/usr/include/anfo/misc_streams.h is in libanfo0-dev 0.98-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 | #ifndef INCLUDED_MISC_STREAMS_H
#define INCLUDED_MISC_STREAMS_H
#include "stream.h"
#include <deque>
#include <map>
namespace streams {
using namespace std ;
inline int eff_length( const Read& r )
{ return ( r.has_trim_right() ? r.trim_right() : r.sequence().size() ) - r.trim_left() ; }
//! \brief compares hits by smallest genome coordinate
//! Comparison is first done lexically on the subject name, then on the
//! smallest coordinate that's part of the alignment, then on the
//! alignment length. A particular genome can be selected, if this
//! isn't done, we sort on the best hit and compare the genome name even
//! before the subject name.
class by_genome_coordinate {
private:
const vector<string> gs_ ;
bool compare( const Result &a, const Result &b )
{
const Hit *u = hit_to( a ), *v = hit_to( b ) ;
if( u && !v ) return true ;
if( !u ) return false ;
if( u->genome_name() < v->genome_name() ) return true ;
if( v->genome_name() < u->genome_name() ) return false ;
return compare( *u, *v, a.read(), b.read(), false ) ;
}
bool compare( const Result &a, const Result &b, const string& g )
{
const Hit *u = hit_to( a, g ), *v = hit_to( b, g ) ;
if( u && !v ) return true ;
if( !u ) return false ;
return compare( *u, *v, a.read(), b.read(), false ) ;
}
bool compare( const Hit& u, const Hit& v, const Read& a, const Read& b, bool def )
{
if( u.sequence() < v.sequence() ) return true ;
if( v.sequence() < u.sequence() ) return false ;
if( u.start_pos() < v.start_pos() ) return true ;
if( v.start_pos() < u.start_pos() ) return false ;
if( u.aln_length() < v.aln_length() ) return true ;
if( v.aln_length() < u.aln_length() ) return false ;
return def ;
}
public:
by_genome_coordinate( const string &g ) : gs_( &g, &g+1 ) {}
by_genome_coordinate( const vector<string> &gs ) : gs_(gs) {}
by_genome_coordinate() : gs_() {}
bool operator() ( const Result *a, const Result *b ) {
if( gs_.empty() ) return compare( *a, *b ) ;
for( vector<string>::const_iterator i = gs_.begin(), e = gs_.end() ; i != e ; ++i )
{
if( compare( *a, *b, *i ) ) return true ;
if( compare( *b, *a, *i ) ) return false ;
}
return false ;
}
void tag_header( output::Header& h ) {
h.clear_is_sorted_by_name() ;
h.clear_is_sorted_by_coordinate() ;
if( gs_.empty() ) {
h.set_is_sorted_by_all_genomes( true ) ;
}
else
{
h.clear_is_sorted_by_all_genomes() ;
for( vector<string>::const_iterator i = gs_.begin(), e = gs_.end() ; i != e ; ++i )
h.add_is_sorted_by_coordinate( *i ) ;
}
}
bool is_sorted( const output::Header& h ) {
if( gs_.empty() ) return h.is_sorted_by_all_genomes() ;
if( (int)gs_.size() != h.is_sorted_by_coordinate_size() ) return false ;
return equal( gs_.begin(), gs_.end(), h.is_sorted_by_coordinate().begin() ) ;
}
bool operator()( const Hit& u, const Hit& v, const Read& a, const Read& b )
{
if( u.genome_name() < v.genome_name() ) return true ;
if( v.genome_name() < u.genome_name() ) return false ;
return compare( u, v, a, b, eff_length( a ) < eff_length( b ) ) ;
}
} ;
struct by_seqid {
bool operator() ( const Result *a, const Result *b ) {
assert( a && b ) ;
return a->read().seqid() < b->read().seqid() ;
}
void tag_header( output::Header& h ) {
h.clear_is_sorted_by_coordinate() ;
h.set_is_sorted_by_name( true ) ;
}
bool is_sorted( const output::Header& h ) {
return h.is_sorted_by_name() ;
}
} ;
//! \brief merges sorted streams into a sorted stream
//! What to compare on is read from the input streams' header. If they
//! are unsorted, we fail. Else we check that they are sorted in the
//! same way and merge accordingly.
//!
//! \note All input streams must necessarily be opened at the same time.
//! In principle, we could merge smaller chunks into temporary
//! files to avoid hitting the file descriptor limit, but there
//! hasn't been a practical need to do that yet.
class MergeStream : public StreamBundle
{
private:
deque< Result > rs_ ;
enum { unknown, by_name, by_coordinate } mode_ ;
vector<string> gs_ ;
public:
MergeStream() : mode_( unknown ) {}
virtual Header fetch_header() ;
virtual Result fetch_result() ;
//! \todo totally broken, need to think about how to keep the
//! necessary information.
virtual Object get_summary() const { return False ; }
virtual string type_name() const { return "MergeStream" ; }
} ;
//! \brief merges multiple streams by taking the best hit
//! If asked for a result, this class takes results from each of the
//! streams in turn, until one sequence has received an entry from each.
//! This sequence is then delivered. Everything works fine, as long as
//! the sequence names come in in roughly the same order and every name
//! is contained in every input. Else it still works, but eats memory.
//! This is best used to merge chunks of work done by independent
//! processes where the order of records hasn't been disturbed too much
//! (multithreading and the implied slight shuffle is fine).
class NearSortedJoin : public StreamBundle
{
private:
typedef map< string, pair< size_t, Result > > Buffer ;
Buffer buffer_ ;
size_t nread_, nwritten_, nstreams_ ;
deque< StreamHolder >::iterator cur_input_ ;
Chan progress_ ;
public:
NearSortedJoin() : nread_(0), nwritten_(0), nstreams_(0) {}
virtual Header fetch_header() ;
virtual Result fetch_result() ;
} ;
//! \brief presents a container as an input stream
//! The container must be of pointers to \c Result, the stream acts as
//! input stream. A suitable header and footer are supplied at
//! construction time.
template< typename I > class ContainerStream : public Stream
{
private:
I cur_, end_ ;
unsigned total_, done_ ;
Chan chan_ ;
public:
ContainerStream( const Header &hdr, I begin, I end, const Footer &foot )
: cur_( begin ), end_( end ), total_( std::distance( begin, end ) ), done_(0)
{
hdr_ = hdr ;
foot_ = foot ;
state_ = cur_ == end_ ? end_of_stream : have_output ;
}
virtual Result fetch_result() {
if( ++done_ % 1024 == 0 )
{
stringstream s ;
s << "(mem) " << done_ << "/" << total_
<< " (" << (int)(100*done_/total_) << "%)" ;
chan_( Console::info, s.str() ) ;
}
Result r = **cur_ ;
++cur_ ;
if( cur_ == end_ ) state_ = end_of_stream ;
return r ;
}
virtual string type_name() const { return "ContainerStream" ; }
} ;
extern unsigned SortingStream__ninstances ;
//! \brief stream filter that sorts its input
//! This stream is intended to sort large amounts of data. To do that,
//! it performs a quick sort on blocks that fit into memory (the maximum
//! size is configured at construction time), writes them out to
//! temporary files, then reads them back in and does a merge sort. If
//! too many files are open (as counted by \c AnfoReader, again
//! configurable at construction time), some temporary files are merge
//! sorted into a bigger one.
template <class Comp> class SortingStream : public Stream
{
private:
typedef deque< Holder< streams::Stream > > MergeableQueue ;
typedef map< unsigned, MergeableQueue > MergeableQueues ;
typedef deque< Result* > ScratchSpace ;
//! Storage to perform quicksort in.
ScratchSpace scratch_space_ ;
//! We keep multiple queues of streams ordered and separated by
//! the number of times they have been merged. This way we
//! don't merge the stuff over and over, and instead tend to do
//! a merge that gives the greatest reduction in number of open
//! files with least amount of IO. The key is the number of
//! times a file has already been merged with others, the value
//! is just a set of streams.
MergeableQueues mergeable_queues_ ;
Holder< Stream > final_stream_ ;
uint64_t total_scratch_size_ ;
unsigned max_que_size_ ;
unsigned num_open_files_ ;
unsigned max_arr_size_ ;
Comp comp_ ;
//! \brief quicksort the scratch area
//! \internal
void sort_scratch() {
if( scratch_space_.size() > 1 )
{
std::stringstream s ;
s << "SortingStream: qsorting " << scratch_space_.size() << " results" ;
console.output( Console::notice, s.str() ) ;
sort( scratch_space_.begin(), scratch_space_.end(), comp_ ) ;
ScratchSpace::iterator o = scratch_space_.begin() ;
for( ScratchSpace::const_iterator i = scratch_space_.begin()+1,
e = scratch_space_.end() ;i != e ; ++i )
{
if( (*i)->read().seqid() == (*o)->read().seqid() )
merge_sensibly( **o, **i ) ;
else *(++o) = *i ;
}
scratch_space_.erase( ++o, scratch_space_.end() ) ;
}
}
void enqueue_stream( streams::StreamHolder, int = 0 ) ;
void flush_scratch() ;
virtual ~SortingStream()
{
for_each( scratch_space_.begin(), scratch_space_.end(), delete_ptr<Result>() ) ;
--SortingStream__ninstances ;
}
public:
SortingStream( unsigned as = 256, unsigned qs = 256, Comp comp = Comp() ) :
final_stream_(), total_scratch_size_(0), max_que_size_(qs),
num_open_files_(0), max_arr_size_( as), comp_( comp )
{ foot_.set_exit_code( 0 ) ; ++SortingStream__ninstances ; }
virtual void put_header( const Header& h ) { Stream::put_header( h ) ; comp_.tag_header( hdr_ ) ; }
virtual void put_footer( const Footer& ) ;
virtual void put_result( const Result& r ) {
scratch_space_.push_back( new Result( r ) ) ;
total_scratch_size_ += scratch_space_.back()->SpaceUsed() ;
if( (total_scratch_size_ >> 20) >= max_arr_size_ ) flush_scratch() ;
}
virtual Result fetch_result()
{
Result r = final_stream_->fetch_result() ;
state_ = final_stream_->get_state() ;
return r ;
}
virtual Footer fetch_footer() { merge_sensibly( foot_, final_stream_->fetch_footer() ) ; return foot_ ; }
virtual Object get_summary() const { return final_stream_->get_summary() ; }
} ;
template < typename Comp > void SortingStream<Comp>::flush_scratch()
{
sort_scratch() ;
string tempname ;
int fd = mktempfile( &tempname ) ;
{
ContainerStream< deque< Result* >::const_iterator >
sa( hdr_, scratch_space_.begin(), scratch_space_.end(), foot_ ) ;
ChunkedWriter out( fd, 25, tempname.c_str() ) ;
console.output( Console::notice, "SortingStream: Writing to tempfile " + tempname ) ;
transfer( sa, out ) ;
}
throw_errno_if_minus1( lseek( fd, 0, SEEK_SET ), "seeking in ", tempname.c_str() ) ;
google::protobuf::io::FileInputStream* is = new google::protobuf::io::FileInputStream( fd ) ;
is->SetCloseOnDelete( true ) ;
enqueue_stream( new UniversalReader( tempname, is ), 1 ) ;
for_each( scratch_space_.begin(), scratch_space_.end(), delete_ptr<Result>() ) ;
scratch_space_.clear() ;
total_scratch_size_ = 0 ;
}
template < typename Comp > void SortingStream<Comp>::enqueue_stream( streams::StreamHolder s, int level )
{
mergeable_queues_[ level ].push_back( s ) ;
if( ++num_open_files_ > max_que_size_ ) {
// get the biggest bin, we'll merge everything below that
unsigned max_bin = 0 ;
for( MergeableQueues::const_iterator i = mergeable_queues_.begin() ;
i != mergeable_queues_.end() ; ++i )
if( i->second.size() > mergeable_queues_[max_bin].size() )
max_bin = i->first ;
unsigned total_inputs = 0 ;
for( MergeableQueues::iterator i = mergeable_queues_.begin() ; i->first <= max_bin ; ++i )
total_inputs += i->second.size() ;
// we must actually make progress, and more than just a
// single stream must be merged to avoid quadratic behaviour
// (only important in a weird corner case, in which we simply
// use one more file descriptor)
if( total_inputs > 2 ) {
string fname ;
int fd = mktempfile( &fname ) ;
std::stringstream s ;
s << "SortingStream: Merging bins 0.." << max_bin << " to tempfile " << fname ;
console.output( Console::notice, s.str() ) ;
{
streams::MergeStream ms ;
for( MergeableQueues::iterator i = mergeable_queues_.begin() ; i->first <= max_bin ; ++i )
{
num_open_files_ -= i->second.size() ;
for( size_t j = 0 ; j != i->second.size() ; ++j )
ms.add_stream( i->second[j] ) ;
i->second.clear() ;
}
ChunkedWriter out( fd, 25, fname.c_str() ) ;
transfer( ms, out ) ;
}
throw_errno_if_minus1( lseek( fd, 0, SEEK_SET ), "seeking in ", fname.c_str() ) ;
google::protobuf::io::FileInputStream* is = new google::protobuf::io::FileInputStream( fd ) ;
is->SetCloseOnDelete( true ) ;
enqueue_stream( new UniversalReader( fname, is ), max_bin + 1 ) ;
}
}
}
//! \brief ends the input, initiates sorting
//! Only when the input ends can we completely sort it, so setting the
//! footer switches to output mode. Here we collect the temporary files
//! we've written and become a \c MergeStream.
template < typename Comp > void SortingStream<Comp>::put_footer( const Footer& f )
{
Stream::put_footer( f ) ;
bool need_merge = false ;
for( MergeableQueues::const_iterator i = mergeable_queues_.begin() ;
!need_merge && i != mergeable_queues_.end() ; ++i )
if( !i->second.empty() ) need_merge = true ;
if( need_merge )
{
// We have to be careful about buffering; if more than one
// SortingStream is active, we could run out of RAM. Therefore, if
// we're alone, we sort and add a a stream. Else we flush to
// temporary storage. (Also, if the temporay space is empty, we
// *always* add the ContainerStream, otherwise we get strange
// effects if the output turns out to be empty.)
Holder< MergeStream > m( new MergeStream ) ;
if( scratch_space_.begin() != scratch_space_.end() && SortingStream__ninstances > 1 )
flush_scratch() ;
else {
console.output( Console::notice, "SortingStream: final sort" ) ;
sort_scratch() ;
m->add_stream( new ContainerStream< deque< Result* >::const_iterator >(
hdr_, scratch_space_.begin(), scratch_space_.end(), foot_ ) ) ;
}
// add any streams that have piled up
for( MergeableQueues::const_iterator i = mergeable_queues_.begin() ; i != mergeable_queues_.end() ; ++i )
for( MergeableQueue::const_iterator j = i->second.begin() ; j != i->second.end() ; ++j )
m->add_stream( *j ) ;
mergeable_queues_.clear() ;
if( SortingStream__ninstances == 1 )
{
// we're alone. delegate directly to MergeStream
console.output( Console::notice, "SortingStream: merging everything to output" ) ;
final_stream_ = m ;
}
else
{
// not alone. We'll conserve file handles by merging everything
// into a temporary file and opening that.
string fname ;
int fd = mktempfile( &fname ) ;
std::stringstream s ;
s << "SortingStream: Merging everything to tempfile " << fname ;
console.output( Console::notice, s.str() ) ;
ChunkedWriter out( fd, 25, fname.c_str() ) ;
transfer( *m, out ) ;
num_open_files_ = 1 ;
throw_errno_if_minus1( lseek( fd, 0, SEEK_SET ), "seeking in ", fname.c_str() ) ;
google::protobuf::io::FileInputStream* is = new google::protobuf::io::FileInputStream( fd ) ;
is->SetCloseOnDelete( true ) ;
final_stream_ = new UniversalReader( fname, is ) ;
}
}
// nothing to merge, just the scratch space
else if( scratch_space_.begin() != scratch_space_.end() && SortingStream__ninstances > 1 )
{
// not alone. We'll conserve memory by writing to a
// temporary file and opening that.
flush_scratch() ;
console.output( Console::notice, "SortingStream: output comes from single temporary file" ) ;
final_stream_ = mergeable_queues_[1].front() ;
}
else {
// alone, we'll use a container stream directly
console.output( Console::notice, "SortingStream: final sort" ) ;
sort_scratch() ;
final_stream_ = new ContainerStream< deque< Result* >::const_iterator >(
hdr_, scratch_space_.begin(), scratch_space_.end(), foot_ ) ;
console.output( Console::notice, "SortingStream: using scratch space for output" ) ;
}
final_stream_->fetch_header() ;
state_ = final_stream_->get_state() ;
}
class RepairHeaderStream : public Stream
{
private:
string editor_ ;
public:
RepairHeaderStream( const string &e ) : editor_( e ) {}
virtual void put_header( const Header& ) ;
} ;
class FanOut : public StreamBundle
{
public:
virtual void put_header( const Header& ) ;
virtual void put_result( const Result& ) ;
virtual void put_footer( const Footer& ) ;
virtual Footer fetch_footer() ;
} ;
class Compose : public StreamBundle
{
public:
virtual state get_state() ;
virtual void put_header( const Header& ) ;
virtual void put_result( const Result& r ) { streams_.front()->put_result( r ) ; get_state() ; }
virtual void put_footer( const Footer& f ) { streams_.front()->put_footer( f ) ; get_state() ; }
virtual Header fetch_header() ;
virtual Result fetch_result() { return streams_.back()->fetch_result() ; }
virtual Footer fetch_footer() { return streams_.back()->fetch_footer() ; }
virtual string type_name() const { return "Compose" ; }
} ;
class StatStream : public Stream
{
private:
unsigned total_, mapped_, mapped_u_, different_ ;
uint64_t bases_, bases_gc_, bases_m_, bases_gc_m_ ;
uint64_t bases_squared_, bases_m_squared_ ;
public:
StatStream()
: total_(0), mapped_(0), mapped_u_(0), different_(0)
, bases_(0), bases_gc_(0), bases_m_(0), bases_gc_m_(0)
, bases_squared_(0), bases_m_squared_(0) {}
virtual void put_result( const Result& ) ;
virtual Object get_summary() const ;
} ;
//! \brief calculates divergence
//! Divergence is calculated by the Green Triangulation method. Two
//! genomes are needed (primary and secondary) and alignments to both of
//! them. Differences are counted (all equal, either sequence
//! different, all different), then error corrected (math stolen from
//! dropin_AHA.pl) and turned into divergence of the last common
//! ancestor, expressed as fraction of total divergence between primary
//! and secondary genome.
class DivergenceStream : public Stream
{
private:
string primary_genome_, secondary_genome_ ;
int chop_ ;
bool ancient_ ;
int64_t b1, b2, b3, b4, b5 ;
public:
DivergenceStream( const string& primary, const string& secondary, int chop )
: primary_genome_( primary ), secondary_genome_( secondary ), chop_( chop )
, b1(0), b2(0), b3(0), b4(0), b5(0) {}
virtual void put_header( const Header& ) ;
virtual void put_result( const Result& ) ;
virtual Object get_summary() const ;
} ;
class MismatchStats : public Stream
{
private:
int mat_[4][4] ;
public:
MismatchStats() { memset( mat_, 0, sizeof( mat_ ) ) ; }
virtual void put_result( const Result& ) ;
virtual Object get_summary() const ;
} ;
//! \brief checks for hits to homologous regions
//! This filter reads two UCSC Chain files, breaks them down into
//! blocks, discards overlapping blocks (so the mapping becomes 1:1),
//! then discard blocks from the first chain that wouldn't map back
//! according to the second chain.
//!
//! The filter proper verifies that the alignment to the first genome is
//! mostly covered by blocks, then maps them and verifies that they
//! cover the alignment to the second genome. A flag is set if either
//! alignment is missing or either test fails.
//!
//! \todo I swear, one of those days I'll implement a symbol table for
//! those repeated chromosome names.
class AgreesWithChain : public Filter
{
private:
string left_genome_, right_genome_ ;
struct Entry ;
typedef map< unsigned, Entry > Chains ; // =^= left_start
typedef map< string, Chains > Map1 ; // =^= left_chr
// Chains have a hierarchical structure: below any chain, there
// can be a collection of more. We have one such top-level
// collection per chromosome.
struct Entry {
unsigned left_end ;
unsigned right_start ;
unsigned right_end : 31 ;
unsigned strand : 1 ;
string right_chr ;
Chains nested ;
} ;
Map1 map_ ;
static Chains::iterator find_any_most_specific_overlap(
unsigned start, unsigned end, Chains *chains ) ;
public:
//! \brief constructs chain filter
//! \param p primary genome (e.g. hg18)
//! \param s secondary genome (e.g. pt2)
//! \param c chain from \c p to \c s (this means \c p is target,
//! \c s is query), in the form of
//! \param d chain from \c s to \c p
AgreesWithChain( const string& l, const string& r, const pair<istream*,string>& s ) ;
virtual bool xform( Result& ) ;
} ;
class RegionFilter : public HitFilter
{
private:
typedef std::map< unsigned, unsigned > Regions ; // end(!) & start
typedef std::map< std::string, Regions > Regions2 ; // chromosome
typedef std::map< std::string, Regions2 > Regions3 ; // filename
static Regions3 all_regions ;
Regions2 *my_regions ;
public:
RegionFilter( const pair< istream*, string >& ) ;
//! \brief looks for a region overlapping the current alignment
//! This will only work correctly for non-overlapping
//! annotations. Deal with it.
bool inside( const Hit& h )
{
unsigned x = h.start_pos() ;
const Regions &r = (*my_regions)[ h.sequence() ] ;
Regions::const_iterator i = r.lower_bound( x ) ;
// we now got the leftmost region whose end is to the right
// of our start. if no such thing exists, nothing overlaps.
if( i == r.end() ) return false ;
// now check if what we got actually overlaps. it does if
// it starts before our alignment ends.
return i->second <= x + abs(h.aln_length()) && i->first >= x ;
}
} ;
class InsideRegion : public RegionFilter
{
public:
InsideRegion( const pair< istream*, string > &p ) : RegionFilter( p ) {}
virtual bool keep( const Hit& h ) { return inside( h ) ; }
} ;
class OutsideRegion : public RegionFilter
{
public:
OutsideRegion( const pair< istream*, string > &p ) : RegionFilter( p ) {}
virtual bool keep( const Hit& h ) { return !inside( h ) ; }
} ;
class Sanitizer : public Filter
{
public:
virtual void put_header( const Header& ) ;
virtual bool xform( Result& ) ;
} ;
} // namespace
#endif
|