/usr/include/gromacs/gmx_simd4_macros.h is in gromacs-dev 4.6.5-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | /*
* This file is part of the GROMACS molecular simulation package.
*
* Copyright (c) 1991-2000, University of Groningen, The Netherlands.
* Copyright (c) 2001-2012, The GROMACS Development Team
* Copyright (c) 2012,2013, by the GROMACS development team, led by
* David van der Spoel, Berk Hess, Erik Lindahl, and including many
* others, as listed in the AUTHORS file in the top-level source
* directory and at http://www.gromacs.org.
*
* GROMACS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* GROMACS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with GROMACS; if not, see
* http://www.gnu.org/licenses, or write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* If you want to redistribute modifications to GROMACS, please
* consider that scientific software is very special. Version
* control is crucial - bugs must be traceable. We will be happy to
* consider code for inclusion in the official distribution, but
* derived work must not be called official GROMACS. Details are found
* in the README & COPYING files - if they are missing, get the
* official version at http://www.gromacs.org.
*
* To help us fund GROMACS development, we humbly ask that you cite
* the research papers on the package. Check out http://www.gromacs.org.
*/
/* The macros in this file are intended to be used for writing
* architecture-independent SIMD intrinsics code with a SIMD width of 4.
* To support a new architecture, adding macros here should be all
* that is needed.
*
* Note that this file is intended only for SIMD operations that require
* a SIMD width of 4. In general gmx_simd_macros.h provides wider hardware
* support, more functionality and higher performance, but the SIMD width is
* not necessarily equal to 4.
*/
#ifdef _gmx_simd4_macros_h_
#error "gmx_simd4_macros.h included twice"
#else
#define _gmx_simd4_macros_h_
/* The SIMD width here is always 4, since that is the whole point */
#define GMX_SIMD4_WIDTH 4
#if defined GMX_SIMD4_SINGLE || defined GMX_SIMD4_DOUBLE
/* Precision set before inclusion, honour that request */
#else
/* Match precision to the Gromacs real precision */
#ifdef GMX_DOUBLE
#define GMX_SIMD4_DOUBLE
#else
#define GMX_SIMD4_SINGLE
#endif
#endif
#ifdef GMX_SIMD4_DOUBLE
typedef double gmx_simd4_real;
#endif
#ifdef GMX_SIMD4_SINGLE
typedef float gmx_simd4_real;
#endif
/* Uncomment the next line, without other SIMD active, for testing plain-C */
/* #define GMX_SIMD4_REFERENCE_PLAIN_C */
#ifdef GMX_SIMD4_REFERENCE_PLAIN_C
/* Plain C SIMD reference implementation, also serves as documentation */
#define GMX_HAVE_SIMD4_MACROS
/* Include plain-C reference implementation, also serves as documentation */
#include "gmx_simd4_ref.h"
/* float/double SIMD register type */
#define gmx_simd4_pr gmx_simd4_ref_pr
/* boolean SIMD register type */
#define gmx_simd4_pb gmx_simd4_ref_pb
#define gmx_simd4_load_pr gmx_simd4_ref_load_pr
#define gmx_simd4_load_bb_pr gmx_simd4_ref_load_pr
#define gmx_simd4_set1_pr gmx_simd4_ref_set1_pr
#define gmx_simd4_setzero_pr gmx_simd4_ref_setzero_pr
#define gmx_simd4_store_pr gmx_simd4_ref_store_pr
/* Unaligned load+store are not required,
* but they can speed up the PME spread+gather operations.
*/
#define GMX_SIMD4_HAVE_UNALIGNED
#ifdef GMX_SIMD4_HAVE_UNALIGNED
#define gmx_simd4_loadu_pr gmx_simd4_ref_load_pr
#define gmx_simd4_storeu_pr gmx_simd4_ref_store_pr
#endif
#define gmx_simd4_add_pr gmx_simd4_ref_add_pr
#define gmx_simd4_sub_pr gmx_simd4_ref_sub_pr
#define gmx_simd4_mul_pr gmx_simd4_ref_mul_pr
/* For the FMA macros below, aim for c=d in code, so FMA3 uses 1 instruction */
#define gmx_simd4_madd_pr gmx_simd4_ref_madd_pr
#define gmx_simd4_nmsub_pr gmx_simd4_ref_nmsub_pr
#define gmx_simd4_dotproduct3 gmx_simd4_ref_dotproduct3
#define gmx_simd4_min_pr gmx_simd4_ref_min_pr
#define gmx_simd4_max_pr gmx_simd4_ref_max_pr
#define gmx_simd4_blendzero_pr gmx_simd4_ref_blendzero_pr
/* Comparison */
#define gmx_simd4_cmplt_pr gmx_simd4_ref_cmplt_pr
/* Logical operations on SIMD booleans */
#define gmx_simd4_and_pb gmx_simd4_ref_and_pb
#define gmx_simd4_or_pb gmx_simd4_ref_or_pb
/* Returns a single int (0/1) which tells if any of the 4 booleans is True */
#define gmx_simd4_anytrue_pb gmx_simd4_ref_anytrue_pb
#endif /* GMX_SIMD4_REFERENCE_PLAIN_C */
/* The same SIMD macros can be translated to SIMD intrinsics (and compiled
* to instructions for) different SIMD width and float precision.
*
* On x86: The gmx_simd4 prefix is replaced by _mm_ or _mm256_ (SSE or AVX).
* The _pr suffix is replaced by _ps or _pd (for single or double precision).
* Compiler settings will decide if 128-bit intrinsics will
* be translated into SSE or AVX instructions.
*/
#ifdef GMX_X86_SSE2
/* This is for general x86 SIMD instruction sets that also support SSE2 */
#ifdef GMX_SIMD4_SINGLE
#define GMX_HAVE_SIMD4_MACROS
#endif
#ifdef GMX_SIMD4_DOUBLE
/* Note that here we will use 256-bit SIMD with GMX_X86_AVX_128_FMA.
* This is inconsistent naming wise, but should give the best performance.
*/
#if defined GMX_X86_AVX_128_FMA || defined GMX_X86_AVX_256
#define GMX_HAVE_SIMD4_MACROS
#endif
#endif
#ifdef GMX_HAVE_SIMD4_MACROS
#if defined GMX_X86_AVX_128_FMA || defined GMX_X86_AVX_256
#include <immintrin.h>
#ifdef HAVE_X86INTRIN_H
#include <x86intrin.h> /* FMA */
#endif
#ifdef HAVE_INTRIN_H
#include <intrin.h> /* FMA MSVC */
#endif
#else
#ifdef GMX_X86_SSE4_1
#include <smmintrin.h>
#else
/* We only have SSE2 */
#include <emmintrin.h>
#endif
#endif
#ifdef GMX_SIMD4_SINGLE
#define gmx_simd4_pr __m128
#define gmx_simd4_pb __m128
#define gmx_simd4_load_pr _mm_load_ps
#define gmx_simd4_load_bb_pr _mm_load_ps
#define gmx_simd4_set1_pr _mm_set1_ps
#define gmx_simd4_setzero_pr _mm_setzero_ps
#define gmx_simd4_store_pr _mm_store_ps
/* Some old AMD processors could have problems with unaligned loads+stores */
#ifndef GMX_FAHCORE
#define GMX_SIMD4_HAVE_UNALIGNED
#endif
#ifdef GMX_SIMD4_HAVE_UNALIGNED
#define gmx_simd4_loadu_pr _mm_loadu_ps
#define gmx_simd4_storeu_pr _mm_storeu_ps
#endif
#define gmx_simd4_add_pr _mm_add_ps
#define gmx_simd4_sub_pr _mm_sub_ps
#define gmx_simd4_mul_pr _mm_mul_ps
#ifdef GMX_X86_AVX_128_FMA
#define gmx_simd4_madd_pr(a, b, c) _mm_macc_ps(a, b, c)
#define gmx_simd4_nmsub_pr(a, b, c) _mm_nmacc_ps(a, b, c)
#else
#define gmx_simd4_madd_pr(a, b, c) _mm_add_ps(c, _mm_mul_ps(a, b))
#define gmx_simd4_nmsub_pr(a, b, c) _mm_sub_ps(c, _mm_mul_ps(a, b))
#endif
static inline float gmx_simd4_dotproduct3(__m128 a, __m128 b)
#ifdef GMX_X86_SSE4_1
{
float dp;
/* SSE4.1 dot product of components 0,1,2, stored in component 0 */
_mm_store_ss(&dp, _mm_dp_ps(a, b, 0x71));
return dp;
}
#else
{
float dp_array[7], *dp;
/* Generate an aligned pointer */
dp = (float *)(((size_t)(dp_array+3)) & (~((size_t)15)));
_mm_store_ps(dp, _mm_mul_ps(a, b));
return dp[0] + dp[1] + dp[2];
}
#endif
#define gmx_simd4_min_pr _mm_min_ps
#define gmx_simd4_max_pr _mm_max_ps
#define gmx_simd4_blendzero_pr _mm_and_ps
#define gmx_simd4_cmplt_pr _mm_cmplt_ps
#define gmx_simd4_and_pb _mm_and_ps
#define gmx_simd4_or_pb _mm_or_ps
#define gmx_simd4_anytrue_pb _mm_movemask_ps
#endif /* GMX_SIMD4_SINGLE */
#ifdef GMX_SIMD4_DOUBLE
#define gmx_simd4_pr __m256d
#define gmx_simd4_pb __m256d
#define gmx_simd4_load_pr _mm256_load_pd
#define gmx_simd4_load_bb_pr _mm256_load_pd
#define gmx_simd4_set1_pr _mm256_set1_pd
#define gmx_simd4_setzero_pr _mm256_setzero_pd
#define gmx_simd4_store_pr _mm256_store_pd
#define GMX_SIMD4_HAVE_UNALIGNED
#define gmx_simd4_loadu_pr _mm256_loadu_pd
#define gmx_simd4_storeu_pr _mm256_storeu_pd
#define gmx_simd4_add_pr _mm256_add_pd
#define gmx_simd4_sub_pr _mm256_sub_pd
#define gmx_simd4_mul_pr _mm256_mul_pd
#ifdef GMX_X86_AVX_128_FMA
#define gmx_simd4_madd_pr(a, b, c) _mm256_macc_pd(a, b, c)
#define gmx_simd4_nmsub_pr(a, b, c) _mm256_nmacc_pd(a, b, c)
#else
#define gmx_simd4_madd_pr(a, b, c) _mm256_add_pd(c, _mm256_mul_pd(a, b))
#define gmx_simd4_nmsub_pr(a, b, c) _mm256_sub_pd(c, _mm256_mul_pd(a, b))
#endif
#define gmx_simd4_min_pr _mm256_min_pd
#define gmx_simd4_max_pr _mm256_max_pd
#define gmx_simd4_blendzero_pr _mm256_and_pd
/* Less-than (we use ordered, non-signaling, but that's not required) */
#define gmx_simd4_cmplt_pr(x, y) _mm256_cmp_pd(x, y, 0x11)
#define gmx_simd4_and_pb _mm256_and_pd
#define gmx_simd4_or_pb _mm256_or_pd
#define gmx_simd4_anytrue_pb _mm256_movemask_pd
#endif /* GMX_SIMD4_DOUBLE */
#endif /* GMX_HAVE_SIMD4_MACROS */
#endif /* GMX_X86_SSE2 */
#ifdef GMX_CPU_ACCELERATION_IBM_QPX
/* i.e. BlueGene/Q */
/* This hack works on the compilers that can reach this code. A real
solution with broader scope will be proposed in master branch. */
#define gmx_always_inline __attribute__((always_inline))
#ifdef GMX_SIMD4_SINGLE
#define GMX_HAVE_SIMD4_MACROS
#endif
typedef vector4double gmx_simd4_pr;
typedef vector4double gmx_simd4_pb;
/* The declarations of vec_ld* use non-const pointers, and IBM
can't/won't fix this any time soon. So GROMACS has to cast away the
const-ness of its pointers before loads. Four-wide SIMD loads
sometimes occur from variables of type real, and sometimes from
variables of type float (even at double precison), so the correct
cast cannot be done easily. The correct cast is necessary because
the resulting type determines the alignment assumption of vec_ld*,
which is different for float and double. So the loads of
always-float variables have to be done with a function that does
the correct cast. Since functions cannot be overloaded by type in
C, they have to have different names. Thus we have
gmx_simd4_load_pr and gmx_simd4_load_bb_pr.
*/
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_load_pr(const real *a)
{
#ifdef NDEBUG
return vec_ld(0, (real *) a);
#else
return vec_lda(0, (real *) a);
#endif
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_load_bb_pr(const float *a)
{
#ifdef NDEBUG
return vec_ld(0, (float *) a);
#else
return vec_lda(0, (float *) a);
#endif
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_set1_pr(const real a)
{
return vec_splats(a);
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_setzero_pr()
{
return vec_splats(0.0);
}
/* TODO this will not yet work, because the function might be passed a
pointer to a float when running in double precision.
*/
static gmx_inline void gmx_always_inline gmx_simd4_store_pr(real *a, gmx_simd4_pr b)
{
#ifdef NDEBUG
vec_st(b, 0, a);
#else
vec_sta(b, 0, a);
#endif
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_add_pr(gmx_simd4_pr a, gmx_simd4_pr b)
{
return vec_add(a, b);
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_sub_pr(gmx_simd4_pr a, gmx_simd4_pr b)
{
return vec_sub(a, b);
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_mul_pr(gmx_simd4_pr a, gmx_simd4_pr b)
{
return vec_mul(a, b);
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_madd_pr(gmx_simd4_pr a, gmx_simd4_pr b, gmx_simd4_pr c)
{
return vec_madd(a, b, c);
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_nmsub_pr(gmx_simd4_pr a, gmx_simd4_pr b, gmx_simd4_pr c)
{
return vec_nmsub(a, b, c);
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_min_pr(gmx_simd4_pr a, gmx_simd4_pr b)
{
/* Implemented the same way as max, but with the subtraction
operands swapped. */
return vec_sel(b, a, vec_sub(b, a));
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_max_pr(gmx_simd4_pr a, gmx_simd4_pr b)
{
return vec_sel(b, a, vec_sub(a, b));
}
static gmx_inline gmx_simd4_pr gmx_always_inline gmx_simd4_blendzero_pr(gmx_simd4_pr a, gmx_simd4_pr b)
{
return vec_sel(gmx_setzero_pr(), a, b);
}
static gmx_inline gmx_simd4_pb gmx_always_inline gmx_simd4_cmplt_pr(gmx_simd4_pr a, gmx_simd4_pr b)
{
return vec_cmplt(a, b);
}
static gmx_inline gmx_simd4_pb gmx_always_inline gmx_simd4_and_pb(gmx_simd4_pb a, gmx_simd4_pb b)
{
return vec_and(a, b);
}
static gmx_inline gmx_simd4_pb gmx_always_inline gmx_simd4_or_pb(gmx_simd4_pb a, gmx_simd4_pb b)
{
return vec_or(a, b);
}
static gmx_inline float gmx_always_inline gmx_simd4_dotproduct3(gmx_simd4_pr a, gmx_simd4_pr b)
{
/* The dot product is done solely on the QPX AXU (which is the
only available FPU). This is awkward, because pretty much no
"horizontal" SIMD-vector operations exist, unlike x86 where
SSE4.1 added various kinds of horizontal operations. So we have
to make do with shifting vector elements and operating on the
results. This makes for lots of data dependency, but the main
alternative of storing to memory and reloading is not going to
help, either. OpenMP over 2 or 4 hardware threads per core will
hide much of the latency from the data dependency. The
vec_extract() lets the compiler correctly use a floating-point
comparison on the zeroth vector element, which avoids needing
memory at all.
*/
gmx_simd4_pr dp_shifted_left_0 = vec_mul(a, b);
gmx_simd4_pr dp_shifted_left_1 = vec_sldw(dp_shifted_left_0, dp_shifted_left_0, 1);
gmx_simd4_pr dp_shifted_left_2 = vec_sldw(dp_shifted_left_0, dp_shifted_left_0, 2);
gmx_simd4_pr dp = vec_add(dp_shifted_left_2,
vec_add(dp_shifted_left_0, dp_shifted_left_1));
/* See comment in nbnxn_make_pairlist_part() about how this should
be able to return a double on PowerPC. */
return (float) vec_extract(dp, 0);
}
static gmx_inline int gmx_always_inline gmx_simd4_anytrue_pb(gmx_simd4_pb a)
{
return gmx_anytrue_pb(a);
}
#undef gmx_always_inline
#endif /* GMX_CPU_ACCELERATION_IBM_QPX */
#ifdef GMX_HAVE_SIMD4_MACROS
/* Generic functions to extract a SIMD4 aligned pointer from a pointer x.
* x should have at least GMX_SIMD4_WIDTH=4 elements extra compared
* to how many you want to use, to avoid indexing outside the aligned region.
*/
static gmx_inline gmx_simd4_real *
gmx_simd4_align_real(const gmx_simd4_real *x)
{
return (gmx_simd4_real *)(((size_t)((x)+GMX_SIMD4_WIDTH)) & (~((size_t)(GMX_SIMD4_WIDTH*sizeof(gmx_simd4_real)-1))));
}
#endif
#endif /* _gmx_simd4_macros_h_ */
|