This file is indexed.

/usr/lib/perl5/AI/FANN.pm is in libai-fann-perl 0.10-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
package AI::FANN;

our $VERSION = '0.10';

use strict;
use warnings;
use Carp;

require XSLoader;
XSLoader::load('AI::FANN', $VERSION);

use Exporter qw(import);

{
    my @constants = _constants();

    our %EXPORT_TAGS = ( 'all' => [ @constants ] );
    our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } );

    require constant;
    for my $constant (@constants) {
        constant->import($constant, $constant);
    }
}

sub num_neurons {

    @_ == 1 or croak "Usage: AI::FANN::get_neurons(self)";

    my $self = shift;
    if (wantarray) {
        map { $self->layer_num_neurons($_) } (0 .. $self->num_layers - 1);
    }
    else {
        $self->total_neurons;
    }
}

1;
__END__

=head1 NAME

AI::FANN - Perl wrapper for the Fast Artificial Neural Network library

=head1 SYNOPSIS

Train...

  use AI::FANN qw(:all);

  # create an ANN with 2 inputs, a hidden layer with 3 neurons and an
  # output layer with 1 neuron:
  my $ann = AI::FANN->new_standard(2, 3, 1);

  $ann->hidden_activation_function(FANN_SIGMOID_SYMMETRIC);
  $ann->output_activation_function(FANN_SIGMOID_SYMMETRIC);

  # create the training data for a XOR operator:
  my $xor_train = AI::FANN::TrainData->new( [-1, -1], [-1],
                                            [-1, 1], [1],
                                            [1, -1], [1],
                                            [1, 1], [-1] );

  $ann->train_on_data($xor_train, 500000, 1000, 0.001);

  $ann->save("xor.ann");

Run...

  use AI::FANN;

  my $ann = AI::FANN->new_from_file("xor.ann");

  for my $a (-1, 1) {
    for my $b (-1, 1) {
      my $out = $ann->run([$a, $b]);
      printf "xor(%f, %f) = %f\n", $a, $b, $out->[0];
    }
  }

=head1 DESCRIPTION


  WARNING:  THIS IS A VERY EARLY RELEASE,
            MAY CONTAIN CRITICAL BUGS!!!

AI::FANN is a Perl wrapper for the Fast Artificial Neural Network
(FANN) Library available from L<http://fann.sourceforge.net>:

  Fast Artificial Neural Network Library is a free open source neural
  network library, which implements multilayer artificial neural
  networks in C with support for both fully connected and sparsely
  connected networks. Cross-platform execution in both fixed and
  floating point are supported. It includes a framework for easy
  handling of training data sets. It is easy to use, versatile, well
  documented, and fast. PHP, C++, .NET, Python, Delphi, Octave, Ruby,
  Pure Data and Mathematica bindings are available. A reference manual
  accompanies the library with examples and recommendations on how to
  use the library. A graphical user interface is also available for
  the library.

AI::FANN object oriented interface provides an almost direct map to
the C library API. Some differences have been introduced to make it
more perlish:

=over 4

=item *

Two classes are used: C<AI::FANN> that wraps the C C<struct fann> type
and C<AI::FANN::TrainData> that wraps C<struct fann_train_data>.

=item *

Prefixes and common parts on the C function names referring to those
structures have been removed. For instance C
C<fann_train_data_shuffle> becomes C<AI::FANN::TrainData::shuffle> that
will be usually called as...

  $train_data->shuffle;

=item *

Pairs of C get/set functions are wrapped in Perl with dual accessor
methods named as the attribute (and without any C<set_>/C<get_>
prefix). For instance:

  $ann->bit_fail_limit($limit); # sets the bit_fail_limit

  $bfl = $ann->bit_fail_limit;  # gets the bit_fail_limit


Pairs of get/set functions requiring additional indexing arguments are
also wrapped inside dual accessors:

  # sets:
  $ann->neuron_activation_function($layer_ix, $neuron_ix, $actfunc);

  # gets:
  $af = $ann->neuron_activation_function($layer_ix, $neuron_ix);

Important: note that on the Perl version, the optional value argument
is moved to the last position (on the C version of the C<set_> method
it is usually the second argument).

=item *

Some functions have been renamed to make the naming more consistent
and to follow Perl conventions:

  C                                      Perl
  -----------------------------------------------------------
  fann_create_from_file               => new_from_file
  fann_create_standard                => new_standard
  fann_get_num_input                  => num_inputs
  fann_get_activation_function        => neuron_activation_function
  fann_set_activation_function        => ^^^
  fann_set_activation_function_layer  => layer_activation_function
  fann_set_activation_function_hidden => hidden_activation_function
  fann_set_activation_function_output => output_activation_function

=item *

Boolean methods return true on success and undef on failure.

=item *

Any error reported from the C side is automaticaly converter to a Perl
exception. No manual error checking is required after calling FANN
functions.

=item *

Memory management is automatic, no need to call destroy methods.

=item *

Doubles are used for computations (using floats or fixed
point types is not supported).

=back

=head1 CONSTANTS

All the constants defined in the C documentation are exported from the module:

  # import all...
  use AI::FANN ':all';

  # or individual constants...
  use AI::FANN qw(FANN_TRAIN_INCREMENTAL FANN_GAUSSIAN);

The values returned from this constant subs yield the integer value on
numerical context and the constant name when used as strings.

The constants available are:

  # enum fann_train_enum:
  FANN_TRAIN_INCREMENTAL
  FANN_TRAIN_BATCH
  FANN_TRAIN_RPROP
  FANN_TRAIN_QUICKPROP

  # enum fann_activationfunc_enum:
  FANN_LINEAR
  FANN_THRESHOLD
  FANN_THRESHOLD_SYMMETRIC
  FANN_SIGMOID
  FANN_SIGMOID_STEPWISE
  FANN_SIGMOID_SYMMETRIC
  FANN_SIGMOID_SYMMETRIC_STEPWISE
  FANN_GAUSSIAN
  FANN_GAUSSIAN_SYMMETRIC
  FANN_GAUSSIAN_STEPWISE
  FANN_ELLIOT
  FANN_ELLIOT_SYMMETRIC
  FANN_LINEAR_PIECE
  FANN_LINEAR_PIECE_SYMMETRIC
  FANN_SIN_SYMMETRIC
  FANN_COS_SYMMETRIC
  FANN_SIN
  FANN_COS

  # enum fann_errorfunc_enum:
  FANN_ERRORFUNC_LINEAR
  FANN_ERRORFUNC_TANH

  # enum fann_stopfunc_enum:
  FANN_STOPFUNC_MSE
  FANN_STOPFUNC_BIT

=head1 CLASSES

The classes defined by this package are:

=head2 AI::FANN

Wraps C C<struct fann> types and provides the following methods
(consult the C documentation for a full description of their usage):

=over 4

=item AI::FANN->new_standard(@layer_sizes)

-

=item AI::FANN->new_sparse($connection_rate, @layer_sizes)

-

=item AI::FANN->new_shortcut(@layer_sizes)

-

=item AI::FANN->new_from_file($filename)

-

=item $ann->save($filename)

-

=item $ann->run($input)

C<input> is an array with the input values.

returns an array with the values on the output layer.

  $out = $ann->run([1, 0.6]);
  print "@$out\n";

=item $ann->randomize_weights($min_weight, $max_weight)

=item $ann->train($input, $desired_output)

C<$input> and C<$desired_output> are arrays.

=item $ann->test($input, $desired_output)

C<$input> and C<$desired_output> are arrays.

It returns an array with the values of the output layer.

=item $ann->reset_MSE

-

=item $ann->train_on_file($filename, $max_epochs, $epochs_between_reports, $desired_error)

-

=item $ann->train_on_data($train_data, $max_epochs, $epochs_between_reports, $desired_error)

C<$train_data> is a AI::FANN::TrainData object.

=item $ann->cascadetrain_on_file($filename, $max_neurons, $neurons_between_reports, $desired_error)

-

=item $ann->cascadetrain_on_data($train_data, $max_neurons, $neurons_between_reports, $desired_error)

C<$train_data> is a AI::FANN::TrainData object.

=item $ann->train_epoch($train_data)

C<$train_data> is a AI::FANN::TrainData object.

=item $ann->print_connections

-

=item $ann->print_parameters

-

=item $ann->cascade_activation_functions()

returns a list of the activation functions used for cascade training.

=item $ann->cascade_activation_functions(@activation_functions)

sets the list of activation function to use for cascade training.

=item $ann->cascade_activation_steepnesses()

returns a list of the activation steepnesses used for cascade training.

=item $ann->cascade_activation_steepnesses(@activation_steepnesses)

sets the list of activation steepnesses to use for cascade training.

=item $ann->training_algorithm

=item $ann->training_algorithm($training_algorithm)

-

=item $ann->train_error_function

=item $ann->train_error_function($error_function)

-

=item $ann->train_stop_function

=item $ann->train_stop_function($stop_function)

-

=item $ann->learning_rate

=item $ann->learning_rate($rate)

-

=item $ann->learning_momentum

=item $ann->learning_momentum($momentun)

-

=item $ann->bit_fail_limit

=item $ann->bit_fail_limit($bfl)

-

=item $ann->quickprop_decay

=item $ann->quickprop_decay($qpd)

-

=item $ann->quickprop_mu

=item $ann->quickprop_mu($qpmu)

-

=item $ann->rprop_increase_factor

=item $ann->rprop_increase_factor($factor)

-

=item $ann->rprop_decrease_factor

=item $ann->rprop_decrease_factor($factor)

-

=item $ann->rprop_delta_min

=item $ann->rprop_delta_min($min)

-

=item $ann->rprop_delta_max

=item $ann->rprop_delta_max($max)

-

=item $ann->num_inputs

-

=item $ann->num_outputs

-

=item $ann->total_neurons

-

=item $ann->total_connections

-

=item $ann->MSE

-

=item $ann->bit_fail

-

=item cascade_output_change_fraction

=item cascade_output_change_fraction($fraction)

-

=item $ann->cascade_output_stagnation_epochs

=item $ann->cascade_output_stagnation_epochs($epochs)

-

=item $ann->cascade_candidate_change_fraction

=item $ann->cascade_candidate_change_fraction($fraction)

-

=item $ann->cascade_candidate_stagnation_epochs

=item $ann->cascade_candidate_stagnation_epochs($epochs)

-

=item $ann->cascade_weight_multiplier

=item $ann->cascade_weight_multiplier($multiplier)

-

=item $ann->cascade_candidate_limit

=item $ann->cascade_candidate_limit($limit)

-

=item $ann->cascade_max_out_epochs

=item $ann->cascade_max_out_epochs($epochs)

-

=item $ann->cascade_max_cand_epochs

=item $ann->cascade_max_cand_epochs($epochs)

-

=item $ann->cascade_num_candidates

-

=item $ann->cascade_num_candidate_groups

=item $ann->cascade_num_candidate_groups($groups)

-

=item $ann->neuron_activation_function($layer_index, $neuron_index)

=item $ann->neuron_activation_function($layer_index, $neuron_index, $activation_function)

-

=item $ann->layer_activation_function($layer_index, $activation_function)

-

=item $ann->hidden_activation_function($layer_index, $activation_function)

-

=item $ann->output_activation_function($layer_index, $activation_function)

-

=item $ann->neuron_activation_steepness($layer_index, $neuron_index)

=item $ann->neuron_activation_steepness($layer_index, $neuron_index, $activation_steepness)

-

=item $ann->layer_activation_steepness($layer_index, $activation_steepness)

-

=item $ann->hidden_activation_steepness($layer_index, $activation_steepness)

-

=item $ann->output_activation_steepness($layer_index, $activation_steepness)

-

=item $ann->num_layers

returns the number of layers on the ANN

=item $ann->layer_num_neurons($layer_index)

return the number of neurons on layer C<$layer_index>.

=item $ann->num_neurons

return a list with the number of neurons on every layer

=back

=head2 AI::FANN::TrainData

Wraps C C<struct fann_train_data> and provides the following method:

=over 4

=item AI::FANN::TrainData->new_from_file($filename)

-

=item AI::FANN::TrainData->new($input1, $output1 [, $input2, $output2, ...])

C<$inputx> and C<$outputx> are arrays with the values of the input and
output layers.

=item AI::FANN::TrainData->new_empty($num_data, $num_inputs, $num_outputs)

returns a new AI::FANN::TrainData object of the sizes indicated on the
arguments. The initial values of the data contained inside the object
are random and should be set before using the train data object for
training an ANN.

=item $train->data($index)

returns two arrays with the values of the input and output layer
respectively for that index.

=item $train->data($index, $input, $output)

C<$input> and C<$output> are two arrays.

The input and output layers at the index C<$index> are set to the
values on these arrays.

=item $train->shuffle

-

=item $train->scale_input($new_min, $new_max)

-

=item $train->scale_output($new_min, $new_max)

-

=item $train->scale($new_min, $new_max)

-

=item $train->subset($pos, $length)

-

=item $train->num_inputs

-

=item $train->num_outputs

-

=item $train->length

-

=back

=head1 INSTALLATION

See the README file for instruction on installing this module.

=head1 BUGS

Only tested on Linux.

I/O is not performed through PerlIO because the C library doesn't have
the required infrastructure to do that.

Send bug reports to my email address or use the CPAN RT system.

=head1 SEE ALSO

FANN homepage at L<http://leenissen.dk/fann/index.php>.

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2006-2008 by Salvador FandiE<ntilde>o
(sfandino@yahoo.com).

This Perl module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself, either Perl version
5.8.8 or, at your option, any later version of Perl 5 you may have
available.

The Fast Artificial Neural Network Library (FANN)
Copyright (C) 2003-2006 Steffen Nissen (lukesky@diku.dk) and others.

Distributed under the GNU Lesser General Public License.

=cut