? f))
               f
               (list 'quote f))
         (if (eqv? l vector)
               (apply l (eval r))
               (list 'cons l r)
               )))
   (define (mappend f l r)
     (if (or (null? (cdr f))
             (and (pair? r)
                  (eq? (car r) 'quote)
                  (eq? (car (cdr r)) '())))
         l
         (list 'append l r)))
   (define (foo level form)
     (cond ((not (pair? form))
               (if (or (procedure? form) (number? form) (string? form))
                    form
                    (list 'quote form))
               )
           ((eq? 'quasiquote (car form))
            (mcons form ''quasiquote (foo (+ level 1) (cdr form))))
           (#t (if (zero? level)
                   (cond ((eq? (car form) 'unquote) (car (cdr form)))
                         ((eq? (car form) 'unquote-splicing)
                          (error "Unquote-splicing wasn't in a list:"
                                 form))
                         ((and (pair? (car form))
                               (eq? (car (car form)) 'unquote-splicing))
                          (mappend form (car (cdr (car form)))
                                   (foo level (cdr form))))
                         (#t (mcons form (foo level (car form))
                                         (foo level (cdr form)))))
                   (cond ((eq? (car form) 'unquote)
                          (mcons form ''unquote (foo (- level 1)
                                                     (cdr form))))
                         ((eq? (car form) 'unquote-splicing)
                          (mcons form ''unquote-splicing
                                      (foo (- level 1) (cdr form))))
                         (#t (mcons form (foo level (car form))
                                         (foo level (cdr form)))))))))
   (foo 0 (car (cdr l)))))


;;;;; atom? and equal? written by a.k

;;;; atom?
(define (atom? x)
  (not (pair? x)))

;;;;    equal?
(define (equal? x y)
     (cond
          ((pair? x)
               (and (pair? y)
                    (equal? (car x) (car y))
                    (equal? (cdr x) (cdr y))))
          ((vector? x)
               (and (vector? y) (vector-equal? x y)))
          ((string? x)
               (and (string? y) (string=? x y)))
          (else (eqv? x y))))

;;;; (do ((var init inc) ...) (endtest result ...) body ...)
;;
(macro do
  (lambda (do-macro)
    (apply (lambda (do vars endtest . body)
             (let ((do-loop (gensym)))
               `(letrec ((,do-loop
                           (lambda ,(map (lambda (x)
                                           (if (pair? x) (car x) x))
                                      `,vars)
                             (if ,(car endtest)
                               (begin ,@(cdr endtest))
                               (begin
                                 ,@body
                                 (,do-loop
                                   ,@(map (lambda (x)
                                            (cond
                                              ((not (pair? x)) x)
                                              ((< (length x) 3) (car x))
                                              (else (car (cdr (cdr x))))))
                                       `,vars)))))))
                  (,do-loop
                    ,@(map (lambda (x)
                             (if (and (pair? x) (cdr x))
                               (car (cdr x))
                               '()))
                        `,vars)))))
      do-macro)))

;;;; generic-member
(define (generic-member cmp obj lst)
  (cond
    ((null? lst) #f)
    ((cmp obj (car lst)) lst)
    (else (generic-member cmp obj (cdr lst)))))

(define (memq obj lst)
     (generic-member eq? obj lst))
(define (memv obj lst)
     (generic-member eqv? obj lst))
(define (member obj lst)
     (generic-member equal? obj lst))

;;;; generic-assoc
(define (generic-assoc cmp obj alst)
     (cond
          ((null? alst) #f)
          ((cmp obj (caar alst)) (car alst))
          (else (generic-assoc cmp obj (cdr alst)))))

(define (assq obj alst)
     (generic-assoc eq? obj alst))
(define (assv obj alst)
     (generic-assoc eqv? obj alst))
(define (assoc obj alst)
     (generic-assoc equal? obj alst))

(define (acons x y z) (cons (cons x y) z))

;;;; Utility to ease macro creation
(define (macro-expand form)
     ((eval (get-closure-code (eval (car form)))) form))

;;;; Handy for imperative programs
;;;; Used as: (define-with-return (foo x y) .... (return z) ...)
(macro (define-with-return form)
     `(define ,(cadr form)
          (call/cc (lambda (return) ,@(cddr form)))))

;;;; Simple exception handling
;
;    Exceptions are caught as follows:
;
;         (catch (do-something to-recover and-return meaningful-value)
;              (if-something goes-wrong)
;              (with-these calls))
;
;    "Catch" establishes a scope spanning multiple call-frames
;    until another "catch" is encountered.
;
;    Exceptions are thrown with:
;
;         (throw "message")
;
;    If used outside a (catch ...), reverts to (error "message)

(define *handlers* (list))

(define (push-handler proc)
     (set! *handlers* (cons proc *handlers*)))

(define (pop-handler)
     (let ((h (car *handlers*)))
          (set! *handlers* (cdr *handlers*))
          h))

(define (more-handlers?)
     (pair? *handlers*))

(define (throw . x)
     (if (more-handlers?)
          (apply (pop-handler))
          (apply error x)))

(macro (catch form)
     (let ((label (gensym)))
          `(call/cc (lambda (exit)
               (push-handler (lambda () (exit ,(cadr form))))
               (let ((,label (begin ,@(cddr form))))
                    (pop-handler)
                    ,label)))))

(define *error-hook* throw)


;;;;; Definition of MAKE-ENVIRONMENT, to be used with two-argument EVAL

(macro (make-environment form)
     `(apply (lambda ()
               ,@(cdr form)
               (current-environment))))

(define-macro (eval-polymorphic x . envl)
  (display envl)
  (let* ((env (if (null? envl) (current-environment) (eval (car envl))))
         (xval (eval x env)))
    (if (closure? xval)
	(make-closure (get-closure-code xval) env)
	xval)))

; Redefine this if you install another package infrastructure
; Also redefine 'package'
(define *colon-hook* eval)

;;;;; I/O

(define (input-output-port? p)
     (and (input-port? p) (output-port? p)))

(define (close-port p)
     (cond 
          ((input-output-port? p) (close-input-port (close-output-port p)))
          ((input-port? p) (close-input-port p))
          ((output-port? p) (close-output-port p))
          (else (throw "Not a port" p))))

(define (call-with-input-file s p)
     (let ((inport (open-input-file s)))
          (if (eq? inport #f)
               #f
               (let ((res (p inport)))
                    (close-input-port inport)
                    res))))

(define (call-with-output-file s p)
     (let ((outport (open-output-file s)))
          (if (eq? outport #f)
               #f
               (let ((res (p outport)))
                    (close-output-port outport)
                    res))))

(define (with-input-from-file s p)
     (let ((inport (open-input-file s)))
          (if (eq? inport #f)
               #f
               (let ((prev-inport (current-input-port)))
                    (set-input-port inport)
                    (let ((res (p)))
                         (close-input-port inport)
                         (set-input-port prev-inport)
                         res)))))

(define (with-output-to-file s p)
     (let ((outport (open-output-file s)))
          (if (eq? outport #f)
               #f
               (let ((prev-outport (current-output-port)))
                    (set-output-port outport)
                    (let ((res (p)))
                         (close-output-port outport)
                         (set-output-port prev-outport)
                         res)))))

(define (with-input-output-from-to-files si so p)
     (let ((inport (open-input-file si))
           (outport (open-input-file so)))
          (if (not (and inport outport))
               (begin
                    (close-input-port inport)
                    (close-output-port outport)
                    #f)
               (let ((prev-inport (current-input-port))
                     (prev-outport (current-output-port)))
                    (set-input-port inport)
                    (set-output-port outport)
                    (let ((res (p)))
                         (close-input-port inport)
                         (close-output-port outport)
                         (set-input-port prev-inport)
                         (set-output-port prev-outport)
                         res)))))

; Random number generator (maximum cycle)
(define *seed* 1)
(define (random-next)
     (let* ((a 16807) (m 2147483647) (q (quotient m a)) (r (modulo m a)))
          (set! *seed*
               (-   (* a (- *seed*
                         (* (quotient *seed* q) q)))
                    (* (quotient *seed* q) r)))
          (if (< *seed* 0) (set! *seed* (+ *seed* m)))
          *seed*))
;; SRFI-0 
;; COND-EXPAND
;; Implemented as a macro
(define *features* '(srfi-0))

(define-macro (cond-expand . cond-action-list)
  (cond-expand-runtime cond-action-list))

(define (cond-expand-runtime cond-action-list)
  (if (null? cond-action-list)
      #t
      (if (cond-eval (caar cond-action-list))
          `(begin ,@(cdar cond-action-list))
          (cond-expand-runtime (cdr cond-action-list)))))

(define (cond-eval-and cond-list)
  (foldr (lambda (x y) (and (cond-eval x) (cond-eval y))) #t cond-list))

(define (cond-eval-or cond-list)
  (foldr (lambda (x y) (or (cond-eval x) (cond-eval y))) #f cond-list))

(define (cond-eval condition)
  (cond ((symbol? condition)
	 (if (member condition *features*) #t #f))
	((eq? condition #t) #t)
	((eq? condition #f) #f)
	(else (case (car condition)
		((and) (cond-eval-and (cdr condition)))
		((or) (cond-eval-or (cdr condition)))
		((not) (if (not (null? (cddr condition)))
			   (error "cond-expand : 'not' takes 1 argument")
			   (not (cond-eval (cadr condition)))))
		(else (error "cond-expand : unknown operator" (car condition)))))))

(gc-verbose #f)