This file is indexed.

/usr/share/julia/base/range.jl is in julia 0.2.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
## 1-dimensional ranges ##

typealias Dims (Int...)

abstract Ranges{T} <: AbstractArray{T,1}

immutable Range{T<:Real} <: Ranges{T}
    start::T
    step::T
    len::Int

    function Range(start::T, step::T, len::Int)
        if step != step; error("Range: step cannot be NaN"); end
        if !(len >= 0);  error("Range: length must be non-negative"); end
        new(start, step, len)
    end
    Range(start::T, step::T, len::Integer) = Range(start, step, int(len))
    Range(start::T, step, len::Integer) = Range(start, convert(T,step), int(len))
end
Range{T}(start::T, step, len::Integer) = Range{T}(start, step, len)

immutable Range1{T<:Real} <: Ranges{T}
    start::T
    len::Int

    function Range1(start::T, len::Int)
        if !(len >= 0); error("Range: length must be non-negative"); end
        new(start, len)
    end
    Range1(start::T, len::Integer) = Range1(start, int(len))
end
Range1{T}(start::T, len::Integer) = Range1{T}(start, len)

function colon{T<:Integer}(start::T, step::T, stop::T)
    step != 0 || error("step cannot be zero in colon syntax")
    Range(start, step, max(0, div(stop-start+step, step)))
end
colon{T<:Integer}(start::T, stop::T) =
    Range1(start, max(0, stop-start+1))

function colon{T<:Real}(start::T, step::T, stop::T)
    step != 0 || error("step cannot be zero in colon syntax")
    if (step<0) != (stop<start)
        len = 0
    else
        nf = (stop-start)/step + 1
        if T <: FloatingPoint
            n = round(nf)
            if n > 1 && abs(n-nf) < eps(n)*3
                # adjust step to try to hit stop exactly
                step = (stop-start)/(n-1)
                len = itrunc(n)
            else
                len = itrunc(nf)
            end
        else
            n = nf
            len = itrunc(n)
        end
        if n >= typemax(Int)
            error("Range: length ",n," is too large")
        end
    end
    Range(start, step, len)
end
function colon{T<:Real}(start::T, stop::T)
    if stop < start
        len = 0
    else
        nf = stop - start + 1
        if T <: FloatingPoint
            n = round(nf)
            len = abs(n-nf) < eps(n)*3 ? itrunc(n) : itrunc(nf)
        else
            n = nf
            len = itrunc(n)
        end
        if n >= typemax(Int)
            error("Range: length ",n," is too large")
        end
    end
    Range1(start, len)
end

colon(start::Real, step::Real, stop::Real) = colon(promote(start, step, stop)...)
colon(start::Real, stop::Real) = colon(promote(start, stop)...)

similar(r::Ranges, T::Type, dims::Dims) = Array(T, dims)

length(r::Ranges) = r.len
size(r::Ranges) = (r.len,)
isempty(r::Ranges) = r.len==0
first(r::Ranges) = r.start
last{T}(r::Range1{T}) = oftype(T, r.start + r.len-1)
last{T}(r::Range{T})  = oftype(T, r.start + (r.len-1)*r.step)

step(r::Range)  = r.step
step(r::Range1) = one(r.start)

minimum(r::Range1) = (isempty(r)&&error("min: range is empty")) || first(r)
maximum(r::Range1) = (isempty(r)&&error("max: range is empty")) || last(r)
minimum(r::Ranges) = (isempty(r)&&error("min: range is empty")) || (step(r) > 0 ? first(r) :  last(r))
maximum(r::Ranges) = (isempty(r)&&error("max: range is empty")) || (step(r) > 0 ?  last(r) : first(r))

ctranspose(r::Ranges) = [x for _=1, x=r]
transpose(r::Ranges) = r'

# Ranges are intended to be immutable
copy(r::Ranges) = r

getindex(r::Ranges, i::Real) = getindex(r, to_index(i))

function getindex{T}(r::Ranges{T}, i::Integer)
    if !(1 <= i <= r.len); error(BoundsError); end
    oftype(T, r.start + (i-1)*step(r))
end

function getindex(r::Range1, s::Range1{Int})
    if s.len > 0
        if !(1 <= last(s) <= r.len)
            throw(BoundsError())
        end
        Range1(r[s.start], s.len)
    else
        Range1(r.start + s.start-1, s.len)
    end
end

function getindex(r::Ranges, s::Ranges{Int})
    if s.len > 0
        if !(1 <= last(s) <= r.len)
            throw(BoundsError())
        end
        Range(r[s.start], step(r)*step(s), s.len)
    else
        Range(r.start + (s.start-1)*step(r), step(r)*step(s), s.len)
    end
end

function show(io::IO, r::Range)
    if step(r) == 0
        print(io, "Range(",r.start,",",step(r),",",r.len,")")
    else
        print(io, repr(r.start),':',repr(step(r)),':',repr(last(r)))
    end
end
show(io::IO, r::Range1) = print(io, repr(r.start),':',repr(last(r)))

start(r::Ranges) = 0
next{T}(r::Range{T},  i) = (oftype(T, r.start + i*step(r)), i+1)
next{T}(r::Range1{T}, i) = (oftype(T, r.start + i), i+1)
done(r::Ranges, i) = (length(r) <= i)

==(r::Ranges, s::Ranges) = (r.start==s.start) & (step(r)==step(s)) & (r.len==s.len)
==(r::Range1, s::Range1) = (r.start==s.start) & (r.len==s.len)

# TODO: isless?

intersect{T1<:Integer, T2<:Integer}(r::Range1{T1}, s::Range1{T2}) = max(r.start,s.start):min(last(r),last(s))

intersect{T<:Integer}(i::Integer, r::Range1{T}) =
    i < first(r) ? (first(r):i) :
    i > last(r)  ? (i:last(r))  : (i:i)

intersect{T<:Integer}(r::Range1{T}, i::Integer) = intersect(i, r)

function intersect{T1<:Integer, T2<:Integer}(r::Range1{T1}, s::Range{T2})
    if length(s) == 0
        Range1(first(r), 0)
    elseif step(s) == 0
        intersect(first(s), r)
    elseif step(s) < 0
        intersect(r, reverse(s))
    else
        sta = first(s)
        ste = step(s)
        sto = last(s)
        lo = first(r)
        hi = last(r)
        i0 = max(sta, lo + mod(sta - lo, ste))
        i1 = min(sto, hi - mod(hi - sta, ste))
        i0:ste:i1
    end
end

function intersect{T1<:Integer, T2<:Integer}(r::Range{T1}, s::Range1{T2})
    if step(r) == 0
        first(s) <= first(r) <= last(s) ? r : Range(first(r), 0, 0)
    elseif step(r) < 0
        reverse(intersect(s, reverse(r)))
    else
        intersect(s, r)
    end
end

function intersect{T1<:Integer, T2<:Integer}(r::Range{T1}, s::Range{T2})
    if length(r) == 0 || length(s) == 0
        return Range(first(r), step(r), 0)
    elseif step(s) < 0
        return intersect(r, reverse(s))
    elseif step(r) < 0
        return reverse(intersect(reverse(r), s))
    end

    start1 = first(r)
    step1 = step(r)
    stop1 = last(r)
    start2 = first(s)
    step2 = step(s)
    stop2 = last(s)
    a = lcm(step1, step2)

    if a == 0
        # One or both ranges have step 0.
        if step1 == 0 && step2 == 0
            return start1 == start2 ? r : Range(start1, 0, 0)
        elseif step1 == 0
            return start2 <= start1 <= stop2 && rem(start1 - start2, step2) == 0 ? r : Range(start1, 0, 0)
        else
            return start1 <= start2 <= stop1 && rem(start2 - start1, step1) == 0 ? (start2:step1:start2) : Range(start1, step1, 0)
        end
    end

    g, x, y = gcdx(step1, step2)

    if rem(start1 - start2, g) != 0
        # Unaligned, no overlap possible.
        return Range(start1, a, 0)
    end

    z = div(start1 - start2, g)
    b = start1 - x * z * step1
    # Possible points of the intersection of r and s are
    # ..., b-2a, b-a, b, b+a, b+2a, ...
    # Determine where in the sequence to start and stop.
    m = max(start1 + mod(b - start1, a), start2 + mod(b - start2, a))
    n = min(stop1 - mod(stop1 - b, a), stop2 - mod(stop2 - b, a))
    m:a:n
end

function intersect(r::Ranges, s::Ranges...)
    i = r
    for t in s
        i = intersect(i, t)
    end
    i
end

# findin (the index of intersection)
function _findin{T1<:Integer, T2<:Integer}(r::Ranges{T1}, span::Range1{T2})
    local ifirst
    local ilast
    fspan = first(span)
    lspan = last(span)
    fr = first(r)
    lr = last(r)
    sr = step(r)
    if sr > 0
        ifirst = fr >= fspan ? 1 : iceil((fspan-fr)/sr)+1
        ilast = lr <= lspan ? length(r) : length(r) - iceil((lr-lspan)/sr)
    elseif sr < 0
        ifirst = fr <= lspan ? 1 : iceil((lspan-fr)/sr)+1
        ilast = lr >= fspan ? length(r) : length(r) - iceil((lr-fspan)/sr)
    else
        ifirst = fr >= fspan ? 1 : length(r)+1
        ilast = fr <= lspan ? length(r) : 0
    end
    ifirst, ilast
end

function findin{T1<:Integer, T2<:Integer}(r::Range1{T1}, span::Range1{T2})
    ifirst, ilast = _findin(r, span)
    ifirst:ilast
end

function findin{T1<:Integer, T2<:Integer}(r::Range{T1}, span::Range1{T2})
    ifirst, ilast = _findin(r, span)
    ifirst:1:ilast
end

## linear operations on ranges ##

-(r::Ranges) = Range(-r.start, -step(r), r.len)

+(x::Real, r::Range ) = Range(x+r.start, r.step, r.len)
+(x::Real, r::Range1) = Range1(x+r.start, r.len)
+(r::Ranges, x::Real) = x+r

-(x::Real, r::Ranges) = Range(x-r.start, -step(r), r.len)
-(r::Range , x::Real) = Range(r.start-x, r.step, r.len)
-(r::Range1, x::Real) = Range1(r.start-x, r.len)

.*(x::Real, r::Ranges) = Range(x*r.start, x*step(r), r.len)
.*(r::Ranges, x::Real) = x*r

./(r::Ranges, x::Real) = Range(r.start/x, step(r)/x, r.len)

function +(r1::Ranges, r2::Ranges)
    if r1.len != r2.len
        error("argument dimensions must match")
    end
    Range(r1.start+r2.start, step(r1)+step(r2), r1.len)
end

function -(r1::Ranges, r2::Ranges)
    if r1.len != r2.len
        error("argument dimensions must match")
    end
    Range(r1.start-r2.start, step(r1)-step(r2), r1.len)
end

## non-linear operations on ranges ##

./(x::Number, r::Ranges) = [ x/y for y=r ]
./(r::Ranges, y::Number) = [ x/y for x=r ]
function ./(r::Ranges, s::Ranges)
    if length(r) != length(s)
        error("argument dimensions must match")
    end
    [ r[i]/s[i] for i = 1:length(r) ]
end

function .*{T<:Number,S<:Number}(r::Ranges{T}, s::Ranges{S})
    if length(r) != length(s)
        error("argument dimensions must match")
    end
    [ r[i]*s[i] for i = 1:length(r) ]
end

.^(x::Number, r::Ranges) = [ x^y for y=r ]
.^(r::Ranges, y::Number) = [ x^y for x=r ]
function .^{T<:Number,S<:Number}(r::Ranges{T}, s::Ranges{S})
    if length(r) != length(s)
        error("argument dimensions must match")
    end
    [ r[i]^s[i] for i = 1:length(r) ]
end

## concatenation ##

function vcat{T}(r::Ranges{T})
    n = length(r)
    a = Array(T,n)
    i = 1
    for x in r
        a[i] = x
        i += 1
    end
    return a
end

convert{T}(::Type{Array{T,1}}, r::Ranges{T}) = vcat(r)

function vcat{T}(rs::Ranges{T}...)
    n = sum(length,rs)::Int
    a = Array(T,n)
    i = 1
    for r in rs
        for x in r
            a[i] = x
            i += 1
        end
    end
    return a
end

reverse{T<:Real}(r::Ranges{T}) = Range(last(r), -step(r), r.len)

## sorting ##

issorted(r::Range1) = true
issorted(r::Ranges) = step(r) >= 0

sort(r::Range1) = r
sort!(r::Range1) = r

sort{T<:Real}(r::Range{T}) = issorted(r) ? r : reverse(r)

sortperm(r::Range1) = 1:length(r)
sortperm{T<:Real}(r::Range{T}) = issorted(r) ? (1:1:length(r)) : (length(r):-1:1)

function sum{T<:Real}(r::Ranges{T})
    l = length(r)
    return l * first(r) + step(r) * div(l * (l - 1), 2)
end

function map!(f::Callable, dest, r::Ranges)
    i = 1
    for ri in r dest[i] = f(ri); i+=1; end
    dest
end

function map_range_to!(f::Callable, first, dest, r::Ranges, state)
    dest[1] = first
    i = 2
    while !done(r, state)
        ri, state = next(r, state)
        dest[i] = f(ri)
        i += 1
    end
    dest
end

function map(f::Callable, r::Ranges)
    if isempty(r); return {}; end
    state = start(r)
    (ri, state) = next(r, state)
    first = f(ri)
    map_range_to!(f, first, Array(typeof(first), length(r)), r, state)
end

function in(x, r::Ranges)
    n = step(r) == 0 ? 1 : iround((x-first(r))/step(r))+1
    n >= 1 && n <= length(r) && r[n] == x
end

in{T<:Integer}(x, r::Ranges{T}) = isinteger(x) && x>=minimum(r) && x<=maximum(r) && (step(r)==0 || mod(int(x)-first(r),step(r))==0)