/usr/bin/decode-dimms is in i2c-tools 3.1.0-2.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 | #!/usr/bin/perl -w
#
# EEPROM data decoder for SDRAM DIMM modules
#
# Copyright 1998, 1999 Philip Edelbrock <phil@netroedge.com>
# modified by Christian Zuckschwerdt <zany@triq.net>
# modified by Burkart Lingner <burkart@bollchen.de>
# Copyright (C) 2005-2011 Jean Delvare <khali@linux-fr.org>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301 USA.
#
#
# The eeprom driver must be loaded (unless option -x is used). For kernels
# older than 2.6.0, the eeprom driver can be found in the lm-sensors package.
#
# References:
# PC SDRAM Serial Presence
# Detect (SPD) Specification, Intel,
# 1997,1999, Rev 1.2B
#
# Jedec Standards 4.1.x & 4.5.x
# http://www.jedec.org
#
require 5.004;
use strict;
use POSIX qw(ceil);
use Fcntl qw(:DEFAULT :seek);
use vars qw($opt_html $opt_bodyonly $opt_side_by_side $opt_merge
$opt_igncheck $use_sysfs $use_hexdump $sbs_col_width
@vendors %decode_callback $revision @dimm $current %hexdump_cache);
use constant LITTLEENDIAN => "little-endian";
use constant BIGENDIAN => "big-endian";
$revision = '$Revision: 5929 $ ($Date: 2011-02-16 14:58:38 +0100 (mer. 16 févr. 2011) $)';
$revision =~ s/\$\w+: (.*?) \$/$1/g;
$revision =~ s/ \([^()]*\)//;
@vendors = (
["AMD", "AMI", "Fairchild", "Fujitsu",
"GTE", "Harris", "Hitachi", "Inmos",
"Intel", "I.T.T.", "Intersil", "Monolithic Memories",
"Mostek", "Freescale (former Motorola)", "National", "NEC",
"RCA", "Raytheon", "Conexant (Rockwell)", "Seeq",
"NXP (former Signetics, Philips Semi.)", "Synertek", "Texas Instruments", "Toshiba",
"Xicor", "Zilog", "Eurotechnique", "Mitsubishi",
"Lucent (AT&T)", "Exel", "Atmel", "SGS/Thomson",
"Lattice Semi.", "NCR", "Wafer Scale Integration", "IBM",
"Tristar", "Visic", "Intl. CMOS Technology", "SSSI",
"MicrochipTechnology", "Ricoh Ltd.", "VLSI", "Micron Technology",
"Hyundai Electronics", "OKI Semiconductor", "ACTEL", "Sharp",
"Catalyst", "Panasonic", "IDT", "Cypress",
"DEC", "LSI Logic", "Zarlink (former Plessey)", "UTMC",
"Thinking Machine", "Thomson CSF", "Integrated CMOS (Vertex)", "Honeywell",
"Tektronix", "Sun Microsystems", "SST", "ProMos/Mosel Vitelic",
"Infineon (former Siemens)", "Macronix", "Xerox", "Plus Logic",
"SunDisk", "Elan Circuit Tech.", "European Silicon Str.", "Apple Computer",
"Xilinx", "Compaq", "Protocol Engines", "SCI",
"Seiko Instruments", "Samsung", "I3 Design System", "Klic",
"Crosspoint Solutions", "Alliance Semiconductor", "Tandem", "Hewlett-Packard",
"Intg. Silicon Solutions", "Brooktree", "New Media", "MHS Electronic",
"Performance Semi.", "Winbond Electronic", "Kawasaki Steel", "Bright Micro",
"TECMAR", "Exar", "PCMCIA", "LG Semi (former Goldstar)",
"Northern Telecom", "Sanyo", "Array Microsystems", "Crystal Semiconductor",
"Analog Devices", "PMC-Sierra", "Asparix", "Convex Computer",
"Quality Semiconductor", "Nimbus Technology", "Transwitch", "Micronas (ITT Intermetall)",
"Cannon", "Altera", "NEXCOM", "QUALCOMM",
"Sony", "Cray Research", "AMS(Austria Micro)", "Vitesse",
"Aster Electronics", "Bay Networks (Synoptic)", "Zentrum or ZMD", "TRW",
"Thesys", "Solbourne Computer", "Allied-Signal", "Dialog",
"Media Vision", "Level One Communication"],
["Cirrus Logic", "National Instruments", "ILC Data Device", "Alcatel Mietec",
"Micro Linear", "Univ. of NC", "JTAG Technologies", "BAE Systems",
"Nchip", "Galileo Tech", "Bestlink Systems", "Graychip",
"GENNUM", "VideoLogic", "Robert Bosch", "Chip Express",
"DATARAM", "United Microelec Corp.", "TCSI", "Smart Modular",
"Hughes Aircraft", "Lanstar Semiconductor", "Qlogic", "Kingston",
"Music Semi", "Ericsson Components", "SpaSE", "Eon Silicon Devices",
"Programmable Micro Corp", "DoD", "Integ. Memories Tech.", "Corollary Inc.",
"Dallas Semiconductor", "Omnivision", "EIV(Switzerland)", "Novatel Wireless",
"Zarlink (former Mitel)", "Clearpoint", "Cabletron", "STEC (former Silicon Technology)",
"Vanguard", "Hagiwara Sys-Com", "Vantis", "Celestica",
"Century", "Hal Computers", "Rohm Company Ltd.", "Juniper Networks",
"Libit Signal Processing", "Mushkin Enhanced Memory", "Tundra Semiconductor", "Adaptec Inc.",
"LightSpeed Semi.", "ZSP Corp.", "AMIC Technology", "Adobe Systems",
"Dynachip", "PNY Electronics", "Newport Digital", "MMC Networks",
"T Square", "Seiko Epson", "Broadcom", "Viking Components",
"V3 Semiconductor", "Flextronics (former Orbit)", "Suwa Electronics", "Transmeta",
"Micron CMS", "American Computer & Digital Components Inc", "Enhance 3000 Inc", "Tower Semiconductor",
"CPU Design", "Price Point", "Maxim Integrated Product", "Tellabs",
"Centaur Technology", "Unigen Corporation", "Transcend Information", "Memory Card Technology",
"CKD Corporation Ltd.", "Capital Instruments, Inc.", "Aica Kogyo, Ltd.", "Linvex Technology",
"MSC Vertriebs GmbH", "AKM Company, Ltd.", "Dynamem, Inc.", "NERA ASA",
"GSI Technology", "Dane-Elec (C Memory)", "Acorn Computers", "Lara Technology",
"Oak Technology, Inc.", "Itec Memory", "Tanisys Technology", "Truevision",
"Wintec Industries", "Super PC Memory", "MGV Memory", "Galvantech",
"Gadzoox Nteworks", "Multi Dimensional Cons.", "GateField", "Integrated Memory System",
"Triscend", "XaQti", "Goldenram", "Clear Logic",
"Cimaron Communications", "Nippon Steel Semi. Corp.", "Advantage Memory", "AMCC",
"LeCroy", "Yamaha Corporation", "Digital Microwave", "NetLogic Microsystems",
"MIMOS Semiconductor", "Advanced Fibre", "BF Goodrich Data.", "Epigram",
"Acbel Polytech Inc.", "Apacer Technology", "Admor Memory", "FOXCONN",
"Quadratics Superconductor", "3COM"],
["Camintonn Corporation", "ISOA Incorporated", "Agate Semiconductor", "ADMtek Incorporated",
"HYPERTEC", "Adhoc Technologies", "MOSAID Technologies", "Ardent Technologies",
"Switchcore", "Cisco Systems, Inc.", "Allayer Technologies", "WorkX AG",
"Oasis Semiconductor", "Novanet Semiconductor", "E-M Solutions", "Power General",
"Advanced Hardware Arch.", "Inova Semiconductors GmbH", "Telocity", "Delkin Devices",
"Symagery Microsystems", "C-Port Corporation", "SiberCore Technologies", "Southland Microsystems",
"Malleable Technologies", "Kendin Communications", "Great Technology Microcomputer", "Sanmina Corporation",
"HADCO Corporation", "Corsair", "Actrans System Inc.", "ALPHA Technologies",
"Silicon Laboratories, Inc. (Cygnal)", "Artesyn Technologies", "Align Manufacturing", "Peregrine Semiconductor",
"Chameleon Systems", "Aplus Flash Technology", "MIPS Technologies", "Chrysalis ITS",
"ADTEC Corporation", "Kentron Technologies", "Win Technologies", "Tachyon Semiconductor (former ASIC Designs Inc.)",
"Extreme Packet Devices", "RF Micro Devices", "Siemens AG", "Sarnoff Corporation",
"Itautec Philco SA", "Radiata Inc.", "Benchmark Elect. (AVEX)", "Legend",
"SpecTek Incorporated", "Hi/fn", "Enikia Incorporated", "SwitchOn Networks",
"AANetcom Incorporated", "Micro Memory Bank", "ESS Technology", "Virata Corporation",
"Excess Bandwidth", "West Bay Semiconductor", "DSP Group", "Newport Communications",
"Chip2Chip Incorporated", "Phobos Corporation", "Intellitech Corporation", "Nordic VLSI ASA",
"Ishoni Networks", "Silicon Spice", "Alchemy Semiconductor", "Agilent Technologies",
"Centillium Communications", "W.L. Gore", "HanBit Electronics", "GlobeSpan",
"Element 14", "Pycon", "Saifun Semiconductors", "Sibyte, Incorporated",
"MetaLink Technologies", "Feiya Technology", "I & C Technology", "Shikatronics",
"Elektrobit", "Megic", "Com-Tier", "Malaysia Micro Solutions",
"Hyperchip", "Gemstone Communications", "Anadigm (former Anadyne)", "3ParData",
"Mellanox Technologies", "Tenx Technologies", "Helix AG", "Domosys",
"Skyup Technology", "HiNT Corporation", "Chiaro", "MDT Technologies GmbH (former MCI Computer GMBH)",
"Exbit Technology A/S", "Integrated Technology Express", "AVED Memory", "Legerity",
"Jasmine Networks", "Caspian Networks", "nCUBE", "Silicon Access Networks",
"FDK Corporation", "High Bandwidth Access", "MultiLink Technology", "BRECIS",
"World Wide Packets", "APW", "Chicory Systems", "Xstream Logic",
"Fast-Chip", "Zucotto Wireless", "Realchip", "Galaxy Power",
"eSilicon", "Morphics Technology", "Accelerant Networks", "Silicon Wave",
"SandCraft", "Elpida"],
["Solectron", "Optosys Technologies", "Buffalo (former Melco)", "TriMedia Technologies",
"Cyan Technologies", "Global Locate", "Optillion", "Terago Communications",
"Ikanos Communications", "Princeton Technology", "Nanya Technology", "Elite Flash Storage",
"Mysticom", "LightSand Communications", "ATI Technologies", "Agere Systems",
"NeoMagic", "AuroraNetics", "Golden Empire", "Mushkin",
"Tioga Technologies", "Netlist", "TeraLogic", "Cicada Semiconductor",
"Centon Electronics", "Tyco Electronics", "Magis Works", "Zettacom",
"Cogency Semiconductor", "Chipcon AS", "Aspex Technology", "F5 Networks",
"Programmable Silicon Solutions", "ChipWrights", "Acorn Networks", "Quicklogic",
"Kingmax Semiconductor", "BOPS", "Flasys", "BitBlitz Communications",
"eMemory Technology", "Procket Networks", "Purple Ray", "Trebia Networks",
"Delta Electronics", "Onex Communications", "Ample Communications", "Memory Experts Intl",
"Astute Networks", "Azanda Network Devices", "Dibcom", "Tekmos",
"API NetWorks", "Bay Microsystems", "Firecron Ltd", "Resonext Communications",
"Tachys Technologies", "Equator Technology", "Concept Computer", "SILCOM",
"3Dlabs", "c't Magazine", "Sanera Systems", "Silicon Packets",
"Viasystems Group", "Simtek", "Semicon Devices Singapore", "Satron Handelsges",
"Improv Systems", "INDUSYS GmbH", "Corrent", "Infrant Technologies",
"Ritek Corp", "empowerTel Networks", "Hypertec", "Cavium Networks",
"PLX Technology", "Massana Design", "Intrinsity", "Valence Semiconductor",
"Terawave Communications", "IceFyre Semiconductor", "Primarion", "Picochip Designs Ltd",
"Silverback Systems", "Jade Star Technologies", "Pijnenburg Securealink",
"TakeMS International AG", "Cambridge Silicon Radio",
"Swissbit", "Nazomi Communications", "eWave System",
"Rockwell Collins", "Picocel Co., Ltd.", "Alphamosaic Ltd", "Sandburst",
"SiCon Video", "NanoAmp Solutions", "Ericsson Technology", "PrairieComm",
"Mitac International", "Layer N Networks", "MtekVision", "Allegro Networks",
"Marvell Semiconductors", "Netergy Microelectronic", "NVIDIA", "Internet Machines",
"Peak Electronics", "Litchfield Communication", "Accton Technology", "Teradiant Networks",
"Europe Technologies", "Cortina Systems", "RAM Components", "Raqia Networks",
"ClearSpeed", "Matsushita Battery", "Xelerated", "SimpleTech",
"Utron Technology", "Astec International", "AVM gmbH", "Redux Communications",
"Dot Hill Systems", "TeraChip"],
["T-RAM Incorporated", "Innovics Wireless", "Teknovus", "KeyEye Communications",
"Runcom Technologies", "RedSwitch", "Dotcast", "Silicon Mountain Memory",
"Signia Technologies", "Pixim", "Galazar Networks", "White Electronic Designs",
"Patriot Scientific", "Neoaxiom Corporation", "3Y Power Technology", "Europe Technologies",
"Potentia Power Systems", "C-guys Incorporated", "Digital Communications Technology Incorporated", "Silicon-Based Technology",
"Fulcrum Microsystems", "Positivo Informatica Ltd", "XIOtech Corporation", "PortalPlayer",
"Zhiying Software", "Direct2Data", "Phonex Broadband", "Skyworks Solutions",
"Entropic Communications", "Pacific Force Technology", "Zensys A/S", "Legend Silicon Corp.",
"sci-worx GmbH", "SMSC (former Oasis Silicon Systems)", "Renesas Technology", "Raza Microelectronics",
"Phyworks", "MediaTek", "Non-cents Productions", "US Modular",
"Wintegra Ltd", "Mathstar", "StarCore", "Oplus Technologies",
"Mindspeed", "Just Young Computer", "Radia Communications", "OCZ",
"Emuzed", "LOGIC Devices", "Inphi Corporation", "Quake Technologies",
"Vixel", "SolusTek", "Kongsberg Maritime", "Faraday Technology",
"Altium Ltd.", "Insyte", "ARM Ltd.", "DigiVision",
"Vativ Technologies", "Endicott Interconnect Technologies", "Pericom", "Bandspeed",
"LeWiz Communications", "CPU Technology", "Ramaxel Technology", "DSP Group",
"Axis Communications", "Legacy Electronics", "Chrontel", "Powerchip Semiconductor",
"MobilEye Technologies", "Excel Semiconductor", "A-DATA Technology", "VirtualDigm",
"G Skill Intl", "Quanta Computer", "Yield Microelectronics", "Afa Technologies",
"KINGBOX Technology Co. Ltd.", "Ceva", "iStor Networks", "Advance Modules",
"Microsoft", "Open-Silicon", "Goal Semiconductor", "ARC International",
"Simmtec", "Metanoia", "Key Stream", "Lowrance Electronics",
"Adimos", "SiGe Semiconductor", "Fodus Communications", "Credence Systems Corp.",
"Genesis Microchip Inc.", "Vihana, Inc.", "WIS Technologies", "GateChange Technologies",
"High Density Devices AS", "Synopsys", "Gigaram", "Enigma Semiconductor Inc.",
"Century Micro Inc.", "Icera Semiconductor", "Mediaworks Integrated Systems", "O'Neil Product Development",
"Supreme Top Technology Ltd.", "MicroDisplay Corporation", "Team Group Inc.", "Sinett Corporation",
"Toshiba Corporation", "Tensilica", "SiRF Technology", "Bacoc Inc.",
"SMaL Camera Technologies", "Thomson SC", "Airgo Networks", "Wisair Ltd.",
"SigmaTel", "Arkados", "Compete IT gmbH Co. KG", "Eudar Technology Inc.",
"Focus Enhancements", "Xyratex"],
["Specular Networks", "Patriot Memory", "U-Chip Technology Corp.", "Silicon Optix",
"Greenfield Networks", "CompuRAM GmbH", "Stargen, Inc.", "NetCell Corporation",
"Excalibrus Technologies Ltd", "SCM Microsystems", "Xsigo Systems, Inc.", "CHIPS & Systems Inc",
"Tier 1 Multichip Solutions", "CWRL Labs", "Teradici", "Gigaram, Inc.",
"g2 Microsystems", "PowerFlash Semiconductor", "P.A. Semi, Inc.", "NovaTech Solutions, S.A.",
"c2 Microsystems, Inc.", "Level5 Networks", "COS Memory AG", "Innovasic Semiconductor",
"02IC Co. Ltd", "Tabula, Inc.", "Crucial Technology", "Chelsio Communications",
"Solarflare Communications", "Xambala Inc.", "EADS Astrium", "ATO Semicon Co. Ltd.",
"Imaging Works, Inc.", "Astute Networks, Inc.", "Tzero", "Emulex",
"Power-One", "Pulse~LINK Inc.", "Hon Hai Precision Industry", "White Rock Networks Inc.",
"Telegent Systems USA, Inc.", "Atrua Technologies, Inc.", "Acbel Polytech Inc.",
"eRide Inc.","ULi Electronics Inc.", "Magnum Semiconductor Inc.", "neoOne Technology, Inc.",
"Connex Technology, Inc.", "Stream Processors, Inc.", "Focus Enhancements", "Telecis Wireless, Inc.",
"uNav Microelectronics", "Tarari, Inc.", "Ambric, Inc.", "Newport Media, Inc.", "VMTS",
"Enuclia Semiconductor, Inc.", "Virtium Technology Inc.", "Solid State System Co., Ltd.", "Kian Tech LLC",
"Artimi", "Power Quotient International", "Avago Technologies", "ADTechnology", "Sigma Designs",
"SiCortex, Inc.", "Ventura Technology Group", "eASIC", "M.H.S. SAS", "Micro Star International",
"Rapport Inc.", "Makway International", "Broad Reach Engineering Co.",
"Semiconductor Mfg Intl Corp", "SiConnect", "FCI USA Inc.", "Validity Sensors",
"Coney Technology Co. Ltd.", "Spans Logic", "Neterion Inc.", "Qimonda",
"New Japan Radio Co. Ltd.", "Velogix", "Montalvo Systems", "iVivity Inc.", "Walton Chaintech",
"AENEON", "Lorom Industrial Co. Ltd.", "Radiospire Networks", "Sensio Technologies, Inc.",
"Nethra Imaging", "Hexon Technology Pte Ltd", "CompuStocx (CSX)", "Methode Electronics, Inc.",
"Connect One Ltd.", "Opulan Technologies", "Septentrio NV", "Goldenmars Technology Inc.",
"Kreton Corporation", "Cochlear Ltd.", "Altair Semiconductor", "NetEffect, Inc.",
"Spansion, Inc.", "Taiwan Semiconductor Mfg", "Emphany Systems Inc.",
"ApaceWave Technologies", "Mobilygen Corporation", "Tego", "Cswitch Corporation",
"Haier (Beijing) IC Design Co.", "MetaRAM", "Axel Electronics Co. Ltd.", "Tilera Corporation",
"Aquantia", "Vivace Semiconductor", "Redpine Signals", "Octalica", "InterDigital Communications",
"Avant Technology", "Asrock, Inc.", "Availink", "Quartics, Inc.", "Element CXI",
"Innovaciones Microelectronicas", "VeriSilicon Microelectronics", "W5 Networks"],
["MOVEKING", "Mavrix Technology, Inc.", "CellGuide Ltd.", "Faraday Technology",
"Diablo Technologies, Inc.", "Jennic", "Octasic", "Molex Incorporated", "3Leaf Networks",
"Bright Micron Technology", "Netxen", "NextWave Broadband Inc.", "DisplayLink", "ZMOS Technology",
"Tec-Hill", "Multigig, Inc.", "Amimon", "Euphonic Technologies, Inc.", "BRN Phoenix",
"InSilica", "Ember Corporation", "Avexir Technologies Corporation", "Echelon Corporation",
"Edgewater Computer Systems", "XMOS Semiconductor Ltd.", "GENUSION, Inc.", "Memory Corp NV",
"SiliconBlue Technologies", "Rambus Inc."]);
$use_sysfs = -d '/sys/bus';
# We consider that no data was written to this area of the SPD EEPROM if
# all bytes read 0x00 or all bytes read 0xff
sub spd_written(@)
{
my $all_00 = 1;
my $all_ff = 1;
foreach my $b (@_) {
$all_00 = 0 unless $b == 0x00;
$all_ff = 0 unless $b == 0xff;
return 1 unless $all_00 or $all_ff;
}
return 0;
}
sub parity($)
{
my $n = shift;
my $parity = 0;
while ($n) {
$parity++ if ($n & 1);
$n >>= 1;
}
return ($parity & 1);
}
# New encoding format (as of DDR3) for manufacturer just has a count of
# leading 0x7F rather than all the individual bytes. The count bytes includes
# parity!
sub manufacturer_ddr3($$)
{
my ($count, $code) = @_;
return "Invalid" if parity($count) != 1;
return "Invalid" if parity($code) != 1;
return (($code & 0x7F) - 1 > $vendors[$count & 0x7F]) ? "Unknown" :
$vendors[$count & 0x7F][($code & 0x7F) - 1];
}
sub manufacturer(@)
{
my @bytes = @_;
my $ai = 0;
my $first;
return ("Undefined", []) unless spd_written(@bytes);
while (defined($first = shift(@bytes)) && $first == 0x7F) {
$ai++;
}
return ("Invalid", []) unless defined $first;
return ("Invalid", [$first, @bytes]) if parity($first) != 1;
if (parity($ai) == 0) {
$ai |= 0x80;
}
return (manufacturer_ddr3($ai, $first), \@bytes);
}
sub manufacturer_data(@)
{
my $hex = "";
my $asc = "";
return unless spd_written(@_);
foreach my $byte (@_) {
$hex .= sprintf("\%02X ", $byte);
$asc .= ($byte >= 32 && $byte < 127) ? chr($byte) : '?';
}
return "$hex(\"$asc\")";
}
sub part_number(@)
{
my $asc = "";
my $byte;
while (defined ($byte = shift) && $byte >= 32 && $byte < 127) {
$asc .= chr($byte);
}
return ($asc eq "") ? "Undefined" : $asc;
}
sub cas_latencies(@)
{
return "None" unless @_;
return join ', ', map("${_}T", sort { $b <=> $a } @_);
}
# Real printing functions
sub html_encode($)
{
my $text = shift;
$text =~ s/</\</sg;
$text =~ s/>/\>/sg;
$text =~ s/\n/<br>\n/sg;
return $text;
}
sub same_values(@)
{
my $value = shift;
while (@_) {
return 0 unless $value eq shift;
}
return 1;
}
sub real_printl($$) # print a line w/ label and values
{
my ($label, @values) = @_;
local $_;
my $same_values = same_values(@values);
# If all values are N/A, don't bother printing
return if $values[0] eq "N/A" and $same_values;
if ($opt_html) {
$label = html_encode($label);
@values = map { html_encode($_) } @values;
print "<tr><td valign=top>$label</td>";
if ($opt_merge && $same_values) {
print "<td colspan=".(scalar @values).">$values[0]</td>";
} else {
print "<td>$_</td>" foreach @values;
}
print "</tr>\n";
} else {
if ($opt_merge && $same_values) {
splice(@values, 1);
}
my $format = "%-47s".((" %-".$sbs_col_width."s") x (scalar @values - 1))." %s\n";
my $maxl = 0; # Keep track of the max number of lines
# It's a bit tricky because each value may span over more than
# one line. We can easily extract the values per column, but
# we need them per line at printing time. So we have to
# prepare a 2D array with all the individual string fragments.
my ($col, @lines);
for ($col = 0; $col < @values; $col++) {
my @cells = split /\n/, $values[$col];
$maxl = @cells if @cells > $maxl;
for (my $l = 0; $l < @cells; $l++) {
$lines[$l]->[$col] = $cells[$l];
}
}
# Also make sure there are no holes in the array
for (my $l = 0; $l < $maxl; $l++) {
for ($col = 0; $col < @values; $col++) {
$lines[$l]->[$col] = ""
if not defined $lines[$l]->[$col];
}
}
printf $format, $label, @{shift @lines};
printf $format, "", @{$_} foreach (@lines);
}
}
sub printl2($$) # print a line w/ label and value (outside a table)
{
my ($label, $value) = @_;
if ($opt_html) {
$label = html_encode($label);
$value = html_encode($value);
}
print "$label: $value\n";
}
sub real_prints($) # print separator w/ given text
{
my ($label, $ncol) = @_;
$ncol = 1 unless $ncol;
if ($opt_html) {
$label = html_encode($label);
print "<tr><td align=center colspan=".(1+$ncol)."><b>$label</b></td></tr>\n";
} else {
print "\n---=== $label ===---\n";
}
}
sub printh($$) # print header w/ given text
{
my ($header, $sub) = @_;
if ($opt_html) {
$header = html_encode($header);
$sub = html_encode($sub);
print "<h1>$header</h1>\n";
print "<p>$sub</p>\n";
} else {
print "\n$header\n$sub\n";
}
}
sub printc($) # print comment
{
my ($comment) = @_;
if ($opt_html) {
$comment = html_encode($comment);
print "<!-- $comment -->\n";
} else {
print "# $comment\n";
}
}
# Fake printing functions
# These don't actually print anything, instead they store the desired
# output for later processing.
sub printl($$) # print a line w/ label and value
{
my @output = (\&real_printl, @_);
push @{$dimm[$current]->{output}}, \@output;
}
sub printl_cond($$$) # same as printl but conditional
{
my ($cond, $label, $value) = @_;
return unless $cond || $opt_side_by_side;
printl($label, $cond ? $value : "N/A");
}
sub prints($) # print separator w/ given text
{
my @output = (\&real_prints, @_);
push @{$dimm[$current]->{output}}, \@output;
}
# Helper functions
sub tns($) # print a time in ns
{
return sprintf("%3.2f ns", $_[0]);
}
sub tns3($) # print a time in ns, with 3 decimal digits
{
return sprintf("%.3f ns", $_[0]);
}
sub value_or_undefined
{
my ($value, $unit) = @_;
return "Undefined!" unless $value;
$value .= " $unit" if defined $unit;
return $value;
}
# Common to SDR, DDR and DDR2 SDRAM
sub sdram_voltage_interface_level($)
{
my @levels = (
"TTL (5V tolerant)", # 0
"LVTTL (not 5V tolerant)", # 1
"HSTL 1.5V", # 2
"SSTL 3.3V", # 3
"SSTL 2.5V", # 4
"SSTL 1.8V", # 5
);
return ($_[0] < @levels) ? $levels[$_[0]] : "Undefined!";
}
# Common to SDR and DDR SDRAM
sub sdram_module_configuration_type($)
{
my @types = (
"No Parity", # 0
"Parity", # 1
"ECC", # 2
);
return ($_[0] < @types) ? $types[$_[0]] : "Undefined!";
}
# Parameter: EEPROM bytes 0-127 (using 3-62)
sub decode_sdr_sdram($)
{
my $bytes = shift;
my $temp;
# SPD revision
printl("SPD Revision", $bytes->[62]);
#size computation
prints("Memory Characteristics");
my $k = 0;
my $ii = 0;
$ii = ($bytes->[3] & 0x0f) + ($bytes->[4] & 0x0f) - 17;
if (($bytes->[5] <= 8) && ($bytes->[17] <= 8)) {
$k = $bytes->[5] * $bytes->[17];
}
if ($ii > 0 && $ii <= 12 && $k > 0) {
printl("Size", ((1 << $ii) * $k) . " MB");
} else {
printl("Size", "INVALID: " . $bytes->[3] . "," . $bytes->[4] . "," .
$bytes->[5] . "," . $bytes->[17]);
}
my @cas;
for ($ii = 0; $ii < 7; $ii++) {
push(@cas, $ii + 1) if ($bytes->[18] & (1 << $ii));
}
my $trcd;
my $trp;
my $tras;
my $ctime = ($bytes->[9] >> 4) + ($bytes->[9] & 0xf) * 0.1;
$trcd = $bytes->[29];
$trp = $bytes->[27];;
$tras = $bytes->[30];
printl("tCL-tRCD-tRP-tRAS",
$cas[$#cas] . "-" .
ceil($trcd/$ctime) . "-" .
ceil($trp/$ctime) . "-" .
ceil($tras/$ctime));
if ($bytes->[3] == 0) { $temp = "Undefined!"; }
elsif ($bytes->[3] == 1) { $temp = "1/16"; }
elsif ($bytes->[3] == 2) { $temp = "2/17"; }
elsif ($bytes->[3] == 3) { $temp = "3/18"; }
else { $temp = $bytes->[3]; }
printl("Number of Row Address Bits", $temp);
if ($bytes->[4] == 0) { $temp = "Undefined!"; }
elsif ($bytes->[4] == 1) { $temp = "1/16"; }
elsif ($bytes->[4] == 2) { $temp = "2/17"; }
elsif ($bytes->[4] == 3) { $temp = "3/18"; }
else { $temp = $bytes->[4]; }
printl("Number of Col Address Bits", $temp);
printl("Number of Module Rows", value_or_undefined($bytes->[5]));
if ($bytes->[7] > 1) { $temp = "Undefined!"; }
else { $temp = ($bytes->[7] * 256) + $bytes->[6]; }
printl("Data Width", $temp);
printl("Voltage Interface Level",
sdram_voltage_interface_level($bytes->[8]));
printl("Module Configuration Type",
sdram_module_configuration_type($bytes->[11]));
printl("Refresh Rate", ddr2_refresh_rate($bytes->[12]));
if ($bytes->[13] & 0x80) { $temp = "Bank2 = 2 x Bank1"; }
else { $temp = "No Bank2 OR Bank2 = Bank1 width"; }
printl("Primary SDRAM Component Bank Config", $temp);
printl("Primary SDRAM Component Widths",
value_or_undefined($bytes->[13] & 0x7f));
if ($bytes->[14] & 0x80) { $temp = "Bank2 = 2 x Bank1"; }
else { $temp = "No Bank2 OR Bank2 = Bank1 width"; }
printl("Error Checking SDRAM Component Bank Config", $temp);
printl("Error Checking SDRAM Component Widths",
value_or_undefined($bytes->[14] & 0x7f));
printl("Min Clock Delay for Back to Back Random Access",
value_or_undefined($bytes->[15]));
my @array;
for ($ii = 0; $ii < 4; $ii++) {
push(@array, 1 << $ii) if ($bytes->[16] & (1 << $ii));
}
push(@array, "Page") if ($bytes->[16] & 128);
if (@array) { $temp = join ', ', @array; }
else { $temp = "None"; }
printl("Supported Burst Lengths", $temp);
printl("Number of Device Banks",
value_or_undefined($bytes->[17]));
printl("Supported CAS Latencies", cas_latencies(@cas));
@array = ();
for ($ii = 0; $ii < 7; $ii++) {
push(@array, $ii) if ($bytes->[19] & (1 << $ii));
}
if (@array) { $temp = join ', ', @array; }
else { $temp = "None"; }
printl("Supported CS Latencies", $temp);
@array = ();
for ($ii = 0; $ii < 7; $ii++) {
push(@array, $ii) if ($bytes->[20] & (1 << $ii));
}
if (@array) { $temp = join ', ', @array; }
else { $temp = "None"; }
printl("Supported WE Latencies", $temp);
my ($cycle_time, $access_time);
if (@cas >= 1) {
$cycle_time = "$ctime ns at CAS ".$cas[$#cas];
$temp = ($bytes->[10] >> 4) + ($bytes->[10] & 0xf) * 0.1;
$access_time = "$temp ns at CAS ".$cas[$#cas];
}
if (@cas >= 2 && spd_written(@$bytes[23..24])) {
$temp = $bytes->[23] >> 4;
if ($temp == 0) { $temp = "Undefined!"; }
else {
$temp += 15 if $temp < 4;
$temp += ($bytes->[23] & 0xf) * 0.1;
$temp .= " ns";
}
$cycle_time .= "\n$temp ns at CAS ".$cas[$#cas-1];
$temp = $bytes->[24] >> 4;
if ($temp == 0) { $temp = "Undefined!"; }
else {
$temp += 15 if $temp < 4;
$temp += ($bytes->[24] & 0xf) * 0.1;
$temp .= " ns";
}
$access_time .= "\n$temp ns at CAS ".$cas[$#cas-1];
}
if (@cas >= 3 && spd_written(@$bytes[25..26])) {
$temp = $bytes->[25] >> 2;
if ($temp == 0) { $temp = "Undefined!"; }
else {
$temp += ($bytes->[25] & 0x3) * 0.25;
$temp .= " ns";
}
$cycle_time .= "\n$temp ns at CAS ".$cas[$#cas-2];
$temp = $bytes->[26] >> 2;
if ($temp == 0) { $temp = "Undefined!"; }
else {
$temp += ($bytes->[26] & 0x3) * 0.25;
$temp .= " ns";
}
$access_time .= "\n$temp ns at CAS ".$cas[$#cas-2];
}
printl_cond(defined $cycle_time, "Cycle Time", $cycle_time);
printl_cond(defined $access_time, "Access Time", $access_time);
$temp = "";
if ($bytes->[21] & 1) { $temp .= "Buffered Address/Control Inputs\n"; }
if ($bytes->[21] & 2) { $temp .= "Registered Address/Control Inputs\n"; }
if ($bytes->[21] & 4) { $temp .= "On card PLL (clock)\n"; }
if ($bytes->[21] & 8) { $temp .= "Buffered DQMB Inputs\n"; }
if ($bytes->[21] & 16) { $temp .= "Registered DQMB Inputs\n"; }
if ($bytes->[21] & 32) { $temp .= "Differential Clock Input\n"; }
if ($bytes->[21] & 64) { $temp .= "Redundant Row Address\n"; }
if ($bytes->[21] & 128) { $temp .= "Undefined (bit 7)\n"; }
if ($bytes->[21] == 0) { $temp .= "(None Reported)\n"; }
printl("SDRAM Module Attributes", $temp);
$temp = "";
if ($bytes->[22] & 1) { $temp .= "Supports Early RAS# Recharge\n"; }
if ($bytes->[22] & 2) { $temp .= "Supports Auto-Precharge\n"; }
if ($bytes->[22] & 4) { $temp .= "Supports Precharge All\n"; }
if ($bytes->[22] & 8) { $temp .= "Supports Write1/Read Burst\n"; }
if ($bytes->[22] & 16) { $temp .= "Lower VCC Tolerance: 5%\n"; }
else { $temp .= "Lower VCC Tolerance: 10%\n"; }
if ($bytes->[22] & 32) { $temp .= "Upper VCC Tolerance: 5%\n"; }
else { $temp .= "Upper VCC Tolerance: 10%\n"; }
if ($bytes->[22] & 64) { $temp .= "Undefined (bit 6)\n"; }
if ($bytes->[22] & 128) { $temp .= "Undefined (bit 7)\n"; }
printl("SDRAM Device Attributes (General)", $temp);
printl("Minimum Row Precharge Time",
value_or_undefined($bytes->[27], "ns"));
printl("Row Active to Row Active Min",
value_or_undefined($bytes->[28], "ns"));
printl("RAS to CAS Delay",
value_or_undefined($bytes->[29], "ns"));
printl("Min RAS Pulse Width",
value_or_undefined($bytes->[30], "ns"));
$temp = "";
if ($bytes->[31] & 1) { $temp .= "4 MByte\n"; }
if ($bytes->[31] & 2) { $temp .= "8 MByte\n"; }
if ($bytes->[31] & 4) { $temp .= "16 MByte\n"; }
if ($bytes->[31] & 8) { $temp .= "32 MByte\n"; }
if ($bytes->[31] & 16) { $temp .= "64 MByte\n"; }
if ($bytes->[31] & 32) { $temp .= "128 MByte\n"; }
if ($bytes->[31] & 64) { $temp .= "256 MByte\n"; }
if ($bytes->[31] & 128) { $temp .= "512 MByte\n"; }
if ($bytes->[31] == 0) { $temp .= "(Undefined! -- None Reported!)\n"; }
printl("Row Densities", $temp);
$temp = (($bytes->[32] & 0x7f) >> 4) + ($bytes->[32] & 0xf) * 0.1;
printl_cond(($bytes->[32] & 0xf) <= 9,
"Command and Address Signal Setup Time",
(($bytes->[32] >> 7) ? -$temp : $temp) . " ns");
$temp = (($bytes->[33] & 0x7f) >> 4) + ($bytes->[33] & 0xf) * 0.1;
printl_cond(($bytes->[33] & 0xf) <= 9,
"Command and Address Signal Hold Time",
(($bytes->[33] >> 7) ? -$temp : $temp) . " ns");
$temp = (($bytes->[34] & 0x7f) >> 4) + ($bytes->[34] & 0xf) * 0.1;
printl_cond(($bytes->[34] & 0xf) <= 9, "Data Signal Setup Time",
(($bytes->[34] >> 7) ? -$temp : $temp) . " ns");
$temp = (($bytes->[35] & 0x7f) >> 4) + ($bytes->[35] & 0xf) * 0.1;
printl_cond(($bytes->[35] & 0xf) <= 9, "Data Signal Hold Time",
(($bytes->[35] >> 7) ? -$temp : $temp) . " ns");
}
# Parameter: EEPROM bytes 0-127 (using 3-62)
sub decode_ddr_sdram($)
{
my $bytes = shift;
my $temp;
# SPD revision
printl_cond($bytes->[62] != 0xff, "SPD Revision",
($bytes->[62] >> 4) . "." . ($bytes->[62] & 0xf));
# speed
prints("Memory Characteristics");
$temp = ($bytes->[9] >> 4) + ($bytes->[9] & 0xf) * 0.1;
my $ddrclk = 2 * (1000 / $temp);
my $tbits = ($bytes->[7] * 256) + $bytes->[6];
if (($bytes->[11] == 2) || ($bytes->[11] == 1)) { $tbits = $tbits - 8; }
my $pcclk = int ($ddrclk * $tbits / 8);
$pcclk += 100 if ($pcclk % 100) >= 50; # Round properly
$pcclk = $pcclk - ($pcclk % 100);
$ddrclk = int ($ddrclk);
printl("Maximum module speed", "${ddrclk}MHz (PC${pcclk})");
#size computation
my $k = 0;
my $ii = 0;
$ii = ($bytes->[3] & 0x0f) + ($bytes->[4] & 0x0f) - 17;
if (($bytes->[5] <= 8) && ($bytes->[17] <= 8)) {
$k = $bytes->[5] * $bytes->[17];
}
if ($ii > 0 && $ii <= 12 && $k > 0) {
printl("Size", ((1 << $ii) * $k) . " MB");
} else {
printl("Size", "INVALID: " . $bytes->[3] . ", " . $bytes->[4] . ", " .
$bytes->[5] . ", " . $bytes->[17]);
}
printl("Voltage Interface Level",
sdram_voltage_interface_level($bytes->[8]));
printl("Module Configuration Type",
sdram_module_configuration_type($bytes->[11]));
printl("Refresh Rate", ddr2_refresh_rate($bytes->[12]));
my $highestCAS = 0;
my %cas;
for ($ii = 0; $ii < 7; $ii++) {
if ($bytes->[18] & (1 << $ii)) {
$highestCAS = 1+$ii*0.5;
$cas{$highestCAS}++;
}
}
my $trcd;
my $trp;
my $tras;
my $ctime = ($bytes->[9] >> 4) + ($bytes->[9] & 0xf) * 0.1;
$trcd = ($bytes->[29] >> 2) + (($bytes->[29] & 3) * 0.25);
$trp = ($bytes->[27] >> 2) + (($bytes->[27] & 3) * 0.25);
$tras = $bytes->[30];
printl("tCL-tRCD-tRP-tRAS",
$highestCAS . "-" .
ceil($trcd/$ctime) . "-" .
ceil($trp/$ctime) . "-" .
ceil($tras/$ctime));
# latencies
printl("Supported CAS Latencies", cas_latencies(keys %cas));
my @array;
for ($ii = 0; $ii < 7; $ii++) {
push(@array, $ii) if ($bytes->[19] & (1 << $ii));
}
if (@array) { $temp = join ', ', @array; }
else { $temp = "None"; }
printl("Supported CS Latencies", $temp);
@array = ();
for ($ii = 0; $ii < 7; $ii++) {
push(@array, $ii) if ($bytes->[20] & (1 << $ii));
}
if (@array) { $temp = join ', ', @array; }
else { $temp = "None"; }
printl("Supported WE Latencies", $temp);
# timings
my ($cycle_time, $access_time);
if (exists $cas{$highestCAS}) {
$cycle_time = "$ctime ns at CAS $highestCAS";
$access_time = (($bytes->[10] >> 4) * 0.1 + ($bytes->[10] & 0xf) * 0.01)
. " ns at CAS $highestCAS";
}
if (exists $cas{$highestCAS-0.5} && spd_written(@$bytes[23..24])) {
$cycle_time .= "\n".(($bytes->[23] >> 4) + ($bytes->[23] & 0xf) * 0.1)
. " ns at CAS ".($highestCAS-0.5);
$access_time .= "\n".(($bytes->[24] >> 4) * 0.1 + ($bytes->[24] & 0xf) * 0.01)
. " ns at CAS ".($highestCAS-0.5);
}
if (exists $cas{$highestCAS-1} && spd_written(@$bytes[25..26])) {
$cycle_time .= "\n".(($bytes->[25] >> 4) + ($bytes->[25] & 0xf) * 0.1)
. " ns at CAS ".($highestCAS-1);
$access_time .= "\n".(($bytes->[26] >> 4) * 0.1 + ($bytes->[26] & 0xf) * 0.01)
. " ns at CAS ".($highestCAS-1);
}
printl_cond(defined $cycle_time, "Minimum Cycle Time", $cycle_time);
printl_cond(defined $access_time, "Maximum Access Time", $access_time);
# module attributes
if ($bytes->[47] & 0x03) {
if (($bytes->[47] & 0x03) == 0x01) { $temp = "1.125\" to 1.25\""; }
elsif (($bytes->[47] & 0x03) == 0x02) { $temp = "1.7\""; }
elsif (($bytes->[47] & 0x03) == 0x03) { $temp = "Other"; }
printl("Module Height", $temp);
}
}
sub ddr2_sdram_ctime($)
{
my $byte = shift;
my $ctime;
$ctime = $byte >> 4;
if (($byte & 0xf) <= 9) { $ctime += ($byte & 0xf) * 0.1; }
elsif (($byte & 0xf) == 10) { $ctime += 0.25; }
elsif (($byte & 0xf) == 11) { $ctime += 0.33; }
elsif (($byte & 0xf) == 12) { $ctime += 0.66; }
elsif (($byte & 0xf) == 13) { $ctime += 0.75; }
return $ctime;
}
sub ddr2_sdram_atime($)
{
my $byte = shift;
my $atime;
$atime = ($byte >> 4) * 0.1 + ($byte & 0xf) * 0.01;
return $atime;
}
# Base, high-bit, 3-bit fraction code
sub ddr2_sdram_rtime($$$)
{
my ($rtime, $msb, $ext) = @_;
my @table = (0, .25, .33, .50, .66, .75);
return $rtime + $msb * 256 + $table[$ext];
}
sub ddr2_module_types($)
{
my $byte = shift;
my @types = qw(RDIMM UDIMM SO-DIMM Micro-DIMM Mini-RDIMM Mini-UDIMM);
my @widths = (133.35, 133.25, 67.6, 45.5, 82.0, 82.0);
my @suptypes;
local $_;
foreach (0..5) {
push @suptypes, "$types[$_] ($widths[$_] mm)"
if ($byte & (1 << $_));
}
return @suptypes;
}
# Common to SDR, DDR and DDR2 SDRAM
sub ddr2_refresh_rate($)
{
my $byte = shift;
my @refresh = qw(Normal Reduced Reduced Extended Extended Extended);
my @refresht = (15.625, 3.9, 7.8, 31.3, 62.5, 125);
return "$refresh[$byte & 0x7f] ($refresht[$byte & 0x7f] us)".
($byte & 0x80 ? " - Self Refresh" : "");
}
# Parameter: EEPROM bytes 0-127 (using 3-62)
sub decode_ddr2_sdram($)
{
my $bytes = shift;
my $temp;
my $ctime;
# SPD revision
if ($bytes->[62] != 0xff) {
printl("SPD Revision", ($bytes->[62] >> 4) . "." .
($bytes->[62] & 0xf));
}
# speed
prints("Memory Characteristics");
$ctime = ddr2_sdram_ctime($bytes->[9]);
my $ddrclk = 2 * (1000 / $ctime);
my $tbits = ($bytes->[7] * 256) + $bytes->[6];
if ($bytes->[11] & 0x03) { $tbits = $tbits - 8; }
my $pcclk = int ($ddrclk * $tbits / 8);
# Round down to comply with Jedec
$pcclk = $pcclk - ($pcclk % 100);
$ddrclk = int ($ddrclk);
printl("Maximum module speed", "${ddrclk}MHz (PC2-${pcclk})");
#size computation
my $k = 0;
my $ii = 0;
$ii = ($bytes->[3] & 0x0f) + ($bytes->[4] & 0x0f) - 17;
$k = (($bytes->[5] & 0x7) + 1) * $bytes->[17];
if($ii > 0 && $ii <= 12 && $k > 0) {
printl("Size", ((1 << $ii) * $k) . " MB");
} else {
printl("Size", "INVALID: " . $bytes->[3] . "," . $bytes->[4] . "," .
$bytes->[5] . "," . $bytes->[17]);
}
printl("Banks x Rows x Columns x Bits",
join(' x ', $bytes->[17], $bytes->[3], $bytes->[4], $bytes->[6]));
printl("Ranks", ($bytes->[5] & 7) + 1);
printl("SDRAM Device Width", $bytes->[13]." bits");
my @heights = ('< 25.4', '25.4', '25.4 - 30.0', '30.0', '30.5', '> 30.5');
printl("Module Height", $heights[$bytes->[5] >> 5]." mm");
my @suptypes = ddr2_module_types($bytes->[20]);
printl("Module Type".(@suptypes > 1 ? 's' : ''), join(', ', @suptypes));
printl("DRAM Package", $bytes->[5] & 0x10 ? "Stack" : "Planar");
printl("Voltage Interface Level",
sdram_voltage_interface_level($bytes->[8]));
printl("Refresh Rate", ddr2_refresh_rate($bytes->[12]));
my @burst;
push @burst, 4 if ($bytes->[16] & 4);
push @burst, 8 if ($bytes->[16] & 8);
$burst[0] = 'None' if !@burst;
printl("Supported Burst Lengths", join(', ', @burst));
my $highestCAS = 0;
my %cas;
for ($ii = 2; $ii < 7; $ii++) {
if ($bytes->[18] & (1 << $ii)) {
$highestCAS = $ii;
$cas{$highestCAS}++;
}
}
my $trcd;
my $trp;
my $tras;
$trcd = ($bytes->[29] >> 2) + (($bytes->[29] & 3) * 0.25);
$trp = ($bytes->[27] >> 2) + (($bytes->[27] & 3) * 0.25);
$tras = $bytes->[30];
printl("tCL-tRCD-tRP-tRAS",
$highestCAS . "-" .
ceil($trcd/$ctime) . "-" .
ceil($trp/$ctime) . "-" .
ceil($tras/$ctime));
# latencies
printl("Supported CAS Latencies (tCL)", cas_latencies(keys %cas));
# timings
my ($cycle_time, $access_time);
if (exists $cas{$highestCAS}) {
$cycle_time = tns($ctime) . " at CAS $highestCAS (tCK min)";
$access_time = tns(ddr2_sdram_atime($bytes->[10]))
. " at CAS $highestCAS (tAC)";
}
if (exists $cas{$highestCAS-1} && spd_written(@$bytes[23..24])) {
$cycle_time .= "\n".tns(ddr2_sdram_ctime($bytes->[23]))
. " at CAS ".($highestCAS-1);
$access_time .= "\n".tns(ddr2_sdram_atime($bytes->[24]))
. " at CAS ".($highestCAS-1);
}
if (exists $cas{$highestCAS-2} && spd_written(@$bytes[25..26])) {
$cycle_time .= "\n".tns(ddr2_sdram_ctime($bytes->[25]))
. " at CAS ".($highestCAS-2);
$access_time .= "\n".tns(ddr2_sdram_atime($bytes->[26]))
. " at CAS ".($highestCAS-2);
}
printl_cond(defined $cycle_time, "Minimum Cycle Time", $cycle_time);
printl_cond(defined $access_time, "Maximum Access Time", $access_time);
printl("Maximum Cycle Time (tCK max)",
tns(ddr2_sdram_ctime($bytes->[43])));
# more timing information
prints("Timing Parameters");
printl("Address/Command Setup Time Before Clock (tIS)",
tns(ddr2_sdram_atime($bytes->[32])));
printl("Address/Command Hold Time After Clock (tIH)",
tns(ddr2_sdram_atime($bytes->[33])));
printl("Data Input Setup Time Before Strobe (tDS)",
tns(ddr2_sdram_atime($bytes->[34])));
printl("Data Input Hold Time After Strobe (tDH)",
tns(ddr2_sdram_atime($bytes->[35])));
printl("Minimum Row Precharge Delay (tRP)", tns($trp));
printl("Minimum Row Active to Row Active Delay (tRRD)",
tns($bytes->[28]/4));
printl("Minimum RAS# to CAS# Delay (tRCD)", tns($trcd));
printl("Minimum RAS# Pulse Width (tRAS)", tns($tras));
printl("Write Recovery Time (tWR)", tns($bytes->[36]/4));
printl("Minimum Write to Read CMD Delay (tWTR)", tns($bytes->[37]/4));
printl("Minimum Read to Pre-charge CMD Delay (tRTP)", tns($bytes->[38]/4));
printl("Minimum Active to Auto-refresh Delay (tRC)",
tns(ddr2_sdram_rtime($bytes->[41], 0, ($bytes->[40] >> 4) & 7)));
printl("Minimum Recovery Delay (tRFC)",
tns(ddr2_sdram_rtime($bytes->[42], $bytes->[40] & 1,
($bytes->[40] >> 1) & 7)));
printl("Maximum DQS to DQ Skew (tDQSQ)", tns($bytes->[44]/100));
printl("Maximum Read Data Hold Skew (tQHS)", tns($bytes->[45]/100));
printl("PLL Relock Time", $bytes->[46] . " us") if ($bytes->[46]);
}
# Parameter: EEPROM bytes 0-127 (using 3-76)
sub decode_ddr3_sdram($)
{
my $bytes = shift;
my $temp;
my $ctime;
my @module_types = ("Undefined", "RDIMM", "UDIMM", "SO-DIMM",
"Micro-DIMM", "Mini-RDIMM", "Mini-UDIMM");
printl("Module Type", ($bytes->[3] <= $#module_types) ?
$module_types[$bytes->[3]] :
sprint("Reserved (0x%.2X)", $bytes->[3]));
# speed
prints("Memory Characteristics");
my $dividend = ($bytes->[9] >> 4) & 15;
my $divisor = $bytes->[9] & 15;
printl("Fine time base", sprintf("%.3f", $dividend / $divisor) . " ps");
$dividend = $bytes->[10];
$divisor = $bytes->[11];
my $mtb = $dividend / $divisor;
printl("Medium time base", tns3($mtb));
$ctime = $bytes->[12] * $mtb;
my $ddrclk = 2 * (1000 / $ctime);
my $tbits = 1 << (($bytes->[8] & 7) + 3);
my $pcclk = int ($ddrclk * $tbits / 8);
$ddrclk = int ($ddrclk);
printl("Maximum module speed", "${ddrclk}MHz (PC3-${pcclk})");
# Size computation
my $cap = ($bytes->[4] & 15) + 28;
$cap += ($bytes->[8] & 7) + 3;
$cap -= ($bytes->[7] & 7) + 2;
$cap -= 20 + 3;
my $k = (($bytes->[7] >> 3) & 31) + 1;
printl("Size", ((1 << $cap) * $k) . " MB");
printl("Banks x Rows x Columns x Bits",
join(' x ', 1 << ((($bytes->[4] >> 4) & 7) + 3),
((($bytes->[5] >> 3) & 31) + 12),
( ($bytes->[5] & 7) + 9),
( 1 << (($bytes->[8] & 7) + 3)) ));
printl("Ranks", $k);
printl("SDRAM Device Width", (1 << (($bytes->[7] & 7) + 2))." bits");
my $taa;
my $trcd;
my $trp;
my $tras;
$taa = int($bytes->[16] / $bytes->[12]);
$trcd = int($bytes->[18] / $bytes->[12]);
$trp = int($bytes->[20] / $bytes->[12]);
$tras = int((($bytes->[21] >> 4) * 256 + $bytes->[22]) / $bytes->[12]);
printl("tCL-tRCD-tRP-tRAS", join("-", $taa, $trcd, $trp, $tras));
# latencies
my $highestCAS = 0;
my %cas;
my $ii;
my $cas_sup = ($bytes->[15] << 8) + $bytes->[14];
for ($ii = 0; $ii < 15; $ii++) {
if ($cas_sup & (1 << $ii)) {
$highestCAS = $ii + 4;
$cas{$highestCAS}++;
}
}
printl("Supported CAS Latencies (tCL)", cas_latencies(keys %cas));
# more timing information
prints("Timing Parameters");
printl("Minimum Write Recovery time (tWR)", tns3($bytes->[17] * $mtb));
printl("Minimum Row Active to Row Active Delay (tRRD)",
tns3($bytes->[19] * $mtb));
printl("Minimum Active to Auto-Refresh Delay (tRC)",
tns3((((($bytes->[21] >> 4) & 15) << 8) + $bytes->[23]) * $mtb));
printl("Minimum Recovery Delay (tRFC)",
tns3((($bytes->[25] << 8) + $bytes->[24]) * $mtb));
printl("Minimum Write to Read CMD Delay (tWTR)",
tns3($bytes->[26] * $mtb));
printl("Minimum Read to Pre-charge CMD Delay (tRTP)",
tns3($bytes->[27] * $mtb));
printl("Minimum Four Activate Window Delay (tFAW)",
tns3(((($bytes->[28] & 15) << 8) + $bytes->[29]) * $mtb));
# miscellaneous stuff
prints("Optional Features");
my $volts = "1.5V";
if ($bytes->[6] & 1) {
$volts .= " tolerant";
}
if ($bytes->[6] & 2) {
$volts .= ", 1.35V ";
}
if ($bytes->[6] & 4) {
$volts .= ", 1.2X V";
}
printl("Operable voltages", $volts);
printl("RZQ/6 supported?", ($bytes->[30] & 1) ? "Yes" : "No");
printl("RZQ/7 supported?", ($bytes->[30] & 2) ? "Yes" : "No");
printl("DLL-Off Mode supported?", ($bytes->[30] & 128) ? "Yes" : "No");
printl("Operating temperature range", sprintf "0-%dC",
($bytes->[31] & 1) ? 95 : 85);
printl("Refresh Rate in extended temp range",
($bytes->[31] & 2) ? "2X" : "1X");
printl("Auto Self-Refresh?", ($bytes->[31] & 4) ? "Yes" : "No");
printl("On-Die Thermal Sensor readout?",
($bytes->[31] & 8) ? "Yes" : "No");
printl("Partial Array Self-Refresh?",
($bytes->[31] & 128) ? "Yes" : "No");
printl("Thermal Sensor Accuracy",
($bytes->[32] & 128) ? sprintf($bytes->[32] & 127) :
"Not implemented");
printl("SDRAM Device Type",
($bytes->[33] & 128) ? sprintf($bytes->[33] & 127) :
"Standard Monolithic");
if ($bytes->[3] >= 1 && $bytes->[3] <= 6) {
prints("Physical Characteristics");
printl("Module Height (mm)", ($bytes->[60] & 31) + 15);
printl("Module Thickness (mm)", sprintf("%d front, %d back",
($bytes->[61] & 15) + 1,
(($bytes->[61] >> 4) & 15) +1));
printl("Module Width (mm)", ($bytes->[3] <= 2) ? 133.5 :
($bytes->[3] == 3) ? 67.6 : "TBD");
my $alphabet = "ABCDEFGHJKLMNPRTUVWY";
my $ref = $bytes->[62] & 31;
my $ref_card;
if ($ref == 31) {
$ref_card = "ZZ";
} else {
if ($bytes->[62] & 128) {
$ref += 31;
}
if ($ref < length $alphabet) {
$ref_card = substr $alphabet, $ref, 1;
} else {
my $ref1 = int($ref / (length $alphabet));
$ref -= (length $alphabet) * $ref1;
$ref_card = (substr $alphabet, $ref1, 1) .
(substr $alphabet, $ref, 1);
}
}
printl("Module Reference Card", $ref_card);
}
if ($bytes->[3] == 1 || $bytes->[3] == 5) {
prints("Registered DIMM");
my @rows = ("Undefined", 1, 2, 4);
printl("# DRAM Rows", $rows[($bytes->[63] >> 2) & 3]);
printl("# Registers", $rows[$bytes->[63] & 3]);
printl("Register manufacturer",
manufacturer_ddr3($bytes->[65], $bytes->[66]));
printl("Register device type",
(($bytes->[68] & 7) == 0) ? "SSTE32882" :
"Undefined");
printl("Register revision", sprintf("0x%.2X", $bytes->[67]));
printl("Heat spreader characteristics",
($bytes->[64] < 128) ? "Not incorporated" :
sprintf("%.2X", ($bytes->[64] & 127)));
my $regs;
for (my $i = 0; $i < 8; $i++) {
$regs = sprintf("SSTE32882 RC%d/RC%d",
$i * 2, $i * 2 + 1);
printl($regs, sprintf("%.2X", $bytes->[$i + 69]));
}
}
}
# Parameter: EEPROM bytes 0-127 (using 4-5)
sub decode_direct_rambus($)
{
my $bytes = shift;
#size computation
prints("Memory Characteristics");
my $ii;
$ii = ($bytes->[4] & 0x0f) + ($bytes->[4] >> 4) + ($bytes->[5] & 0x07) - 13;
if ($ii > 0 && $ii < 16) {
printl("Size", (1 << $ii) . " MB");
} else {
printl("Size", sprintf("INVALID: 0x%02x, 0x%02x",
$bytes->[4], $bytes->[5]));
}
}
# Parameter: EEPROM bytes 0-127 (using 3-5)
sub decode_rambus($)
{
my $bytes = shift;
#size computation
prints("Memory Characteristics");
my $ii;
$ii = ($bytes->[3] & 0x0f) + ($bytes->[3] >> 4) + ($bytes->[5] & 0x07) - 13;
if ($ii > 0 && $ii < 16) {
printl("Size", (1 << $ii) . " MB");
} else {
printl("Size", "INVALID: " . sprintf("0x%02x, 0x%02x",
$bytes->[3], $bytes->[5]));
}
}
%decode_callback = (
"SDR SDRAM" => \&decode_sdr_sdram,
"DDR SDRAM" => \&decode_ddr_sdram,
"DDR2 SDRAM" => \&decode_ddr2_sdram,
"DDR3 SDRAM" => \&decode_ddr3_sdram,
"Direct Rambus" => \&decode_direct_rambus,
"Rambus" => \&decode_rambus,
);
# Parameter: Manufacturing year/week bytes
sub manufacture_date($$)
{
my ($year, $week) = @_;
# In theory the year and week are in BCD format, but
# this is not always true in practice :(
if (($year & 0xf0) <= 0x90 && ($year & 0x0f) <= 0x09
&& ($week & 0xf0) <= 0x90 && ($week & 0x0f) <= 0x09) {
# Note that this heuristic will break in year 2080
return sprintf("%d%02X-W%02X",
$year >= 0x80 ? 19 : 20, $year, $week);
# Fallback to binary format if it seems to make sense
} elsif ($year <= 99 && $week >= 1 && $week <= 53) {
return sprintf("%d%02d-W%02d",
$year >= 80 ? 19 : 20, $year, $week);
} else {
return sprintf("0x%02X%02X", $year, $week);
}
}
sub printl_mfg_location_code($)
{
my $code = shift;
my $letter = chr($code);
# Try the location code as ASCII first, as earlier specifications
# suggested this. As newer specifications don't mention it anymore,
# we still fall back to binary.
printl_cond(spd_written($code), "Manufacturing Location Code",
$letter =~ m/^[\w\d]$/ ? $letter : sprintf("0x%.2X", $code));
}
sub printl_mfg_assembly_serial(@)
{
printl_cond(spd_written(@_), "Assembly Serial Number",
sprintf("0x%02X%02X%02X%02X", @_));
}
# Parameter: EEPROM bytes 0-175 (using 117-149)
sub decode_ddr3_mfg_data($)
{
my $bytes = shift;
prints("Manufacturer Data");
printl("Module Manufacturer",
manufacturer_ddr3($bytes->[117], $bytes->[118]));
if (spd_written(@{$bytes}[148..149])) {
printl("DRAM Manufacturer",
manufacturer_ddr3($bytes->[148], $bytes->[149]));
}
printl_mfg_location_code($bytes->[119]);
if (spd_written(@{$bytes}[120..121])) {
printl("Manufacturing Date",
manufacture_date($bytes->[120], $bytes->[121]));
}
printl_mfg_assembly_serial(@{$bytes}[122..125]);
printl("Part Number", part_number(@{$bytes}[128..145]));
if (spd_written(@{$bytes}[146..147])) {
printl("Revision Code",
sprintf("0x%02X%02X", $bytes->[146], $bytes->[147]));
}
}
# Parameter: EEPROM bytes 0-127 (using 64-98)
sub decode_manufacturing_information($)
{
my $bytes = shift;
my ($temp, $extra);
prints("Manufacturing Information");
# $extra is a reference to an array containing up to
# 7 extra bytes from the Manufacturer field. Sometimes
# these bytes are filled with interesting data.
($temp, $extra) = manufacturer(@{$bytes}[64..71]);
printl("Manufacturer", $temp);
$temp = manufacturer_data(@{$extra});
printl_cond(defined $temp, "Custom Manufacturer Data", $temp);
printl_mfg_location_code($bytes->[72]);
printl("Part Number", part_number(@{$bytes}[73..90]));
printl_cond(spd_written(@{$bytes}[91..92]), "Revision Code",
sprintf("0x%02X%02X", @{$bytes}[91..92]));
printl_cond(spd_written(@{$bytes}[93..94]), "Manufacturing Date",
manufacture_date($bytes->[93], $bytes->[94]));
printl_mfg_assembly_serial(@{$bytes}[95..98]);
}
# Parameter: EEPROM bytes 0-127 (using 126-127)
sub decode_intel_spec_freq($)
{
my $bytes = shift;
my $temp;
prints("Intel Specification");
if ($bytes->[126] == 0x66) { $temp = "66MHz"; }
elsif ($bytes->[126] == 100) { $temp = "100MHz or 133MHz"; }
elsif ($bytes->[126] == 133) { $temp = "133MHz"; }
else { $temp = "Undefined!"; }
printl("Frequency", $temp);
$temp = "";
if ($bytes->[127] & 1) { $temp .= "Intel Concurrent Auto-precharge\n"; }
if ($bytes->[127] & 2) { $temp .= "CAS Latency = 2\n"; }
if ($bytes->[127] & 4) { $temp .= "CAS Latency = 3\n"; }
if ($bytes->[127] & 8) { $temp .= "Junction Temp A (100 degrees C)\n"; }
else { $temp .= "Junction Temp B (90 degrees C)\n"; }
if ($bytes->[127] & 16) { $temp .= "CLK 3 Connected\n"; }
if ($bytes->[127] & 32) { $temp .= "CLK 2 Connected\n"; }
if ($bytes->[127] & 64) { $temp .= "CLK 1 Connected\n"; }
if ($bytes->[127] & 128) { $temp .= "CLK 0 Connected\n"; }
if (($bytes->[127] & 192) == 192) { $temp .= "Double-sided DIMM\n"; }
elsif (($bytes->[127] & 192) != 0) { $temp .= "Single-sided DIMM\n"; }
printl("Details for 100MHz Support", $temp);
}
# Read various hex dump style formats: hexdump, hexdump -C, i2cdump, eeprog
# note that normal 'hexdump' format on a little-endian system byte-swaps
# words, using hexdump -C is better.
sub read_hexdump($)
{
my $addr = 0;
my $repstart = 0;
my @bytes;
my $header = 1;
my $word = 0;
# Look in the cache first
return @{$hexdump_cache{$_[0]}} if exists $hexdump_cache{$_[0]};
open F, '<', $_[0] or die "Unable to open: $_[0]";
while (<F>) {
chomp;
if (/^\*$/) {
$repstart = $addr;
next;
}
/^(?:0000 )?([a-f\d]{2,8}):?\s+((:?[a-f\d]{4}\s*){8}|(:?[a-f\d]{2}\s*){16})/i ||
/^(?:0000 )?([a-f\d]{2,8}):?\s*$/i;
next if (!defined $1 && $header); # skip leading unparsed lines
defined $1 or die "Unable to parse input";
$header = 0;
$addr = hex $1;
if ($repstart) {
@bytes[$repstart .. ($addr-1)] =
(@bytes[($repstart-16)..($repstart-1)]) x (($addr-$repstart)/16);
$repstart = 0;
}
last unless defined $2;
foreach (split(/\s+/, $2)) {
if (/^(..)(..)$/) {
$word |= 1;
if ($use_hexdump eq LITTLEENDIAN) {
$bytes[$addr++] = hex($2);
$bytes[$addr++] = hex($1);
} else {
$bytes[$addr++] = hex($1);
$bytes[$addr++] = hex($2);
}
} else {
$bytes[$addr++] = hex($_);
}
}
}
close F;
$header and die "Unable to parse any data from hexdump '$_[0]'";
$word and printc("Using $use_hexdump 16-bit hex dump");
# Cache the data for later use
$hexdump_cache{$_[0]} = \@bytes;
return @bytes;
}
# Returns the (total, used) number of bytes in the EEPROM,
# assuming it is a non-Rambus SPD EEPROM.
sub spd_sizes($)
{
my $bytes = shift;
if ($bytes->[2] >= 9) {
# For FB-DIMM and newer, decode number of bytes written
my $spd_len = ($bytes->[0] >> 4) & 7;
my $size = 64 << ($bytes->[0] & 15);
if ($spd_len == 0) {
return ($size, 128);
} elsif ($spd_len == 1) {
return ($size, 176);
} elsif ($spd_len == 2) {
return ($size, 256);
} else {
return (64, 64);
}
} else {
my $size;
if ($bytes->[1] <= 14) {
$size = 1 << $bytes->[1];
} elsif ($bytes->[1] == 0) {
$size = "RFU";
} else { $size = "ERROR!" }
return ($size, ($bytes->[0] < 64) ? 64 : $bytes->[0]);
}
}
# Read bytes from SPD-EEPROM
# Note: offset must be a multiple of 16!
sub readspd($$$)
{
my ($offset, $size, $dimm_i) = @_;
my @bytes;
if ($use_hexdump) {
@bytes = read_hexdump($dimm_i);
return @bytes[$offset..($offset + $size - 1)];
} elsif ($use_sysfs) {
# Kernel 2.6 with sysfs
sysopen(HANDLE, "$dimm_i/eeprom", O_RDONLY)
or die "Cannot open $dimm_i/eeprom";
binmode HANDLE;
sysseek(HANDLE, $offset, SEEK_SET)
or die "Cannot seek $dimm_i/eeprom";
sysread(HANDLE, my $eeprom, $size)
or die "Cannot read $dimm_i/eeprom";
close HANDLE;
@bytes = unpack("C*", $eeprom);
} else {
# Kernel 2.4 with procfs
for my $i (0 .. ($size-1)/16) {
my $hexoff = sprintf('%02x', $offset + $i * 16);
push @bytes, split(" ", `cat $dimm_i/$hexoff`);
}
}
return @bytes;
}
# Calculate and verify checksum of first 63 bytes
sub checksum($)
{
my $bytes = shift;
my $dimm_checksum = 0;
local $_;
$dimm_checksum += $bytes->[$_] foreach (0 .. 62);
$dimm_checksum &= 0xff;
return ("EEPROM Checksum of bytes 0-62",
($bytes->[63] == $dimm_checksum) ? 1 : 0,
sprintf('0x%02X', $bytes->[63]),
sprintf('0x%02X', $dimm_checksum));
}
# Calculate and verify CRC
sub check_crc($)
{
my $bytes = shift;
my $crc = 0;
my $crc_cover = $bytes->[0] & 0x80 ? 116 : 125;
my $crc_ptr = 0;
my $crc_bit;
while ($crc_ptr <= $crc_cover) {
$crc = $crc ^ ($bytes->[$crc_ptr] << 8);
for ($crc_bit = 0; $crc_bit < 8; $crc_bit++) {
if ($crc & 0x8000) {
$crc = ($crc << 1) ^ 0x1021;
} else {
$crc = $crc << 1
}
}
$crc_ptr++;
}
$crc &= 0xffff;
my $dimm_crc = ($bytes->[127] << 8) | $bytes->[126];
return ("EEPROM CRC of bytes 0-$crc_cover",
($dimm_crc == $crc) ? 1 : 0,
sprintf("0x%04X", $dimm_crc),
sprintf("0x%04X", $crc));
}
# Parse command-line
foreach (@ARGV) {
if ($_ eq '-h' || $_ eq '--help') {
print "Usage: $0 [-c] [-f [-b]] [-x|-X file [files..]]\n",
" $0 -h\n\n",
" -f, --format Print nice html output\n",
" -b, --bodyonly Don't print html header\n",
" (useful for postprocessing the output)\n",
" --side-by-side Display all DIMMs side-by-side if possible\n",
" --merge-cells Merge neighbour cells with identical values\n",
" (side-by-side output only)\n",
" -c, --checksum Decode completely even if checksum fails\n",
" -x, Read data from hexdump files\n",
" -X, Same as -x except treat multibyte hex\n",
" data as little endian\n",
" -h, --help Display this usage summary\n";
print <<"EOF";
Hexdumps can be the output from hexdump, hexdump -C, i2cdump, eeprog and
likely many other progams producing hex dumps of one kind or another. Note
that the default output of "hexdump" will be byte-swapped on little-endian
systems and you must use -X instead of -x, otherwise the dump will not be
parsed correctly. It is better to use "hexdump -C", which is not ambiguous.
EOF
exit;
}
if ($_ eq '-f' || $_ eq '--format') {
$opt_html = 1;
next;
}
if ($_ eq '-b' || $_ eq '--bodyonly') {
$opt_bodyonly = 1;
next;
}
if ($_ eq '--side-by-side') {
$opt_side_by_side = 1;
next;
}
if ($_ eq '--merge-cells') {
$opt_merge = 1;
next;
}
if ($_ eq '-c' || $_ eq '--checksum') {
$opt_igncheck = 1;
next;
}
if ($_ eq '-x') {
$use_hexdump = BIGENDIAN;
next;
}
if ($_ eq '-X') {
$use_hexdump = LITTLEENDIAN;
next;
}
if (m/^-/) {
print STDERR "Unrecognized option $_\n";
exit;
}
push @dimm, { eeprom => $_, file => $_ } if $use_hexdump;
}
if ($opt_html && !$opt_bodyonly) {
print "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 3.2 Final//EN\">\n",
"<html><head>\n",
"\t<meta HTTP-EQUIV=\"Content-Type\" CONTENT=\"text/html; charset=iso-8859-1\">\n",
"\t<title>PC DIMM Serial Presence Detect Tester/Decoder Output</title>\n",
"</head><body>\n";
}
printc("decode-dimms version $revision");
printh('Memory Serial Presence Detect Decoder',
'By Philip Edelbrock, Christian Zuckschwerdt, Burkart Lingner,
Jean Delvare, Trent Piepho and others');
# From a sysfs device path and an attribute name, return the attribute
# value, or undef (stolen from sensors-detect)
sub sysfs_device_attribute
{
my ($device, $attr) = @_;
my $value;
open(local *FILE, "$device/$attr") or return "";
$value = <FILE>;
close(FILE);
return unless defined $value;
chomp($value);
return $value;
}
sub get_dimm_list
{
my (@dirs, $dir, $file, @files);
if ($use_sysfs) {
@dirs = ('/sys/bus/i2c/drivers/eeprom', '/sys/bus/i2c/drivers/at24');
} else {
@dirs = ('/proc/sys/dev/sensors');
}
foreach $dir (@dirs) {
next unless opendir(local *DIR, $dir);
while (defined($file = readdir(DIR))) {
if ($use_sysfs) {
# We look for I2C devices like 0-0050 or 2-0051
next unless $file =~ /^\d+-[\da-f]+$/i;
next unless -d "$dir/$file";
# Device name must be eeprom (driver eeprom)
# or spd (driver at24)
my $attr = sysfs_device_attribute("$dir/$file", "name");
next unless defined $attr &&
($attr eq "eeprom" || $attr eq "spd");
} else {
next unless $file =~ /^eeprom-/;
}
push @files, { eeprom => "$file",
file => "$dir/$file" };
}
close(DIR);
}
if (@files) {
return sort { $a->{file} cmp $b->{file} } @files;
} elsif (! -d '/sys/module/eeprom') {
print "No EEPROM found, are you sure the eeprom module is loaded?\n";
exit;
} else {
print "No EEPROM found, the kernel probably does not support your hardware.\n";
exit;
}
}
# @dimm is a list of hashes. There's one hash for each EEPROM we found.
# Each hash has the following keys:
# * eeprom: Name of the eeprom data file
# * file: Full path to the eeprom data file
# * bytes: The EEPROM data (array)
# * is_rambus: Whether this is a RAMBUS DIMM or not (boolean)
# * chk_label: The label to display for the checksum or CRC
# * chk_valid: Whether the checksum or CRC is valid or not (boolean)
# * chk_spd: The checksum or CRC value found in the EEPROM
# * chk_calc: The checksum or CRC computed from the EEPROM data
# Keys are added over time.
@dimm = get_dimm_list() unless $use_hexdump;
for my $i (0 .. $#dimm) {
my @bytes = readspd(0, 128, $dimm[$i]->{file});
$dimm[$i]->{bytes} = \@bytes;
$dimm[$i]->{is_rambus} = $bytes[0] < 4; # Simple heuristic
if ($dimm[$i]->{is_rambus} || $bytes[2] < 9) {
($dimm[$i]->{chk_label}, $dimm[$i]->{chk_valid},
$dimm[$i]->{chk_spd}, $dimm[$i]->{chk_calc}) =
checksum(\@bytes);
} else {
($dimm[$i]->{chk_label}, $dimm[$i]->{chk_valid},
$dimm[$i]->{chk_spd}, $dimm[$i]->{chk_calc}) =
check_crc(\@bytes);
}
}
# Checksum or CRC validation
if (!$opt_igncheck) {
for (my $i = 0; $i < @dimm; ) {
if ($dimm[$i]->{chk_valid}) {
$i++;
} else {
splice(@dimm, $i, 1);
}
}
}
# Process the valid entries
for $current (0 .. $#dimm) {
my @bytes = @{$dimm[$current]->{bytes}};
if ($opt_side_by_side) {
printl("Decoding EEPROM", $dimm[$current]->{eeprom});
}
if (!$use_hexdump) {
if ($dimm[$current]->{file} =~ /-([\da-f]+)$/i) {
my $dimm_num = hex($1) - 0x50 + 1;
if ($dimm_num >= 1 && $dimm_num <= 8) {
printl("Guessing DIMM is in", "bank $dimm_num");
}
}
}
# Decode first 3 bytes (0-2)
prints("SPD EEPROM Information");
printl($dimm[$current]->{chk_label}, ($dimm[$current]->{chk_valid} ?
sprintf("OK (%s)", $dimm[$current]->{chk_calc}) :
sprintf("Bad\n(found %s, calculated %s)",
$dimm[$current]->{chk_spd}, $dimm[$current]->{chk_calc})));
my $temp;
if ($dimm[$current]->{is_rambus}) {
if ($bytes[0] == 1) { $temp = "0.7"; }
elsif ($bytes[0] == 2) { $temp = "1.0"; }
elsif ($bytes[0] == 0) { $temp = "Invalid"; }
else { $temp = "Reserved"; }
printl("SPD Revision", $temp);
} else {
my ($spd_size, $spd_used) = spd_sizes(\@bytes);
printl("# of bytes written to SDRAM EEPROM", $spd_used);
printl("Total number of bytes in EEPROM", $spd_size);
# If there's more data than what we've read, let's
# read it now. DDR3 will need this data.
if ($spd_used > @bytes) {
push (@bytes,
readspd(@bytes, $spd_used - @bytes,
$dimm[$current]->{file}));
}
}
my $type = sprintf("Unknown (0x%02x)", $bytes[2]);
if ($dimm[$current]->{is_rambus}) {
if ($bytes[2] == 1) { $type = "Direct Rambus"; }
elsif ($bytes[2] == 17) { $type = "Rambus"; }
} else {
my @type_list = (
"Reserved", "FPM DRAM", # 0, 1
"EDO", "Pipelined Nibble", # 2, 3
"SDR SDRAM", "Multiplexed ROM", # 4, 5
"DDR SGRAM", "DDR SDRAM", # 6, 7
"DDR2 SDRAM", "FB-DIMM", # 8, 9
"FB-DIMM Probe", "DDR3 SDRAM", # 10, 11
);
if ($bytes[2] < @type_list) {
$type = $type_list[$bytes[2]];
}
}
printl("Fundamental Memory type", $type);
# Decode next 61 bytes (3-63, depend on memory type)
$decode_callback{$type}->(\@bytes)
if exists $decode_callback{$type};
if ($type eq "DDR3 SDRAM") {
# Decode DDR3-specific manufacturing data in bytes
# 117-149
decode_ddr3_mfg_data(\@bytes)
} else {
# Decode next 35 bytes (64-98, common to most
# memory types)
decode_manufacturing_information(\@bytes);
}
# Next 27 bytes (99-125) are manufacturer specific, can't decode
# Last 2 bytes (126-127) are reserved, Intel used them as an extension
if ($type eq "SDR SDRAM") {
decode_intel_spec_freq(\@bytes);
}
}
# Side-by-side output format is only possible if all DIMMs have a similar
# output structure
if ($opt_side_by_side) {
for $current (1 .. $#dimm) {
my @ref_output = @{$dimm[0]->{output}};
my @test_output = @{$dimm[$current]->{output}};
my $line;
if (scalar @ref_output != scalar @test_output) {
$opt_side_by_side = 0;
last;
}
for ($line = 0; $line < @ref_output; $line++) {
my ($ref_func, $ref_label, @ref_dummy) = @{$ref_output[$line]};
my ($test_func, $test_label, @test_dummy) = @{$test_output[$line]};
if ($ref_func != $test_func || $ref_label ne $test_label) {
$opt_side_by_side = 0;
last;
}
}
}
if (!$opt_side_by_side) {
printc("Side-by-side output only possible if all DIMMS are similar\n");
# Discard "Decoding EEPROM" entry from all outputs
for $current (0 .. $#dimm) {
shift(@{$dimm[$current]->{output}});
}
}
}
# Find out the longest value string to adjust the column width
# Note: this could be improved a bit by not taking into account strings
# which will end up being merged.
$sbs_col_width = 15;
if ($opt_side_by_side && !$opt_html) {
for $current (0 .. $#dimm) {
my @output = @{$dimm[$current]->{output}};
my $line;
my @strings;
for ($line = 0; $line < @output; $line++) {
my ($func, $label, $value) = @{$output[$line]};
push @strings, split("\n", $value) if defined $value;
}
foreach $line (@strings) {
my $len = length($line);
$sbs_col_width = $len if $len > $sbs_col_width;
}
}
}
# Print the decoded information for all DIMMs
for $current (0 .. $#dimm) {
if ($opt_side_by_side) {
print "\n\n";
} else {
print "<b><u>" if $opt_html;
printl2("\n\nDecoding EEPROM", $dimm[$current]->{file});
print "</u></b>" if $opt_html;
}
print "<table border=1>\n" if $opt_html;
my @output = @{$dimm[$current]->{output}};
for (my $line = 0; $line < @output; $line++) {
my ($func, @param) = @{$output[$line]};
if ($opt_side_by_side) {
foreach ($current+1 .. $#dimm) {
my @xoutput = @{$dimm[$_]->{output}};
if (@{$xoutput[$line]} == 3) {
# Line with data, stack all values
push @param, @{$xoutput[$line]}[2];
} else {
# Separator, make it span
push @param, scalar @dimm;
}
}
}
$func->(@param);
}
print "</table>\n" if $opt_html;
last if $opt_side_by_side;
}
printl2("\n\nNumber of SDRAM DIMMs detected and decoded", scalar @dimm);
print "</body></html>\n" if ($opt_html && !$opt_bodyonly);
|